
 Open access  Journal Article  DOI:10.1109/TIP.2003.817237

Nonlinear wavelet transforms for image coding via lifting — Source link 

Roger L. Claypoole, Geoffrey M. Davis, Wim Sweldens, Richard G. Baraniuk

Institutions: Air Force Institute of Technology, AT&T, Houston Methodist Hospital

Published on: 01 Dec 2003 - IEEE Transactions on Image Processing (IEEE Trans Image Process)

Topics: Lifting scheme, Second-generation wavelet transform, Wavelet transform, Nonlinear filter and Data compression

Related papers:

 The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets

 The lifting scheme: a construction of second generation wavelets

 Factoring wavelet transforms into lifting steps

 Adaptive lifting schemes with perfect reconstruction

 A new, fast, and efficient image codec based on set partitioning in hierarchical trees

Share this paper:    

View more about this paper here: https://typeset.io/papers/nonlinear-wavelet-transforms-for-image-coding-via-lifting-
4cwst6g2ef

https://typeset.io/
https://www.doi.org/10.1109/TIP.2003.817237
https://typeset.io/papers/nonlinear-wavelet-transforms-for-image-coding-via-lifting-4cwst6g2ef
https://typeset.io/authors/roger-l-claypoole-1nfcgrx6x8
https://typeset.io/authors/geoffrey-m-davis-5a43vcf3or
https://typeset.io/authors/wim-sweldens-140iz1vpm8
https://typeset.io/authors/richard-g-baraniuk-tjnghjg575
https://typeset.io/institutions/air-force-institute-of-technology-dyzxpwfj
https://typeset.io/institutions/at-t-or5pssv1
https://typeset.io/institutions/houston-methodist-hospital-2qg193z3
https://typeset.io/journals/ieee-transactions-on-image-processing-2awu425s
https://typeset.io/topics/lifting-scheme-3e1ah4tr
https://typeset.io/topics/second-generation-wavelet-transform-24iap9my
https://typeset.io/topics/wavelet-transform-32hfnsqb
https://typeset.io/topics/nonlinear-filter-2yz6urt2
https://typeset.io/topics/data-compression-3fp83o4g
https://typeset.io/papers/the-lifting-scheme-a-custom-design-construction-of-23a3820et0
https://typeset.io/papers/the-lifting-scheme-a-construction-of-second-generation-mfxuqws6rl
https://typeset.io/papers/factoring-wavelet-transforms-into-lifting-steps-i03g7glnvz
https://typeset.io/papers/adaptive-lifting-schemes-with-perfect-reconstruction-68ideba2b0
https://typeset.io/papers/a-new-fast-and-efficient-image-codec-based-on-set-2cr4hcqv6x
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/nonlinear-wavelet-transforms-for-image-coding-via-lifting-4cwst6g2ef
https://twitter.com/intent/tweet?text=Nonlinear%20wavelet%20transforms%20for%20image%20coding%20via%20lifting&url=https://typeset.io/papers/nonlinear-wavelet-transforms-for-image-coding-via-lifting-4cwst6g2ef
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/nonlinear-wavelet-transforms-for-image-coding-via-lifting-4cwst6g2ef
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/nonlinear-wavelet-transforms-for-image-coding-via-lifting-4cwst6g2ef
https://typeset.io/papers/nonlinear-wavelet-transforms-for-image-coding-via-lifting-4cwst6g2ef


IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 12, DECEMBER 2003 1449

Nonlinear Wavelet Transforms
for Image Coding via Lifting

Roger L. Claypoole, Jr., Senior Member, IEEE, Geoffrey M. Davis, Wim Sweldens, Member, IEEE, and
Richard G. Baraniuk, Fellow, IEEE

Abstract—We investigate central issues such as invertibility, sta-
bility, synchronization, and frequency characteristics for nonlinear
wavelet transforms built using the lifting framework. The nonlin-
earity comes from adaptively choosing between a class of linear
predictors within the lifting framework. We also describe how ear-
lier families of nonlinear filter banks can be extended through the
use of prediction functions operating on a causal neighborhood of
pixels. Preliminary compression results for model and real-world
images demonstrate the promise of our techniques.

Index Terms—Adaptive signal processing, image coding, wavelet
transforms.

I. INTRODUCTION

I
N HIS CLASSIC treatise on the workings of the human vi-

sual system, Marr focused on the importance of the represen-

tation of information for various cognitive tasks [1]. The way in

which information is represented brings out certain types of fea-

tures while hiding others. Image compression applications also

rely heavily on having an efficient representation of image data.

Ideally we would like to approximate an image with a small

number of parameters; the wavelet transform provides such an

efficient representation [2].

Transform coding consists of three components: a reversible,

linear transform to map the image into a set of transform coeffi-

cients; nonreversible quantizers; and an encoder [3], [4]. Typ-

ically, a significant number of the transform coefficients are

small, and can therefore be coarsely quantized or completely

discarded, with little distortion. Compression is achieved during

the quantization and encoding of the transformed coefficients,

and not during the transformation step.

In this paper we focus on improving the properties of the

transform rather than the encoder, expanding on our work in [5].

Manuscript received September 14, 1999; revised March 18, 2002. This work
was supported by the NSF under Grant MIP-9457438, by the ONR under Grant
N00014-99-1-0813, by DARPA/AFOSR under Grant F49620-97-1-0513, and
by the Texas Instruments Leadership University Program. The views expressed
in this article are those of the authors and do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the U. S.
Government. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Touradj Ebrahimi.

R. L. Claypoole is with the Department of Electrical and Computer
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH
45433-7765 USA (e-mail: r.claypoole@ieee.org).

G. M. Davis is with Sigma Xi, The Scientific Research Society, Research
Triangle Park, NC 27709 USA (e-mail: gdavis@sigmaxi.org).

W. Sweldens is with Lucent Technologies, Bell Laboratories, Murray Hill,
NJ 07974 USA (e-mail: wim@bell-labs.com).

R. G. Baraniuk is with the Department of Electrical and Computer
Engineering, Rice University, Houston, TX 77005–1892 USA (e-mail:
richb@rice.edu).

Digital Object Identifier 10.1109/TIP.2003.817237

More precisely, we will construct adaptive wavelet transforms

that result in fewer large wavelet coefficients. Such nonlinear

wavelet transforms provide added flexibility for image repre-

sentations.

Until recently, the wavelet transforms used for image com-

pression were constructed with linear filter banks. Construction

of nonlinear filter banks was proposed in [6], [7]. The experi-

ments with a nonlinear filter bank for image coding presented

in [8]are promising. The key open question in the use of these

nonlinear constructions is one of design: what is the most effec-

tive way to utilize the additional degrees of freedom obtained

from relaxing the constraint of linearity?

We examine issues such as invertibility, stability, artifacts,

and frequency-domain characteristics (to the extent to which

these are well-defined) in the construction of nonlinear wavelet

transforms. Our analysis builds on the new perspective provided

by the lifting framework [9], [10] for the wavelet transform. The

lifting framework allows us to incorporate nonlinearities while

retaining control over the properties of the wavelet transform.

The nonlinearity comes from adaptively choosing from a set

of linear predictors. We also show how the family of nonlinear

filter banks of [6], [7] can be extended through the use of pre-

diction functions operating on a causal neighborhood.

Our paper is organized as follows. In Section II, we review

the wavelet transform and the lifting construction, and show

how to introduce adaptivity into the transform. In Section III,

we discuss issues surrounding adaptivity, and in Section IV we

propose an edge-avoiding adaptive transform. In Section V, we

demonstrate this transform via compression of artificial and

real-world images. We conclude in Section VI and propose

ideas for future research.

II. WAVELETS AND THE LIFTING SCHEME

A. Wavelets

The discrete wavelet transform represents a signal in terms

of shifts and dilations of a low-pass scaling function and

a bandpass wavelet function [2]. The transform is multi-

scale, in that it creates a set of coarse coefficients that represent

signal information at the lowest scale, and sets of detail coeffi-

cients with increasingly finer resolution. The transform is typi-

cally implemented as a filter bank with analysis low-pass filter

and high-pass filter , as shown in Fig. 1. The inverse

transform uses synthesis low-pass and high-pass , as

shown in Fig. 2. For special choices of , , , and , the

underlying wavelets and scaling functions form a biorthogonal

basis and provide perfect reconstruction [2]. The transform is

1057-7149/03$17.00 © 2003 IEEE



1450 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 12, DECEMBER 2003

Fig. 1. Filter bank implementation of the wavelet transform. H and G are
the analysis low-pass/high-pass pair. c[n] and d[n] are the scaling and wavelet
coefficients, respectively.

Fig. 2. Filter bank implementation of the inverse wavelet transform.

With appropriate choices of H and G, the transform will yield a perfectly
reconstructed output sequence.

typically iterated on the output of the low-pass band ( ) to

create the series of detail coefficients at different scales.

The wavelet representation is efficient because images are

often well modeled as a set of locally smooth regions separated

by edges. Within these smooth regions, fine-scale wavelet coef-

ficients are small, and coefficients decay rapidly from coarse

to fine scales. In the neighborhood of edges wavelet coeffi-

cients decay much more slowly, but because of the local sup-

port relatively few wavelet coefficients are affected by edges.

However, these large wavelet coefficients near edges are ex-

pensive to code. Many image coders are designed to operate

on wavelet transformed data, and much current research fo-

cuses on enabling these coders to exploit the structure present in

wavelet coefficients along edges. Current successful coders per-

form some form of conditioning [11], variance prediction [12],

or context-based entropy coding [13].

B. Lifting Scheme

Lifting [9], [10] was originally developed to adjust wavelet

transforms to complex geometries and irregular sampling

leading to so-called second generation wavelets. It can also be

seen as an alternate implementation of classical, first generation

wavelet transforms [9], [14]. The main feature of lifting is

that it provides an entirely spatial-domain interpretation of the

transform, as opposed to the more traditional frequency-domain

based constructions. The local spatial interpretation enables

us to adapt the transform not only to the underlying geometry

but also to the data, thereby introducing nonlinearities while

retaining control of the transform’s multi-scale properties.

A typical lifting stage is comprised of three steps: Split, Pre-

dict, and Update (as shown in Fig. 3):1

Split: Let be a signal. We first split into its even

and odd polyphase components and , where

and . In this paper we work only with

the even and odd polyphase components of , but in principle

any partition of into nonoverlapping sets is possible [10].

If the correspond to the samples of an underlying smooth,

slowly varying function, then the even and odd polyphase com-

ponents are highly correlated. This correlation structure is typ-

1In Fig. 3, the outputs of the lifting stage are weighted by k and k . These
values serve to normalize the energy of the underlying scaling and wavelet func-
tions, respectively. Thus, this normalization could be considered a fourth lifting
step.

Fig. 3. Typical lifting steps: Split, Predict, and Update.

ically local, and thus we should be able to accurately predict

each odd polyphase coefficient from the nearby even polyphase

coefficients.

Predict: In the interpolating formulation of lifting, we pre-

dict the odd polyphase coefficients from the neighboring

even coefficients . The predictor for each is a linear

combination of neighboring even coefficients

(1)

We obtain a new representation of the by replacing

with the prediction residual. This leads to the first lifting step

(2)

If the underlying signal is locally smooth, the prediction resid-

uals will be small. Furthermore, the new representation

contains the same information as the original signal : given

the even polyphase and the prediction residuals , we

can recover the odd polyphase coefficients by noting that

(3)

This prediction procedure is equivalent to applying a

high-pass filter to . The prediction filter is typically de-

signed to exactly predict local polynomials up to and including

degree . In wavelet terminology, the underlying synthesis

scaling function corresponding to this prediction filter can

reproduce polynomials of degree up to , and the dual

(analysis) wavelet has zero moments.

Update: The third lifting step transforms the even polyphase

coefficients into a low-pass filtered and subsampled ver-

sion of . We obtain this coarse approximation by updating

with a linear combination of the prediction residuals .

We replace with

(4)

where is a linear combination of neighboring values

(5)

Each lifting step is always invertible; no information is lost.

Assuming the same and are chosen for the analysis and

synthesis stages, the lifting construction guarantees perfect re-

construction for any and . Given and , we have

(6)

and from (3).

The inverse lifting stage is shown in Fig. 4. Note that and

are at half rate, and thus this transform corresponds to a criti-
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Fig. 4. Typical inverse lifting steps: undo the update, undo the predict, and
merge.

cally sampled perfect reconstruction filter bank. One can show

that the update function determines the properties of the dual

wavelet and primal scaling function. In particular, if the update

filter is one-half the adjoint of the predict filter, then the primal

(synthesis) wavelet has zero moments as well [9].

C. Examples

A simple example of lifting is the construction of the Deslau-

riers-Dubuc family of wavelets [9] from a single Deslauriers-

Dubuc [15] prediction step followed by a single update step. For

example, the following prediction and update steps comprise a

single stage of the (4,4) Deslauriers-Dubuc wavelet transform

(7)

(8)

The predict step cancels cubic polynomials and leaves the

residual in the high-pass signal . The update step results

in a low-pass and subsampled version of being placed in

. It should be emphasized that lifting is a general construc-

tion and not limited to the Deslauriers-Dubuc family. Using the

Euclidean algorithm, we can decompose any FIR wavelet trans-

form into a sequence of prediction and update steps [14]. Thus,

the lifting implementation shown in Fig. 3, with possibly mul-

tiple stages, is equivalent to the filter bank implementation of the

wavelet transform shown in Fig. 1. Unfortunately at this point

we do not have a spatial interpretation for general transforms

factored into lifting steps; consequently we currently do not

know how to make adaptive versions of general wavelet trans-

forms.

A second example of a nonlinear lifting construction is the

integer-to-integer S+P transform of Said and Pearlman [16],

shown in Fig. 5. The outputs and of the S algorithm

are computed as

(9)

(10)

where is a round-off operator to ensure the transform is in-

teger-to-integer. The P transform creates the detail coefficients

as

(11)

Fig. 5. Said and Pearlman (S+P) transform [16].

As shown at the bottom of Fig. 5, the S+P transform includes

an additional prediction operator which is outside the rungs

of the “ladder.” This is an optional filter, and must be causal

to ensure that the inverse transform can be implemented with

identical filters to the forward transform.

In [17], it was shown that the S+P transform can be seen as

a three-step nonlinear lifted transform. The S transform is con-

structed as a one point predict followed by a one point update.

The P transform is an additional prediction step, combined with

the causal filter. The nonlinearity comes from the quantizers

which are needed to ensure an integer-to-integer transform. Due

to the nature of the lifting implementation (and the causality of

), perfect reconstruction is guaranteed despite the presence

of the nonlinear quantizers. It is interesting to note that the op-

timized coefficients of the transform proposed in [16] satisfy

some of the linear lifting constraints discussed in Section II-B.

D. Introducing Adaptivity Into the Wavelet Transform

Wavelet bases typically employed for image compression

(such as the Daubechies (9,7) system [2]) utilize smooth scaling

and wavelet functions. Such bases can be easily constructed

with the predict-then-update form of lifting described above.

Larger predictors (predictors that can exactly predict polyno-

mials of higher degree) correspond to smoother basis functions;

these lifting predictors work well when the underlying signal is

smooth (just as the Daubechies (9,7) system works best when

the signal is smooth).

However, most images consist of regions of smoothness and

texture separated by discontinuities (edges). These disconti-

nuities cannot be well-represented by smooth basis functions.

Since smooth basis functions correspond to lifting predictors

with wide support, these predictors work poorly near edges,

when the discontinuity is within the data we are using for the

prediction.

Our goal is to introduce a mechanism that allows us to choose

the prediction operator based on the local properties of the

image. This makes the operator data-dependent and thus non-

linear. However, lifting guarantees that the transform remains

reversible. In regions where the image is locally smooth, we

use higher order predictors. Near edges we reduce the order and

thus the length of the predictor. This avoids making a predic-

tion based on data which is separated from the point of interest

by a discontinuity. Ideally we would like to use predictors that

take into account the fact that discontinuities in images tend to

occur along continuous curves. Such an adaptation would allow

us to exploit the additional spatial structure that we know exists

in edges.
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III. FILTER DESIGN

Adapting the predictor makes our transform nonlinear.

However, the concept of basis functions relies fundamentally

on linear superposition. Consequently, the notion of a single

basis function no longer makes sense for nonlinear transforms.

We thus focus on the spatial properties of the transform when

designing our predictors.

A. Multi-Resolution Properties

When the prediction and update operators are constructed via

the polynomial lifting constraints, the output of the update step

is a coarse approximation (low-pass and downsampled) version

of our image. We need this coherent interpretation of the update

coefficients, since they will be input to further iterations of the

transform. After the first iteration, all subsequent predictions are

based on updated coefficients. If we are to make effective pre-

diction throughout the transform, we need some kind of struc-

ture in the update. However, if the prediction is performed with

a nonlinear operator, it may not be possible to construct an up-

date operator that satisfies the polynomial lifting constraints and

provides a low-pass interpretation of the updated coefficients.

Consider again the example (8). While it is easy to see that

the prediction filter leads to a high-pass filter, it is not im-

mediately clear that the update leads to a low-pass filter. The

reason is that the lifting structure mandates that the high-pass

coefficients must be reused in the computation of , and thus

depends both on and on . By carefully adjusting the update

to the prediction , we can ensure that is a low-pass-filtered

and subsampled version of the original signal. In the example,

had to be chosen as

. While we know how to adjust for a spatially varying,

but linear [10], it is not immediately clear how to construct a

nonlinear that preserves frequency localization (to the extent

that this is well-defined) when we have a nonlinear .

B. Stability and Synchronization

We also need to ensure that the transform is stable. Lossy

coding schemes introduce errors into the transform coefficients,

so it is crucial that the nonlinearities do not unduly amplify these

errors. Our goal is to use a high-order predictor in smooth re-

gions and a low-order predictor near edges. In order to avoid

sending side information on which predictor was chosen, we

need to base the choice only on the . However, in lossy

compression the decoder only has the quantized even coeffi-

cients rather than the original coefficients . If we use

locally adapted filters, then quantization errors in coarse scales

could cascade across scale and cause a series of incorrect filter

choices leading to serious reconstruction errors.

In the predict-then-update case, the problem of stability

cannot be solved by synchronization alone, i.e., having the

encoder make its choice of predictor based on quantized data.

The reason is that the reconstructed values are obtained

from quantized low-pass values . The low-pass signal

is a function of the prediction residual signal , which in

turn depends on what filters are chosen for prediction, as shown

on the left in Fig. 6. Hence the encoder cannot obtain the

quantized values until it selects a predictor, and it cannot

Fig. 6. Two-iteration lifted wavelet transform trees with predict-first (left) and
update-first (right). When predicting first, the prediction must be performed
prior to construction of the coarse coefficients and iteration to the next scale.
When updating first, the prediction operator is outside the loop. The coarse
coefficients can be iterated to the lowest scale, quantized, and reconstructed
prior to the predictions.

Fig. 7. Update-first lifting sequence.

select a predictor without obtaining . If we are to employ

a nonlinear lifting procedure for lossy coding, it is essential

that we avoid this Catch 22.

C. Solution: Update First

We propose a simple modification that solves the stability and

synchronization problems: reverse the order of the predict and

update lifting steps in the wavelet transform (see Fig. 7). We

first update the even samples based on the odd samples yielding

the low-pass coefficients . We then reuse these low-pass co-

efficients to predict the odd samples, which gives the high-pass

coefficients . We use a linear update filter and let only the

choice of predictor depend on the data.

Because we update first and the transform is only iterated

on the low pass coefficients , all throughout the entire

pyramid linearly depend on the data and are not affected by the

nonlinear predictor. This is shown in Fig. 6. The tree on the left

shows the predict first pyramid. Clearly, it is impossible to create

the coarse coefficients without first using the prediction operator

to create the detail coefficients. However, in the update-first tree

on the right, the prediction operators are not in the loop. Thus

the prediction is only based on low-pass coefficients that are

computed as in the classical wavelet transform. Furthermore, if

we perform the transform backward, i.e., starting the prediction

process at the lowest frequency (coarsest) subband and working

from coarse to fine scales, we can keep the encoder and decoder

perfectly synchronized. The predictor operates on raw data, but

the choice of predictor is based on quantized data. This ensures

that the encoder and decoder are choosing predictors based on

the same data, and eliminates propagation of error due to incor-

rect decisions at the decoder. Moreover the low-pass branches of
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Fig. 8. Predictor selection at an ideal step edge. Numbers indicate the order of
the predictors used. The closer to the edge, the lower the order of the predictor.

our entire multi-resolution scheme now are linear. Consequently

we still have the notion of a dual (analysis) scaling function.

Our update-then-predict lifting scheme is related to the Lapla-

cian pyramid of Burt and Adelson [18], in which images are

represented as a series of prediction residuals, and the predic-

tors are not constrained to being linear. The Laplacian pyramid

has the disadvantage that it expands the number of coefficients

in the image being transformed by a factor of 4/3. Lifting, on

the other hand, guarantees a critically sampled decomposition.

Our implementation is also similar to the framework devel-

oped independently by Gerek and Cetin in [19]. However, by

constructing our transform via the lifting framework, we are

able to incorporate adaptivity while retaining control over the

underlying properties of the transform.

IV. ADAPTIVE WAVELET TRANSFORM

We now have a framework for introducing adaptivity into the

wavelet transform. We will create and quantize all the coarse

coefficients to the lowest scale (update first), and then adapt

the prediction operator to these coefficients. The question re-

mains on how to determine the appropriate .

A. Edge-Avoiding Prediction

As stated in Section II-D, our goal is to choose the prediction

operator based on the local properties of the image. For each

prediction window, we analyze the data to determine if it is well

approximated by a low order polynomial. If it is, then we use a

high-order predictor with wide support, which corresponds to a

smooth basis function. If the data does not meet our smoothness

criteria, we determine which pixels in the prediction window

contribute to the failure. We classify these pixels as “edge” or

discontinuity coefficients. Near these edges we reduce the order

of the predictor so that the neighborhood we use for prediction

never overlaps the edge. In this manner we maintain high accu-

racy away from edges, and avoid large errors in the presence of

edges. Fig. 8 illustrates the process of selecting these predictors

near an ideal step edge.

B. Choice of Prediction Filters

The question remains on how to find the and filters

even in the linear case. One choice is the same and fil-

ters from the Deslauriers-Dubuc family, except use for the

update, followed by for the prediction (with appropriate nor-

malization). Swapping and in this fashion reverses the roles

of the analysis and synthesis functions. However, this is prob-

lematic for coding applications, because the analysis wavelets

in the Deslauriers-Dubuc family are much less smooth than the

synthesis wavelets [2]. Since reconstructed images are built up

from synthesis wavelets, these nonsmooth building blocks lead

to highly visible artifacts in the reconstructed image when the

coefficients are quantized.

It is possible to boost the smoothness of the new building

blocks by increasing the size of the filters (and adding more

vanishing moments to the underlying scaling and wavelet func-

tions). However, due to the biorthogonal structure of the update-

first, single-stage lifting construction, the size of the synthesis

filter will always be larger that of the analysis filter .

We observe that this leads to excessive ripple in the new building

blocks, which in turn causes ringing in our reconstructed image.

Instead we propose a solution based on Donoho’s average-in-

terpolation that fits into the update-predict form of lifting [20],

[21]. This leads to the (1, ) branch of the Cohen-Daubechies-

Feauveau family which is biorthogonal to the box function [22].

This family of wavelets can all be implemented with an up-

date-first architecture. Let us consider a simple example. The

low-pass coefficients are first computed using a Haar filter (a

one-point update filter)

(12)

The high-pass coefficients are the residuals of a prediction of the

odd samples based on the . The first-order Haar prediction

(leading to the (1,1) wavelet) is

(13)

while the third-order predictor, i.e., one that is exact for qua-

dratics and leads to the (1,3) wavelet, is given by

(14)

Predictors of higher order can be built in a straightforward

way. The smoothness of the resulting scaling functions

increases with the order. A lower bound for the Hölder reg-

ularity as a function of is given by ,

, , , and asymp-

totically [20]. The scaling and wavelet

functions for the (1,7) set are shown in Fig. 9. These func-

tions correspond to an update-first architecture; in this case

a one-point update followed by a seven-point prediction.

In numerical experiments this filter set yields compression

performance approaching that of the Daubechies (9,7) filter set

that is more commonly used in image coding applications.

This nonlinear lifting framework generalizes the ideas of de

Quieroz et al. [8] and makes clear the relationship between

the nonlinear filter banks described by these authors and the

wavelet transform. The filter bank described in [8] generates

the high-pass subbands using a nonseparable median filter, and

the low-pass subbands via down-sampling. This filter bank per-

forms particularly well for test images containing sharp edges,

such as the cameraman image and text; it minimizes problems

with ringing around the edges. However, the transform suffers

from speckling artifacts due to aliasing of high frequency noise

into the low-pass subbands. Our use of an anti-aliasing func-

tion via lifting has the potential to eliminate this speckling while

maintaining high quality reconstruction around edges.
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Fig. 9. Scaling and wavelet functions for the order (1,7)
Cohen-Daubechies-Feauveau filter used in our experiments. These basis
functions correspond to the update first form of lifting.

The idea of adaptively choosing from the (1, ) family of fil-

ters is similar to the work done independently by Boulgouris

et al. [23], who use the ( , 2) family (predict first) to provide

additional vanishing moments in the synthesis wavelet function

for improved lossless image compression. However, our update

first architecture provides for encoder/decoder synchronization

(see Section IV-C, below) despite our application to lossy com-

pression.

C. Synchronization

As we stressed in Section III-C, maintaining synchronization

between the adaptations of the encoder and the decoder is essen-

tial for a stable inversion. Encoding a -level transform proceeds

as follows: we first compute the coarsest scale coefficients of the

transform by iterating the linear update procedure times.

We quantize to and transmit them. Then we compute

the high-pass coefficients as

(15)

quantize them to and transmit them. Although the predictor

operates on the unquantized , the choice of predictor, ,

is based on the quantized data . Both encoder and decoder

now need the quantized values of the next finer scale ; the

even and odd components are respectively computed by undoing

the prediction and update step, but now based on the quantized

values

(16)

We now can compute the high-pass coefficients on the next finer

level. By basing our choice of predictor at each stage on the

quantized values , we maintain synchronization between en-

coder and decoder, and prevent propagation of quantization er-

rors due to incorrect prediction filter choices. The encoder and

decoder only need to agree on the level of quantization required

for these choices.

Note that it is possible to use quantized data, not only for

determining the prediction filter, but for the actual prediction

as well. The lifting construction provides perfect reconstruction

despite the presence of this nonlinear (quantization) prediction

operator. The decoder and encoder will be synchronized not just

in the choice of prediction filter, but also in the output of the

prediction filter. However, the quality of this output (accuracy

of the prediction) will be highly dependent on the level of quan-

tization. Even for moderately quantized data, our research has

shown that prediction errors will tend to be large, regardless of

prediction filter. Thus, feeding quantized data into the predic-

tion operator decreases the energy compaction properties of the

wavelet transform and reduces the compression potential of our

adaptive algorithm.

Finally, many modern image compression algorithms exploit

the multiscale properties of the wavelet transform to provide

embedded quantization. Our proposed scheme requires that

the encoder and decoder agree on a minimum quantization

level needed to make predictions decisions. Quantizing to

a level below this minimum will lead to incorrect predictor

choices and serious reconstruction error. However, using data

quantized more accurately than the minimum level is still

possible, since the encoder and decoder can always recreate

the more coarsely quantized data required for the prediction

decisions. Thus, embedded transmission is possible beyond the

minimum quantization level required for the encoder/decoder

synchronization.

D. 2-D Prediction Windows

Since all the quantized coarse coefficients are available to

both the encoder and decoder, we can utilize the data above and

below the point of interest to determine our choice of predic-

tors. That is, our edge-detection algorithm can analyze the data

in this nonseparable 2-D prediction window to determine the lo-

cation and orientation of the edge. Edges in images are actually

contours; they have significant geometric structure. By using a

nonseparable 2-D window, we can exploit this edge structure to

make smarter prediction decisions within the framework of our

separable transform.

If we sense (by our outlier method described earlier) that

an edge is present within our prediction window, we analyze

the data in the 2-D window around the point of interest to

refine our estimate of the edge. We assume a step edge is

present, project the data onto a truncated Fourier basis, and

qualify our projection against our edge model. This process

is a modified version of the algorithm presented in [24]. If

the data passes our edge criteria, the intensity and angle of

the edge are determined. This information is then used to

refine our choice of prediction filter.

It is also possible to use not only the low-pass coefficients for

prediction of , but also other odd coefficients in a causal

neighborhood of . Suppose our signal is a row in

an image. We would predict from low-pass coefficients

on its left and right. Further suppose we have discovered

a vertical step edge near . The precise location of the

edge cannot be determined from the low-pass coefficients .

However, if we know the value of the coefficients from the

row directly above , we can use this information in the
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Fig. 10. Edge dominated image with texture, compressed to 0.67 BPP (12:1 compression). Note the ringing around the edges of the square in the Daubechies
(9,7) and linear (1,7) lift images that is eliminated by the adaptive lift.

prediction of . This predict-from-above idea is similar

to the causal filter of the S+P algorithm [16] discussed

in Section II-C.

Unfortunately, the predict-from-above scheme typically

results in decreased stability. Consider the example above

in which we resolve difficulties in predicting the location

of a vertical edge in a row of coefficients by using already

inverted coefficients in the row above. Such a scheme permits

a quantization error in one row to propagate along a vertical

edge to all other rows. We can prevent such propagation by

employing a Differential Pulse Code Modulation (DPCM)-like

strategy [25] of using quantized data from the causal neighbor-

hood for making predictions in the encoder as well as in the

decoder. Note that this strategy will only work in the horizontal

direction, since the vertical transform must be completed

before the horizontal transform can be computed. Also, the

quality of this prediction-from-above will be highly dependent

on the level of quantization. Even for moderately quantized

data, the prediction errors tend to be large, again decreasing

the energy compaction and compression potential. Thus, using

the quantized data in this 2-D window to perform the actual

prediction was found to decrease performance, and is therefore

not included in our adaptive lifted algorithm. However, the

nonseparable 2-D prediction window leads to a better choice of
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(a) (b)

Fig. 11. Close-up of edge dominated image with texture, compressed to 0.67 bits-per-pixel (BPP) (12:1 compression). Note the sharp edges and reduced ringing
with the adaptive algorithm. (a) Compressed with Daubechies (9,7). (b) Compressed with adaptive lift.

prediction filters (and better compression), and is an important

part of our transform.

V. RESULTS

A. Synthetic Data

Fig. 10 shows the result of our adaptive lifting algorithm ap-

plied to an edge-dominated test image. This image was con-

structed by superimposing texture on shapes of different mag-

nitudes and orientations. The original image was transformed

and compressed to 0.67 bits-per-pixel (BPP) (12:1 compression)

using an embedded zero-tree encoder [26]. For simplicity, we

compress the zero-tree symbol stream with a Huffman coder,

and we make no effort to compress the quantization bit stream.

We compare our performance against that of the Daubechies

(9,7) wavelet because it is very popular in image compression.

We also compare against the linear (1,7) lift; it is the smoothest

member of the family of wavelets that we use in our adaptive

lifting algorithm.

We notice that the Daubechies (9,7) and linear (1,7) lift

transformed images suffer from blurring and ringing around

the edges. However, the image transformed with our adaptive

lifted algorithm has much sharper edges. Ringing is reduced,

edge sharpness is maintained, and the background texture is not

significantly corrupted. These improvements are very visible

in the closeup shown in Fig. 11. The reason for these improve-

ments is that edges in our new transform are represented in a

more compact fashion, and as a result there is less degradation

of the image when we zero out small, nonzero coefficients.

As a performance metric, we compute the peak signal to noise

ratio (PSNR),

Fig. 12. Peak signal-to-noise ratio (PSNR) curves for the edge-dominated
test image of Fig. 10. This test image was designed to demonstrate the potential
gains of the adaptive lift. The adaptive algorithm (solid line) outperforms the
Daubechies (9,7) transform (dash-dot) and the (1,7) linear lift (dash). The
encoder and decoder were synchronized for the adaptive algorithm.

where is the pixel of our original image, is the pixel

of our reconstructed image, and is the total number of pixels.

The PSNR curve (Fig. 12) demonstrates that, for this edge-dom-

inated test image, the adaptive algorithm has better PSNR per-

formance than both the Daubechies (9,7) and linear (1,7) lift

transforms. The Daubechies (9,7) PSNR curve is shown for ref-

erence only; our goal is to improve the performance of the linear

(1,7) lift though adaptivity.

B. Real Data

In Fig. 13, we see the result of our adaptive lifting algorithm

on the image cameraman, compressed to 0.25 BPP (32:1 com-

pression). Our prediction decisions are based on data quantized

to 7 iterations of the zero-tree encoder to ensure decoder/en-

coder synchronization. While ringing has been reduced in the

horizontal and vertical edges, there are still some ringing arti-

facts in the diagonal direction. The reason for these remaining
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(a) (b)

(c) (d)

Fig. 13. Cameraman image compressed to 0.25 BPP (32:1 compression). (a) Cameraman image. (b) Compressed with Daubechies (9,7). (c) Compressed with
linear (1,7) lift. (d) Compressed with adaptive lift.

artifacts is that we are using a separable transform in which we

seek to avoid horizontal and vertical edges.

Note in Fig. 14 the PSNR performance of our adaptive

algorithm over the linear (1,7) lift. Each point on the PSNR

curve was generated with decoder/encoder synchronization,

and reflects embedded transmission beyond this minimum

quantization level. Again, the performance of the popular

Daubechies (9,7) transform is shown for reference. Although

our adaptive algorithm does not match the PSNR performance

of the Daubechies (9,7) transform, the visual quality of our

algorithm is comparable, due to the reduction in edge artifacts.

In general the adaptive algorithm results in much sharper

decoded images. We conjecture that introducing adaptivity into

the Daubechies (9,7) transform (an area of current research)

would result in further PSNR increases.

VI. CONCLUSIONS

Lifting provides insight into the construction of the wavelet
transform, and allows us to incorporate adaptivity and nonlinear
operators into the transform. We presented the Update First

scheme to maintain control over the multi-resolution properties
of the transform despite the presence of these nonlinearities.

Within this scheme, we introduced an algorithm that
switches between various linear predictors to avoid predicting

across edges. This algorithm efficiently represents edges and
compacts energy into the lower subbands of the transform. In
addition, we employed a 2-D nonseparable window to make
better predictor choices. The update-first scheme allowed us to
make these improvements while maintaining synchronization
between the encoder and decoder (to prevent propagation of
quantization errors).
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Fig. 14. PSNR curves for the cameraman image. The adaptive algorithm
(solid line) outperforms its linear (1,7) lift (dash), but it does not meet the
PSNR performance of the Daubechies (9,7) transform (dash-dot). However,
edge artifacts are significantly reduced by the adaptive algorithm. The encoder
and decoder were synchronized for the adaptive algorithm.

Our adaptive lifting transform appears promising for lossy

compression. It reduces edge artifacts and ringing, and improves

PSNR performance on certain test images.

Thus, the lifting scheme permits us to combine the best of

both worlds. We can introduce nonlinear and adaptive filters into

our transform, while simultaneously maintaining the multi-res-

olution properties of the linear wavelet transform. This provides

a very powerful tool for not only lossy image compression, but

other applications as well, such as lossless image compression

[23], image estimation [27], image classification, and feature

extraction.
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