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We investigate the dynamics of a thin laminar liquid film flowing under gravity
down the lower wall of an inclined channel when turbulent gas flows above the
film. The solution of the full system of equations describing the gas–liquid flow faces
serious technical difficulties. However, a number of assumptions allow isolating the
gas problem and solving it independently by treating the interface as a solid wall.
This permits finding the perturbations to pressure and tangential stresses at the
interface imposed by the turbulent gas in closed form. We then analyse the liquid
film flow under the influence of these perturbations and derive a hierarchy of model
equations describing the dynamics of the interface, i.e. boundary-layer equations, a
long-wave model and a weakly nonlinear model, which turns out to be the Kuramoto–
Sivashinsky equation with an additional term due to the presence of the turbulent
gas. This additional term is dispersive and destabilising (for the counter-current case;
stabilizing in the co-current case). We also combine the long-wave approximation with
a weighted-residual technique to obtain an integral-boundary-layer approximation
that is valid for moderately large values of the Reynolds number. This model is
then used for a systematic investigation of the flooding phenomenon observed in
various experiments: as the gas flow rate is increased, the initially downward-falling
film starts to travel upwards while just before the wave reversal the amplitude of the
waves grows rapidly. We confirm the existence of large-amplitude stationary waves by
computing periodic travelling waves for the integral-boundary-layer approximation
and we corroborate our travelling-wave results by time-dependent computations.
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1. Introduction

Gas–liquid flows are often encountered in a wide variety of natural phenomena
and technological applications: from wind-generated waves on the surface of lake
and sea waters to heat and mass transfer processes in engineering applications, e.g.
evaporators, condensers, heat pipes, cooling towers and chemical reactor columns.
In the present study, we consider the problem of a counter-current turbulent gas–
laminar liquid flow in a channel with the liquid flowing down one of the channel walls
due to gravity. This system has been the subject of active research for more than
60 years, starting from the pioneering experiments of Semyonov (1944). He found
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Figure 1. Schematic representation of the gas–liquid flow in a tube as gas flow rate
is increased.

that counter-current turbulent gas–laminar liquid film flow is characterised by a series
of unique hydrodynamic phenomena, the most interesting of which is the so-called
flooding phenomenon: as the gas flow rate is increased, the initially downward-falling
film starts to travel upwards. Also, just before the flow reversal, the amplitude of the
interfacial waves grows very rapidly and at the same time the speed of the waves
decreases. Eventually, as the flow reverses very rapidly, atomisation of the liquid into
the gas phase occurs.

Let us briefly describe the main experimental findings of Semyonov (1944). He
considered co-current and counter-current air–water flow in a vertical glass tube of
diameter 13.8 mm and length 2.3 m. The air velocity corresponding to the maximal gas
flow rate was 35 m s−1, and the typical water film thickness was 50 µm. A schematic
representation is given in figure 1, Semyonov (1944) reported various flow regimes
when the air is flowing upwards, the main of which are given below.

(i) Without the air flow, the film flow is laminar with a slightly wavy interface.
At slow gas velocities, less than 4 m s−1, there are no significant changes in the flow
characteristics.

(ii) As the air velocity is increased beyond 4 m s−1, the waviness of the interface
increases, but the flow is still laminar. Wave rings travel down the pipe separated
by 3–5 cm. Sometimes the rings are destroyed as they travel down the pipe. With
increasing air flow rate, the velocity of the rings decreases. With increasing liquid flow
rate, the velocity of the rings increases. If the air flow rate is slowly increased, then
flooding occurs at certain air velocities. The smaller the water flow rate is, the higher
air velocity observed before flooding occurs. At a water flow rate of 10−2 kg m−1 s−1,
the critical air velocity was reported to be 7.3 m s−1.
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(iii) If the air velocity is rapidly increased at flooding, the above violent flow
characteristics disappear and a thin film starts to flow upwards. The film interface
consists of small regular rings travelling upwards. The higher the gas velocity is, the
smaller the rings are and the faster they travel.

(iv) If the liquid flow rate is increased, there appear less regular larger rings that
travel faster and non-uniformly, and after that the water flow becomes turbulent, a
regime beyond the scope of the present study.

Previous work on flooding has been mainly experimental and was devoted to the
investigation of the influence of liquid and gas properties as well as channel geometry
on the onset of flooding, e.g. Stainthorp (1967), Dukler & Smith (1979), Lee & Bankoff

(1984), Maron & Dukler (1984), McQuillan, Whalley & Hewitt (1985), Larson, Oh &
Chapman (1994), Jayanti, Tokarz & Hewitt (1996), Sudo (1996), Zapke & Kröger
(2000a ,b), Mouza, Pantzali & Paras (2005), Drosos, Paras & Karabelas (2006) and
Pantzali, Mouza & Paras (2008), to name but a few. A number of empirical relations
which attempt to correlate the gas–liquid flooding transition velocities as a function
of the physical and geometrical parameters of the system have also appeared as
a result of these experimental studies. It should be noted that although flooding
has been the subject of numerous experimental studies over several decades, there
still exists controversy in its precise definition and its mechanism. Indeed, it was
found that the onset of flooding depends considerably on many factors, such as the
channel geometry, channel inclination angle, inlet and outlet conditions and the liquid
properties (e.g. Jayanti et al. 1996; Pantzali et al. 2008). We concentrate here on the
mechanism associated with the sharp increase of the amplitude of the interfacial
waves when the gas velocity gradually approaches the flooding point. The velocity of
such waves decreases as the gas velocity increases and the waves can be eventually
swept upwards by the gas. This mechanism has been reported in numerous studies,
e.g. Semyonov (1944), McQuillan et al. (1985), Jayanti et al. (1996) and Pantzali et al.
(2008). Therefore, it is natural to associate the ‘onset of flooding’ with the formation
of almost stationary waves of large amplitude. We adopt this definition of the onset
of flooding, and our motivation with the present study is to develop a theoretical
framework that would allow a systematic theoretical investigation of this phenomenon.

Previous theoretical works on gas–liquid film flows are limited. Shearer & Davidson
(1965) first stipulated that at the gas velocity corresponding to flooding, a large-
amplitude standing wave forms on the liquid surface. To obtain the shape of the
standing wave, they used an empirical expression for the variation of the gas pressure.
Guguchkin et al. (1979) analysed the linear stability of a liquid film entrained by a
turbulent gas that was modelled using the ‘quasi-laminarity’ assumption of Miles
(1957) and Benjamin (1959). Demekhin (1981) treated the problem for the turbulent
gas independently of the liquid problem and derived an integral-boundary-layer (IBL)
approximation for the liquid, first introduced by Shkadov (1967) for a falling film
without a gas. Jurman & McCready (1989) and Peng, Jurman & McCready (1991)
analysed experimentally and analytically (by performing a linear stability analysis
and deriving weakly nonlinear amplitude equations) waves on horizontal thin liquid
films sheared by turbulent gas flows.

The approach adopted in the present paper is similar to that of Demekhin (1981)
and a recent study by Trifonov (2010), namely the gas problem is solved independently
under appropriate assumptions. However, instead of solving the full Navier–Stokes
equations for the liquid problem, as in Trifonov (2010), we derive various low-
dimensional models, i.e. a long-wave model, a weakly nonlinear model and an IBL
approximation based on weighted residual techniques.
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The drawback of the weakly nonlinear model is that it is valid only for small-
amplitude waves and sufficiently close to criticality. On the other hand, for the
equation resulting from the long-wave expansion, we are close to criticality but
the amplitude is not necessarily small. However, for a free-falling film, the time-
dependent computations of the first-order long-wave evolution equation by Pumir,
Manneville & Pomeau (1983) revealed that the equation exhibits finite-time blow-up
behaviour when it is integrated in regions of the parameter space where solitary waves
do not exist. This finite-time blow-up was investigated in detail by Oron & Gottlieb
(2002) and Scheid et al. (2004).

Clearly, this behaviour is unphysical and marks the failure of the long-wave
evolution equation to correctly describe nonlinear waves far from a close
neighbourhood of the critical Reynolds number. A way out is the IBL approximation.
For the free-falling film, it was introduced by Shkadov (1967) as noted earlier,
following the pioneering theoretical work of Kapitza (1948). However, despite its
success in describing nonlinear waves far from criticality, the IBL approximation does
have its shortcomings, the principal one being a 20 % error for the critical Reynolds
number (except for the vertical plane where the critical Reynolds number vanishes).

The IBL approximation was corrected by Ruyer-Quil & Manneville (1998, 2000,
2002) who combined the long-wave expansion with a weighted-residual technique
using polynomial test functions for the velocity field. It was shown that a simple
Galerkin projection with just one test function (the self-similar parabolic profile
assumed by Shkadov) and a weight function, the test function itself fully corrects
the critical Reynolds number. Subsequently, the weighted-residuals methodology has
been extended to falling film problems in the presence of additional effects and
complexities, e.g. thermocapillary Marangoni effects induced by heating the substrate
either uniformly or non-uniformly (Kalliadasis et al. 2003a; Kalliadasis, Kiyashko &
Demekhin 2003b; Trevelyan & Kalliadasis 2004b; Ruyer-Quil et al. 2005; Scheid et al.
2005; Trevelyan et al. 2007), solutocapillary Marangoni effects induced by the presence
of insoluble surfactants (Pereira & Kalliadasis 2008), chemical reactions (Trevelyan &
Kalliadasis 2004a) or influence of substrate curvature (Ruyer-Quil et al. 2008).

Compared with the studies by Demekhin (1981) and Trifonov (2010), we use
a more accurate model to obtain the perturbations to the shear stress and to
the pressure at the interface imposed by the turbulent gas, namely we choose to
work in curvilinear boundary-layer coordinates and make use of the quasi-laminarity
assumption of Miles (1957) and Benjamin (1959) (Demekhin 1981 and Trifonov
2010 also used the Miles–Benjamin quasi-laminarity assumption but worked in
Cartesian coordinates). However, in the works by Miles (1957) and Benjamin (1959),
the influence of turbulence comes only through the turbulent mean velocity profile
and the usual Navier–Stokes equations are used. This approach is inconsistent in
that the mean velocity profile does not satisfy the problem for the unperturbed
(flat) interface. Here, we improve the Miles–Benjamin quasi-laminarity approach by
using Reynolds-averaged Navier–Stokes equations and curvilinear boundary-layer
coordinates. Indeed, analysis in curvilinear coordinates gives significantly better
agreement with experiments; see, for example, Thorsness, Morrisroe & Hanratty
(1978) for the comparison of various theoretical approaches for turbulent flow over a
wavy wall with experiments. In addition, the model developed by Demekhin (1981)
is not self-consistent: it retains the influence of normal pressure of the gas onto the
film at the same order with that of tangential stresses, while strictly speaking this
should be a higher-order effect as we shall demonstrate here. Finally, our findings
based on travelling-wave solutions of the IBL model are supported by time-dependent
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Figure 2. Sketch of the profile geometry for the counter-current gas–liquid flow in a
channel, where g = g(sin θ, − cos θ ) with g denoting the gravitational acceleration.

computations, unlike Trifonov (2010) who focused on travelling waves only. Moreover,
the IBL model has certain advantages over full Navier–Stokes especially for moderate
Reynolds numbers: it is a low-dimensional model expressed in terms of interfacial
and average quantities which makes it attractive for both mathematical and numerical
scrutiny.

This paper is organised as follows. In § 2 we describe the physical setting. In § 3
we analyse the problem for the gas flow. In § 4 we derive various simplified models,
including a long-wave model, a weakly nonlinear model and an IBL approximation
that combines the long-wave approach with a weighted residuals technique. In § 5
we construct travelling waves of our IBL model and examine their relevance in
time-dependent computations. Finally, § 6 is devoted to discussion and conclusions.

2. Physical setting

Figure 2 shows the problem definition. We consider a thin liquid film flowing under
the action of gravity down the lower wall of an inclined channel forming an angle
θ with the horizontal direction. The liquid has density ρl and viscosity µl . A gas
of density ρg and viscosity µg flows above the liquid. The liquid film is assumed to
be laminar, whilst the gas is taken to be turbulent. Both liquid and gas flows are
assumed to be two-dimensional. We introduce a Cartesian coordinate system, (x̃, ỹ),
with the x̃-axis pointing along the lower wall of the channel in the direction of the
liquid flow. Hereinafter, tildes indicate dimensional variables. The velocity and the
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Figure 3. Gas flow in a channel with a wavy lower wall.

pressure in the liquid are denoted by ũ and p̃, respectively, and in the gas by Ũ and

P̃ , respectively. (The precise meaning of the velocity and the pressure in the turbulent
gas will be specified below.) The interface is located at ỹ = h̃(x̃, t̃), where t̃ denotes
time. The undisturbed film thickness is denoted by h̃0 and the distance between the
undisturbed interface and the upper wall is denoted by 2L̃.

The solution of the full system of equations governing this gas–liquid flow is
an almost formidable problem. However, a number of assumptions and facts allow
considerable simplification. First, the dynamic viscosity of the gas, µg , is much smaller
than that of the liquid, µl . We also assume that the typical velocity in the liquid and of
the interfacial waves is much smaller than the typical velocity of the gas. Furthermore,
we assume that the turbulent fluctuations in the gas for the gas–liquid flow decay in
the same way as the fluctuations in the gas flowing over a rigid wall. These conditions
imply that for the gas problem, it is appropriate to model the interface as a solid
wall. Therefore, the gas problem can be analysed independently, as discussed in the
next section.

3. Gas problem

Consider the flow of an incompressible gas in a channel with a flat upper wall
and a wavy lower wall (corresponding to the gas–liquid interface as discussed in the
previous section). A schematic diagram is given in figure 3. The gas flows either in
the positive or negative x̃-direction. The gas flow is governed by the incompressible
Reynolds-averaged Navier–Stokes equations

ρg Ũ · ∇Ũ = −∇P̃ + ∇ · T̃ , ∇ · Ũ = 0, (3.1)

where Ũ = (Ũ , Ṽ ) is the time-averaged gas velocity and P̃ is the time-averaged

pressure. Also, T̃ = σ̃ + τ̃ , where σ̃ = µg

[
∇Ũ + (∇Ũ)T

]
is the Newtonian stress tensor

and τ̃ is the Reynolds stress tensor due to random turbulent fluctuations in the gas
momentum.

The no-slip and no-penetration boundary conditions at the lower and upper walls
require

Ũ = 0 at ỹ = h̃0 + s̃(x̃), ỹ = h̃0 + 2L̃, (3.2)
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where s̃(x̃) represents the disturbance of the gas–liquid interface, which for the gas
problem can be considered to be independent of time.

To non-dimensionalise the governing equations, we choose the friction velocity
U ∗ =

√
|Tw|/ρg as the velocity scale, where Tw is the shear stress along the wall for

the case when the lower wall is flat, and µg/ρgU
∗ as the length scale. The pressure

and the Reynolds stress tensors are scaled by ρg(U
∗)2 ≡ |Tw|. We drop tildes to denote

dimensionless variables and, for simplicity, define the dimensionless coordinate y so
that it points along the undisturbed lower wall, i.e. we set y = (ỹ − h̃0)ρgU

∗/µg .
The dimensionless governing equations are

U · ∇U = −∇P + ∇2U + ∇ · τ , ∇ · U = 0. (3.3)

In component form, these equations are written as

UUx + V Uy = −Px + Uxx + Uyy + τ11x + τ12y, (3.4)

UVx + V Vy = −Py + Vxx + Vyy + τ12x + τ22y, (3.5)

Ux + Vy = 0, (3.6)

while the boundary conditions read

U = V = 0 at y = s(x), y = 2L. (3.7)

3.1. Base state

Let us now consider the base state when the lower wall of the channel is flat. In
this case, U = U0(y), V ≡ 0, τ11 ≡ 0, τ22 ≡ 0 and τ12 = τ012(y). Because of the midplane
symmetry of the channel, we also have U0y = 0 and τ012 = 0 at y =L. The governing
equations then imply that P =P0(x) and

−P0x + U0yy + τ012y = 0. (3.8)

Integrating the latter equation with respect to y from 0 to L yields

−LP0x − U0y(0) − τ012(0) = 0, (3.9)

i.e.

P0x = − 1

L
[U0y(0) + τ012(0)]. (3.10)

The expression in the brackets on the right-hand side of the latter equation is the
shear stress at the wall (with a positive or negative sign if the flow is in the positive
or negative x-direction, respectively). This quantity should be equal to unity due to
our choice of non-dimensionalisation. Therefore, we get

P0x = ∓ 1

L
, (3.11)

where the minus sign corresponds to the case when the gas flows in the positive
x-direction and the plus sign corresponds to the case when the gas flows in the
negative x-direction.

By substituting (3.11) into (3.8) and integrating from y to L, we obtain the equation

U0y + τ012 = ±
L − y

L
, (3.12)

from which the base velocity profile can be determined, given a particular model for
τ012. We will assume that the channel is sufficiently wide and that it is appropriate to
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Figure 4. The basic velocity profile for L = 200.

use the mixing length model for τ012,

τ012 = l2|U0y |U0y, (3.13)

or equivalently,

τ012 = νtU0y, (3.14)

where νt = l2|U0y | is the kinematic eddy viscosity. We then get the following equation:

U0y + l2|U0y |U0y = ±
L − y

L
, (3.15)

where l is the mixing length which can be modelled, for instance, in the wall turbulent
boundary layer by the van Driest equation

l = κy[1 − exp(−y/A)], (3.16)

with κ = 0.41 being the von Kármán constant and A = 25 (see Schlichting 2000,
p. 571). The basic velocity profile for this model is given in figure 4. The gas flow has
a layered structure. It consists of a core layer, where turbulent momentum transfer
dominates (the velocity profile is logarithmic in this region), and a thin wall layer
where both molecular and turbulent momentum transfer act. There is also a thin
viscous sublayer near the wall where turbulent momentum transfer can be neglected
(the velocity profile is linear in this region).

3.2. Flow over a wavy wall of small amplitude

Next, we will analyse the gas flow for the case when the lower wall is not flat but is
wavy of small amplitude, i.e. we assume that s̃(x̃) ≡ ǫ̃eiα̃x̃ , ǫ̃ ' 1, where the real part of
the latter expression represents the physical wall and ǫ̃ and α̃ are the amplitude and
the wavenumber of the wall undulations, respectively. In dimensionless coordinates,
the lower wall is located at y = s(x) ≡ ǫeiαx , where ǫ = ǫ̃ρgU

∗/µg and α = α̃µg/ρgU
∗.
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3.2.1. Benjamin’s choice of boundary-layer coordinates

We choose to work in orthogonal boundary-layer coordinates which, as it turns
out, provide significantly better agreement with experiments than the usual Cartesian
coordinates. A discussion of general orthogonal curvilinear coordinates is given in
the Appendix. We introduce the following coordinate system as in Benjamin (1959):

ξ1 = x1 − iǫ e−αx2eiαx1, (3.17)

ξ2 = x2 − ǫ e−αx2eiαx1, (3.18)

in which the equation for the lower wall is, to first order in ǫ, given by ξ2 = 0. We
note that for simplicity we use complex number notations; however, real parts of
the right-hand sides are understood throughout. We also note that by increasing x2,
the coordinate lines of the curvilinear coordinate system approach exponentially the
coordinate lines of the Cartesian system.

We find
(

∂ξ1/∂x1 ∂ξ1/∂x2

∂ξ2/∂x1 ∂ξ2/∂x2

)
=

(
1 + ǫα e−αx2eiαx1 iǫα e−αx2eiαx1

−iǫα e−αx2eiαx1 1 + ǫα e−αx2eiαx1

)

=

(
1 + ǫα e−αξ2eiαξ1 iǫα e−αξ2eiαξ1

−iǫα e−αξ2eiαξ1 1 + ǫα e−αξ2eiαξ1

)
+ O(ǫ2)





(3.19)

and
(

∂x1/∂ξ1 ∂x1/∂ξ2

∂x2/∂ξ1 ∂x2/∂ξ2

)
=

(
1 + ǫα e−αξ2eiαξ1 iǫα e−αξ2eiαξ1

−iǫα e−αξ2eiαξ1 1 + ǫα e−αξ2eiαξ1

)−1

+ O(ǫ2)

=

(
1 − ǫα e−αξ2eiαξ1 −iǫα e−αξ2eiαξ1

iǫα e−αξ2eiαξ1 1 − ǫα e−αξ2eiαξ1

)
+ O(ǫ2).





(3.20)

Also, the scale factors are given by

h1 = h2 = 1 − ǫα e−αξ2eiαξ1 + O(ǫ2), (3.21)

and the matrix with the entries given by (A 7) is

Γ =

(
(1/h1)∂x1/∂ξ1 (1/h2)∂x1/∂ξ2

(1/h1)∂x2/∂ξ1 (1/h2)∂x2/∂ξ2

)

=

(
1 −iǫα e−αξ2eiαξ1

iǫα e−αξ2eiαξ1 1

)
+ O(ǫ2).





(3.22)

Using (A 14), we then find

∇2 =
(
1 + 2ǫα e−αξ2eiαξ1

)[ ∂2

∂ξ 2
1

+
∂2

∂ξ 2
2

]
. (3.23)

With the following expansions:

ψ = ψ0(ξ2) + ǫ ψ1(ξ2)e
iαξ1 + O(ǫ2), (3.24)

P = P0 + ǫP1(ξ2)e
iαξ1 + O(ǫ2), (3.25)

τ̄ij = τ̄0 ij (ξ2) + ǫ τ̄1 ij (ξ2)e
iαξ1 + O(ǫ2), for i, j = 1, 2, (3.26)

where ψ0 is the streamfunction corresponding to the base flow chosen so that ψ0(0) = 0
without loss of generality and bars above the components of τ indicate that the
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components are taken in curvilinear coordinates, we obtain

∇2ψ = ψ ′′
0 + ǫ

[
ψ ′′

1 − α2ψ1 + 2αe−αξ2ψ ′′
0

]
eiαξ1 + O(ǫ2), (3.27)

∇4ψ = ψ ′′′′
0 + ǫ

[
ψ ′′′′

1 − 2α2ψ ′′
1 + α4ψ1 + 4αe−αξ2(ψ ′′′′

0 − αψ ′′′
0 )

]
eiαξ1 + O(ǫ2), (3.28)

where primes denote derivatives with respect to ξ2. Also, using (A 15) we find

∂(ψ, ∇2ψ)

∂(ξ1, ξ2)
=

∂ψ

∂ξ1

∂∇2ψ

∂ξ2

− ∂ψ

∂ξ2

∂∇2ψ

∂ξ1

= iǫ
[
αψ1ψ

′′′
0 − ψ ′

0(αψ ′′
1 − α3ψ1 + 2α2e−αξ2ψ ′′

0 )
]
eiαξ2 + O(ǫ2). (3.29)

Next, using γ11 = γ22 = 1+O(ǫ2), γ12 = − iǫα e−αξ2eiαξ1 +O(ǫ2) and γ21 = iǫα e−αξ2eiαξ1 +
O(ǫ2), we obtain

τ11 = τ̄011 + ǫ[τ̄111 − 2iαe−αξ2 τ̄012]e
iαξ1 + O(ǫ2), (3.30)

τ12 = τ̄012 + ǫ[τ̄112 + iαe−αξ2(τ̄011 − τ̄022)]e
iαξ1 + O(ǫ2), (3.31)

τ22 = τ̄022 + ǫ[τ̄122 + 2iαe−αξ2 τ̄012]e
iαξ1 + O(ǫ2). (3.32)

As a result, we find the following expression for R using (A 19):

R = τ̄0
′′
12 + ǫ

[
iατ̄1

′
11 − iατ̄1

′
22 + α2τ̄112 + τ̄1

′′
12 + e−αξ2

(
2iα3τ̄011 − iα2τ̄0

′
11

− 2iα3τ̄022 + iα2τ̄0
′
22 − 4α3τ̄012 + 2α2τ̄0

′
12 + 2ατ̄0

′′
12

)]
eiαξ1 + O(ǫ2). (3.33)

By substituting (3.21), (3.28), (3.29) and (3.33) into (A 13), we obtain

ψ ′′′′
1 − 2α2ψ ′′

1 + α4ψ1 + 4e−αξ2
(
αψ ′′′′

0 − α2ψ ′′′
0

)

= i
[
ψ ′

0(αψ ′′
1 − α3ψ1 + 2α2e−αξ2ψ ′′

0 ) − αψ ′′′
0 ψ1

]
− R1, (3.34)

at first order, where

R1 = iατ̄1
′
11 − iατ̄1

′
22 + α2τ̄112 + τ̄1

′′
12 + e−αξ2

(
2iα3τ̄011 − iα2τ̄0

′
11

− 2iα3τ̄022 + iα2τ̄0
′
22 − 4α3τ̄012 + 2α2τ̄0

′
12 + 2ατ̄0

′′
12

)
. (3.35)

We now adopt a model in which the waviness-induced Reynolds stresses are
zero, i.e. τ̄1 ij =0, i, j = 1, 2, and the normal stresses are neglected, i.e. τ̄011 = τ̄022 =0.
This assumption was made by Thorsness et al. (1978) in their so-called model A,
and it should be noted that the difference with the results obtained in Cartesian
coordinates comes exactly from the above assumptions imposed on the components
of the Reynolds stress tensor τ – namely, the above assumptions are not equivalent
to assuming that τ1 ij = 0, i, j =1, 2, and τ011 = τ022 =0 in Cartesian coordinates. It is
found that the analysis in curvilinear coordinates gives significantly better agreement
with experiments compared with that in Cartesian coordinates; see also Thorsness
et al. (1978) for the comparison of various theoretical approaches for turbulent flow
over a wavy wall with experiments. (However, these authors adopted a different choice
of curvilinear coordinates in which the coordinate lines do not approach those of
the Cartesian system away from the wall, which seems a rather strange choice.) Our
assumption is an improved version of the ‘quasi-laminar approximation’ of Miles
(1957) and Benjamin (1959), who assumed that the only influence of turbulence was
through the base velocity profile, i.e. the usual Navier–Stokes equations were used
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and R1 was set to zero (the analysis of Miles 1957 was done in Cartesian coordinates,
whilst that of Benjamin 1959 was done in the curvilinear coordinates adopted here),
whereas here,

R1 = e−αξ2
(
2ατ̄0

′′
12 + 2α2τ̄0

′
12 − 4α3τ̄012

)
. (3.36)

The inconsistency of the above approach by Miles and Benjamin is that the base
velocity profile is not the solution of the problem for the unperturbed, i.e. flat, lower
wall. We also note that the Miles–Benjamin analysis was done in unbounded domains
in the y-direction, whilst our analysis is performed for sufficiently wide channels.
Finally, we note that our derivation corrects an apparent typo in (3.1) in the work by
Benjamin (1959), namely setting R1 ≡ 0 and substituting ψ1(ξ2) = F (ξ2) + e−αξ2ψ ′

0(ξ2)
into (3.34) leads to the same equation for F as (3.1) in Benjamin’s work (under
replacing U (ξ2) − c with ψ ′

0(ξ2) there) with the exception that the term 2αψ ′′′′
0 e−αξ2 ,

which appears on the right-hand side in the Benjamin equation, is absent in our
analysis.

At the wall, the no-slip and no-penetration conditions must be satisfied, which
result in the following conditions:

ψ1 = 0, ψ1ξ2
= 0 at ξ2 = 0. (3.37)

Also, as we move off the wall, the flow must approach the base flow, i.e. for a
sufficiently wide channel we can impose the following boundary conditions:

ψ1 = 0, ψ1ξ2
= 0 at ξ2 = L. (3.38)

Equation (3.34) with the boundary conditions (3.37) and (3.38) can be solved
numerically; this was done in Matlab using the boundary-value-problem solver bvp4c.
Subsequently, the wall shear stress τw and the pressure at the wall Pw can be computed.
We have

τw = t · T · n, (3.39)

where the right-hand side is evaluated at the wall given in curvilinear coordinates by
ξ2 = 0 to first order in ǫ. Also, in curvilinear coordinates, t = (1, 0), n = (0, 1) to first
order in ǫ and T = σ +τ , τ = 0 to first order in ǫ. Then, τw = t ·σ ·n = σ̄12 = σ12+O(ǫ2),
and we find

τw = ψ ′′
0 (0) + ǫ

[
ψ ′′

1 (0) + α2ψ1(0) + 2(αψ ′′
0 (0) − α2ψ ′

0(0))
]
eiαξ1 + O(ǫ2). (3.40)

Since ψ ′
0(0) = 0, ψ ′′

0 (0) = ±1, where +/− corresponds to the gas flow in the
positive/negative x-direction, respectively, and ψ1(0) = 0, we obtain

τw = τw0 + ǫτw1(α)eiαξ1 + O(ǫ2), (3.41)

where

τw0 = ±1, τw1(α) = ψ ′′
1 (0) ± 2α. (3.42)

To find the expression for the perturbation of the pressure at the wall, we can use for
example,

Px1
= −U1U1 x1

− U2U1 x2
+ U1 x1x1

+ U1 x2x2
+ τ11 x1

+ τ12 x2
(3.43)

in Cartesian coordinates. Transforming this into curvilinear coordinates, we find at
the wall

Pw1(α) ≡ P1(0) =
i

α

[
αP0ξ1

+ 2α2ψ ′′
0 (0) − 3αψ ′′′

0 (0) − ψ ′′′
1 (0)

]
, (3.44)
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Figure 5. Comparison of our theoretical prediction for |τw1| with experimental data
obtained by Thorsness et al. (1978).

at first order. Using then P0ξ1
= ∓ 1/L, ψ ′′

0 (0) = ± 1 and ψ ′′′
0 (0) = ∓ 1/L, the gas flow

in the positive/negative x-direction, respectively, we obtain

Pw1(α) =
i

α

[
±

2α

L
± 2α2 − ψ ′′′

1 (0)

]
, (3.45)

and the pressure at the wall is given by

Pw = P0 + ǫP1w(α)eiαξ1 + O(ǫ2). (3.46)

3.2.2. Comparison with experiments

We now compare our theoretical predictions for flow over a wavy wall with
experiments. In figures 5 and 6, we compare theoretical predictions for the absolute
value and the phase angle in degrees of τw1 with experimental results of Thorsness
et al. (1978). In figures 7–9, we contrast the tangential stresses at wavy walls found
experimentally by Zilker, Cook & Hanratty (1977) with theoretical predictions. In
figures 10 and 11, we compare theoretical predictions for the absolute value and the
phase angle in degrees of Pw1 with experimental results of various studies (see
Thorsness et al. 1978, and references cited therein). In all cases, there is good
agreement, even though ǫ is not small in the experiments of Zilker et al. (1977),
suggesting that the simple mixing length model we adopted is capable of capturing
satisfactorily turbulent gas flow over a wavy boundary (in the region of moderate
Reynolds numbers; ∼150–500 in the experiments). We also note that in the
experiments the phase angle of τw1 decreases monotonically with α, whilst in the
theory τw1 first increases with α and then decreases monotonically, see figure 6. (Such
a trend was also found by Thorsness et al. 1978, for their model A.) Nevertheless, the
agreement is still good for not too small values of α.

For a periodic wall of an arbitrary shape of zero mean and small amplitude, we
presume that the perturbations to the wall shear stress and the pressure depend
linearly on the wall shape. This ‘linear response’ assumption for the gas problem
implies that for an arbitrary small-amplitude periodic wall of period λ and zero mean
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Figure 6. Comparison of our theoretical prediction for the phase angle of τw1 in degrees
with experimental data obtained by Thorsness et al. (1978).
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Figure 7. Tangential stress distribution at a wavy wall with ǫ = 6.7, α = 0.00584 and with the
gas flowing in the positive x-direction. The solid line is the theoretical result 1+ǫRe(τw1(α)eiαx)
and the circles show τw/〈τw〉 found experimentally by Zilker et al. (1977), figure 5. Here 〈τw〉
denotes the average value of the tangential stress at the wall.

written as a superposition of Fourier harmonics,

y = s(x) ≡
∞∑

n=−∞
n-=0

sne
iαnx, (3.47)
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Figure 8. The same results as in figure 7 but with ǫ = 50.5 and α = 0.00195.
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Figure 9. The same results as in figure 7 but with ǫ = 14.9 and α = 0.00656.

where αn = 2πn/λ, the wall shear stress and pressure are also superpositions of Fourier
harmonics with the same wavenumbers αn:

τw[s] = τw0 +

∞∑

n=−∞
n-=0

snτw1(αn)e
iαnx, (3.48)

Pw[s] = P0 +

∞∑

n=−∞
n-=0

snPw1(αn)e
iαnx . (3.49)
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Figure 10. Comparison of our theoretical prediction for |Pw1| with experimental data (see
Thorsness et al. 1978).
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Figure 11. Comparison of our theoretical prediction for the phase angle of Pw1 with
experimental data (see Thorsness et al. 1978).

It is now useful to convert (3.48) and (3.49) into dimensional forms. For a wall
given by

ỹ = s̃(x̃) ≡
∞∑

n=−∞
n-=0

s̃ne
iα̃nx̃, (3.50)
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where s̃n = snµg/ρgU
∗, α̃n = αnρgU

∗/µg , we obtain the following dimensional
expressions for the wall shear stress and pressure:

τ̃w[s̃] = |Tw|τw0 +
ρgU

∗|Tw|

µg

∞∑

n=−∞
n-=0

s̃nτw1(α̃nµg/ρgU
∗)eiα̃nx̃, (3.51)

P̃w[s̃] = |Tw|P0 +
ρgU

∗|Tw|

µg

∞∑

n=−∞
n-=0

s̃nPw1(α̃nµg/ρgU
∗)eiα̃nx̃ . (3.52)

4. Liquid problem

Having found the shear stress and the pressure at the gas–liquid interface introduced
by the turbulent gas flow, we can proceed to the problem for the liquid film. The
governing equations are the incompressible Navier–Stokes equations:

ρl(ũt̃ + ũ · ∇ũ) = −∇p̃ + µl∇2ũ + ρl g, ∇ · ũ = 0. (4.1)

We recall that ũ = (ũ, ṽ) is the liquid velocity, p̃ is the pressure, ρl and µl are the
density and the viscosity of the liquid, respectively, and g = (g sin θ, −g cos θ). The
no-slip and no-penetration conditions at the wall require that

ũ = 0 at ỹ = 0. (4.2)

Kinematic compatibility at the film surface requires that

ṽ = h̃t̃ + ũh̃x̃, at ỹ = h̃(x̃, t̃). (4.3)

The tangential stress balance at the film surface is

t · σ̃ 1 · n = τ̃w[h̃], at ỹ = h̃(x̃, t̃), (4.4)

where n and t are unit vectors, normal (pointing into the gas) and tangent to the
interface, respectively, σ̃ 1 = µl(∇ũ + ∇ũT) is the Newtonian stress tensor in the liquid
and τ̃w[h̃] is the tangential stress exerted onto the interface by the turbulent gas,
which was found in the previous section. Finally, the normal stress balance demands

p̃ = P̃w[h̃] + γ κ + n · σ̃ 1 · n, at ỹ = h̃(x̃, t̃), (4.5)

where γ is the surface tension of the liquid, κ is the curvature of the interface taken to

be positive when the surface is concave downwards and P̃w[h̃] is the pressure exerted
onto the interface by the turbulent gas, which was found in the previous section.

The base solution corresponding to a flat interface, i.e. h̃(x̃, t̃) ≡ h̃0, is given by

ũ =
1

2

(
|Tw|P0x̃

µl

− ρlg sin θ

µl

)
(ỹ − 2h̃0)ỹ +

|Tw|τw0

µl

ỹ, ṽ = 0, (4.6)

p̃ = |Tw|P0 − ρlg cos θ (ỹ − h̃0). (4.7)

To non-dimensionalise the liquid problem, we choose h̃0 as the length scale,
the Nusselt surface speed of a flat free-falling film in the absence of the gas,
ũ0 = ρlgh̃2

0 sin θ/2µl , as the velocity scale, h̃0/ũ0 as the time scale and µlũ0/h̃0 as
the pressure scale. Again, we drop tildes to denote dimensionless variables (it should
be noted that the dimensionless variables used in this section should not be confused



Nonlinear waves in counter-current gas–liquid film flow 35

with those used in the previous section). The dimensionless Navier–Stokes equations
then written in component form are

Re(ut + uux + vuy) = −px + uxx + uyy + 2, (4.8)

Re(vt + uvx + vvy) = −py + vxx + vyy − 2 cot θ, (4.9)

ux + vy = 0. (4.10)

At the wall we have

u = v = 0 at y = 0, (4.11)

and at the interface we have

v = ht + uhx, at y = h, (4.12)

− 1

1 + h2
x

[
2(ux − vy)hx −

(
1 − h2

x

)
(uy + vx)

]
= τ̂w[h], at y = h, (4.13)

p = P̂w[h] − We Re hxx(
1 + h2

x

)3/2
+

2

1 + h2
x

[
uxh

2
x − hx(uy + vx) + vy

]
, at y = h, (4.14)

where the Reynolds number, Re, and the Weber number, We, are defined respectively
as

Re =
ρlũ0h̃0

µl

, We =
γ

ρlũ
2
0h̃0

. (4.15)

For convenience, we write

Re =
Re0 sin θ

2
, We =

4Ka

Re
5/3
0 sin2 θ

, (4.16)

where

Re0 =
ρ2

l gh̃3
0

µ2
l

, Ka =
γρ

1/3
l

g1/3µ
4/3
l

(4.17)

are the modified Reynolds number and the Kapitza number, respectively (Pereira &
Kalliadasis 2008). It is only the modified Reynolds number that depends on h̃0

which is a flow control parameter; the Kapitza number depends only on the physical
properties of the liquid.

For a periodic interface given by

h(x, t) = 1 +

∞∑

n=−∞
n-=0

hn(t)e
iβnx, (4.18)

where βn = 2πn/λ, with λ= λ̃/h̃0 denoting the dimensionless period, we have

τ̂w[h] =
h̃0

µlũ0

τ̃w[h̃] = τ̂w0 + |τ̂w0|ν τ̂w1[h], (4.19)

where

τ̂w0 =
h̃0|Tw|τw0

µlũ0

, ν =
h̃0ρgU

∗

µg

, τ̂w1[h] ≡
∞∑

n=−∞
n-=0

hnτw1(βn/ν)eiβnx . (4.20)
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Note that ν is the ratio of the length scales used to non-dimensionalise the liquid and
the gas problems, respectively. Also,

P̂w[h] =
h0

µlũ0

P̃w[h̃] = P̂0 + |τ̂w0|νP̂1[h], (4.21)

where

P̂0 = |τ̂w0|P0 = P̂ a
0 + P̂ b

0 x, P̂1[h] ≡
∞∑

n=−∞
n-=0

hnPw1(βn/ν)eiβnx . (4.22)

Recall that

P0 = P a
0 ∓ 1

L̂
x, (4.23)

where P a
0 is a constant reference pressure, L̂ = L̃/h̃0 is the dimensionless channel

width and the minus/plus sign corresponds to the positive/negative gas direction,
respectively. Hence,

P̂ a
0 = |τ̂w0|P a

0 , P̂ b
0 = − τ̂w0

L̂
. (4.24)

The dimensionless base solution then is

u =

(
− P̂ b

0

2
− 1

)
(y − 2)y + τ̂w0y, v = 0, (4.25)

p = P̂0 − 2 cot θ (y − 1). (4.26)

Furthermore, we can write

τ̂w0 =
2

Re
1/3
0 sin θ

Θτw0, ν = NRe
1/3
0 Θ1/2, (4.27)

where

Θ =
|Tw|

ρ
1/3
l g2/3µ

2/3
l

, N =
µlρ

1/2
g

µgρ
1/2
l

. (4.28)

The parameter Θ controls the gas shear-stress strength, whilst the parameter N

depends only on the densities and viscosities of the liquid and the gas.
Let us consider, for example, helium as a gas and methanol as a liquid at room

temperature. These fluids, amongst others, were used in the experiments of Zapke &
Kröger (2000a ,b), who investigated the effect of the fluid properties and the channel
geometry on flooding in rectangular ducts. At room temperature, we have

ρg = 1.65 × 10−1 kg m−3, µg = 2 × 10−5 Pa s, (4.29)

ρl = 791 kg m−3, µl = 0.575 × 10−3 Pa s, γ = 22 × 10−3 Nm−1, (4.30)

which gives

Ka ≈ 1988.5, N ≈ 0.4, (4.31)

i.e. we have

We =
7954

Re
5/3
0 sin2 θ

, ν = 0.4 Re
1/3
0 Θ1/2. (4.32)

Next, assuming long waves, we write

x =
ξ

ǫ
, t =

τ

ǫ
, v = ǫw, (4.33)
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where ǫ ' 1 is the so-called long-wave or film parameter, which is usually defined as
the ratio of the undisturbed film thickness to the length scale over which variations
in the streamwise direction occur. This so-called long-wave approximation has been
central to thin-film studies (see e.g. Oron, Davis & Bankoff 1997; Kalliadasis & Thiele
2007; Craster & Matar 2009). We then obtain

ǫRe(uτ + uuξ + wuy) = −ǫpξ + ǫ2uξξ + uyy + 2, (4.34)

ǫ2Re(wτ + uwξ + wwy) = −py + ǫ3wξξ + ǫwyy − 2 cot θ, (4.35)

uξ + wy = 0, (4.36)

subject to

u = w = 0 at y = 0, (4.37)

and

w = hτ + uhξ at y = h, (4.38)

− 1

1 + ǫ2h2
ξ

[
2ǫ2(uξ − wy)hξ −

(
1 − ǫ2h2

ξ

)
(uy + ǫ2wξ )

]
= τ̂w[h] at y = h, (4.39)

p = P̂w[h] − ǫ2We Re hξξ(
1 + ǫ2h2

ξ

)3/2
+

2

1 + ǫ2h2
ξ

[
ǫ3uξh

2
ξ − ǫhξ (uy + ǫ2wξ ) + ǫwy

]
at y = h.

(4.40)

We also note that

P̂1[h] ≡
∞∑

n=−∞
n-=0

hnPw1

(
β̄n

ν/ǫ

)
eiβ̄nξ , τ̂w1[h] ≡

∞∑

n=−∞
n-=0

hnτw1

(
β̄n

ν/ǫ

)
eiβ̄nξ , (4.41)

where β̄n = βn/ǫ = 2πn/λ̄ and λ̄= ǫλ denotes the period for the variable ξ . We assume
that ν =O(ǫ) and introduce an O(1) parameter ν̄ = ν/ǫ so that

P̂1[h] ≡
∞∑

n=−∞
n-=0

hnPw1(β̄n/ν̄)eiβ̄nξ , τ̂w1[h] ≡
∞∑

n=−∞
n-=0

hnτw1(β̄n/ν̄)eiβ̄nξ . (4.42)

4.1. Long-wave expansion

We assign the following relative orders between the different parameters and ǫ:
Re =O(1), τ̂w0 = O(1) and We = O(ǫ−2). We also introduce an O(1) parameter,

We = ǫ2We. For simplicity, let us set P̂ b
0 = 0 corresponding to a very wide channel.

Next, we expand the streamwise and cross-stream velocities and pressure as follows:

u = u0 + ǫu1 + ǫ2u2 + · · · , (4.43)

w = w0 + ǫw1 + ǫ2w2 + · · · , (4.44)

p = p0 + ǫp1 + ǫ2p2 + · · · . (4.45)

At leading order, we find

u0yy = −2, p0y = −2 cot θ, u0ξ + w0y = 0, (4.46)

subject to

u0 = w0 = 0 at y = 0 (4.47)
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and

u0y = τ̂w0, p0 = P̂ a
0 − We Re hξξ , at y = h. (4.48)

The solution of the leading-order problem is

u0 = −y2 + 2yh + yτ̂w0, (4.49)

w0 = −y2hξ , (4.50)

p0 = P̂ a
0 − We Re hξξ − 2 cot θ (y − h). (4.51)

Then, the kinematic boundary condition written as

hτ + qξ = 0, (4.52)

where q =
∫ h

0
u dy is the streamwise flow rate, yields

hτ +

[
2

3
h3 +

τ̂w0

2
h2

]

ξ

+ O(ǫ) = 0. (4.53)

At next order, we obtain the following system of equations:

u1yy = Re(u0τ + u0u0ξ + w0u0y) + p0ξ , (4.54)

p1y = w0yy, (4.55)

u1ξ + w1y = 0, (4.56)

subject to

u1 = w1 = 0, at y = 0, (4.57)

and

u1y = |τ̂w0|ν̄τw1[h], p1 = 2w0y − 2hξu0y + |τ̂w1ν̄|P̂1[h] at y = h, (4.58)

where u0, w0 and p0 are given by (4.49)–(4.51). The time derivative u0τ involves the
time derivative hτ , as is evident from (4.49). The latter is eliminated by using (4.53).
The solution of the problem at first order is

u1 = Re

(
4

3
h3 − 2

3
y2h +

1

6
y3

)
yhhξ − (cot θ)(2h − y)yhξ + ReWe

(
h − 1

2
y

)
yhξξξ

+Re τ̂w0

(
2

3
h3 − 1

3
y2h +

1

12
y3

)
yhξ + |τ̂w0|ν̄yτ̂w1[h], (4.59)

w1 = −Re

(
8

3
h3h2

ξ +
2

3
h4hξξ − 1

3
y2hh2

ξ − 1

6
y2h2hξξ +

1

30
y3h2

ξ +
1

30
y3hhξξ

)
y2

+ (cot θ)

(
h2

ξ + hhξξ − 1

3
yhξξ

)
y2 − ReWe

(
1

2
hξhξξξ +

1

2
hhξξξξ − 1

6
yhξξξξ

)
y2

− Re τ̂w0

(
h2h2

ξ+
1

3
h3hξξ − 1

12
y2h2

ξ − 1

12
y2hhξξ+

1

60
y3hξξ

)
y2 − |τ̂w0|ν̄

2
y2τ̂w1[hξ ],

(4.60)

p1 = −2(h + y)hξ − 2τ̂w0hξ + |τ̂w0|ν̄P̂1[h]. (4.61)

The kinematic condition (4.52) with q =
∫ h

0
u dy and u = u0 +ǫu1 +O(ǫ2), with u0 and

u1 given by (4.49) and (4.59), respectively, yields the following long-wave evolution
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equation at O(ǫ):

hτ +

[
2

3
h3 +

τ̂w0

2
h2 + ǫ

([
8Re

15
h6 − 2 cot θ

3
h3

]
hξ +

ReWe

3
h3hξξξ

+
4Re τ̂w0

15
h5hξ +

τ̂w0ν̄

2
h2τ̂w1[h]

)]

ξ

= 0. (4.62)

Equivalently, using variables x and t , we obtain

ht +

[
2

3
h3 +

τ̂w0

2
h2 +

([
8Re

15
h6 − 2 cot θ

3
h3

]
hx +

ReWe

3
h3hxxx

+
4Re τ̂w0

15
h5hx +

τ̂w0ν

2
h2τ̂w1[h]

)]

x

= 0, (4.63)

where ǫ has been scaled out. It is noteworthy that the influence of the normal stress

exerted by the gas on the interface, P̂1[h], turns out to be a higher-order effect.

4.1.1. Weakly nonlinear evolution

Let h = 1 + ǫη. By substituting this expression into (4.62), we obtain the following
weakly nonlinear equation:

ητ + (2 + τ̂w0)ηξ + ǫ

[
(4 + τ̂w0)ηηξ +

(
8Re

15
− 2 cot θ

3
+

4Re τ̂w0

15

)
ηξξ

+
ReWe

3
ηξξξξ +

|τ̂w0|ν̄

2
(τ̂w1[η])ξ

]
+ O(ǫ2) = 0. (4.64)

We write this equation in the moving frame as

ξ = χ + (2 + τ̂w0)τ, (4.65)

which, after neglecting O(ǫ2) terms, becomes

ητ + ǫ(4 + τ̂w0)ηηχ + ǫDηχχ + ǫ
ReWe

3
ηχχχχ + ǫ

|τ̂w0|ν̄

2
(τ̂w1[η])χ = 0, (4.66)

where D = D1 + 4Re τ̂w0/15 and D1 = 8Re/15 − (2/3) cot θ .
The linear stability analysis of the flat solution, η ≡ 0, leads to the following

dispersion relation:

s(k) = −ReWe

3
k4 + D1k

2 +
4Re

15
τ̂w0k

2 − ik
|τ̂w0|ν̄

2
τw1

(
k

ν̄

)
. (4.67)

We split this relation into its real (Re[.]) and imaginary (Im[.]) parts as

Re[s(k)] = −ReWe

3
k4 + D1k

2 +
4Re

15
τ̂w0k

2 + k
|τ̂w0|ν̄

2
Im

[
τw1

(
k

ν̄

)]
, (4.68)

Im[s(k)] = −k
|τ̂w0|ν̄

2
Re

[
τw1

(
k

ν̄

)]
. (4.69)

The latter equation implies that the phase velocity is given by

−Im[s(k)]

k
=

1

2
|τ̂w0|ν̄Re

[
τw1

(
k

ν̄

)]
. (4.70)
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Figure 12. (a) Dependence of the fourth term in the real part of the dispersion relation
(4.68) on the wavenumber, k. (b) Dependence of Re[τw1(k)] on k.

Without the gas flow, the trivial solution is stable if D1 < 0, i.e. if Re < Rec ≡ 5 cot θ/4.
Otherwise, if D1 > 0, i.e. if Re > Rec, there is a band of unstable wavenumbers
extending from zero. This is a well-known result obtained by Benjamin (1957) and
Yih (1963). The effect of the turbulent gas depends on the direction in which the
gas flows. For example, for the counter-current case, when τ̂w0 < 0, the third term in
the dispersion relation (4.67) is quadratic and stabilising, whilst the fourth term is
destabilising (for small values of k it increases almost linearly, whilst it approaches a
constant value for large values of k), as is evident from figure 12(a). Therefore, it is
apparent that the net effect of these two terms is to introduce a destabilising effect
on long waves and a stabilising one on short waves. Also, the gas adds a dispersive
effect, as is evident from figure 12(b), where Re[τw1(k)] is plotted versus k.

To simplify (4.66), we introduce new variables

X =
χ

A
, H =

η

B
, T =

τ

C
, (4.71)

where

A =

√
ReWe

3|D|
, B =

1

4 + τ̂w0

√
3|D|3

ReWe
, C =

ReWe

3ǫD2
. (4.72)

Equation (4.66) then reduces to the following canonical form:

HT + HHX ± HXX + HXXXX + δ(τ̂w1[H ])X = 0, (4.73)

where the +/− sign corresponds to positive/negative value of D, respectively, and

δ =
|τ̂w0|ν̄

2(4 + τ̂w0)B
=

|τ̂w0|ν

2

√
Re We

3|D|3
. (4.74)

We note that for

H (X, T ) =

∞∑

n=−∞
n-=0

Hn(T )eiγnX, (4.75)
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Figure 13. Spatio-temporal dynamics for the modified Kuramoto–Sivashinsky equation (4.73)
when (a) δ = 0 and (b) δ = 5. In both cases, the equations are solved on periodic domains
of size [−50, 50] by a pseudo-spectral method up to T = 50. The sign in front of the second
derivative term is chosen to be positive.

where γn = 2πn/Λ, with Λ = ǫλ̃/Ah0 denoting the dimensionless period for the variable
X, we have

τ̂w1[H ] ≡
∞∑

n=−∞
n-=0

Hnτw1

( γn

Aν̄

)
eiγnX. (4.76)

In (4.73), the second term is a nonlinear kinematic effect that captures how larger
waves move faster than smaller ones, the second term represents instability/energy
production with the ‘+’ sign and stability/energy dissipation with the ‘−’ sign, at long
waves in both cases, the fourth term represents stability/energy dissipation at short
waves and the last term corresponds to dispersion.

In fact, (4.73) is a modified Kuramoto–Sivashinsky equation: with the plus sign and
δ = 0, the equation is the well-known Kuramoto–Sivashinsky equation, first derived
independently by Homsy (1974), Lin (1974) and Nepomnyashchy (1974) in the context
of a free-falling liquid film. For an extended domain, it is well known that the solution
to this equation is spatio-temporal chaos. This is demonstrated in figure 13(a),
where a solution of the Kuramoto–Sivashinsky equation is shown on a periodic
domain [−50, 50] up to T = 50. The equation was solved by a Fourier pseudo-spectral
method with a fourth-order Runge–Kutta integration in time. The destabilising effect
of the gas flow could enhance the spatio-temporal complexity of the solution. On the
other hand, it is known that dispersion, in the form of a term ∼HXXX (the resulting
equation is often referred to as the ‘generalised Kuramoto–Sivashinsky equation’),
can regularise the solution in favour of a train of spatially periodic cellular structures,
each of which approaching a Korteweg–de Vries soliton, see for example Kawahara
(1983). The more recent studies by Duprat et al. (2009), Tseluiko et al. (2010a)
and Tseluiko, Saprykin & Kalliadasis (2010b) have analysed further the regularising
effect of dispersion for the generalised Kuramoto–Sivashinsky equation and they have
formulated a rigorous coherent structures theory to describe the interaction of solitary
pulses for sufficiently strong dispersion. Our time-dependent computations with the
modified Kuramoto–Sivashinsky equation (4.73) revealed an effect similar to that for
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the generalised Kuramoto–Sivashinsky equation: when dispersive effects dominate,
i.e. if the gas parameter δ is sufficiently large, the solution evolves into an array of
travelling pulses. This is illustrated in figure 13(b), where a solution is shown for
δ =5. The amplitude of the pulses increases if δ increases.

4.2. IBL approximation

We extend the simple Galerkin projection with just one test function (the semi-
parabolic profile itself) for the free-falling film by Ruyer-Quil & Manneville (1998,
2000, 2002) (see also Introduction) to the gas–liquid problem. Assuming that ǫ2Re ' 1,
(4.35) takes the form

py = −2 cot θ + O(ǫ, ǫ2Re). (4.77)

Furthermore, if we assume that ν̄ and |τ̂w0| are O(1) and ǫ2 We Re 0 ǫ, then (4.40)
becomes

p = −ǫ2 We Re hξξ + P̂ a
0 |τ̂w0| + O(ǫ) at y = h. (4.78)

Therefore,

p = 2 cot θ (h − y) − ǫ2 We Re hξξ + P̂ a
0 |τ̂w0| + O(ǫ, ǫ2Re). (4.79)

Substituting (4.79) into (4.34) and assuming that Re 0 ǫ and Re is at most O(1/ǫ),
we obtain

ǫRe(uτ + uuξ + wuy) = −ǫ(2 cot θ hξ − ǫ2 We Re hξξξ ) + uyy + 2, (4.80)

where terms O(ǫ2) and O(ǫ3Re) are neglected. From (4.36) it follows that

w = −
∫ y

0

uξ (ξ, ȳ, τ ) dȳ. (4.81)

On the wall, we have the no-slip condition

u = 0 at y = 0, (4.82)

while after neglecting O(ǫ2) terms, the tangential stress balance condition on the free
surface (4.39) becomes

uy = τ̂w[h] = τ̂w0 + ǫν̄|τ̂w0|τ̂w1[h] at y = h. (4.83)

Finally, the kinematic-compatibility condition written in conservative form is

hτ + qξ = 0, (4.84)

where q =
∫ h

0
udy is the streamwise flow rate. Equations (4.80)–(4.84) are the so-called

first-order boundary-layer equations.
We now project the velocity field onto polynomial test functions

u =

N∑

i=1

ai(ξ, τ )ηi, (4.85)

where η = y/h(ξ, τ ) is a similarity variable. This expansion automatically satisfies
the no-slip condition at the wall. We require that the integral of this expansion with
respect to y from 0 to h(ξ, τ ) gives the flow rate q in the streamwise direction, which
leads to

a1

2
+

a2

3
=

q

h
−

N∑

i=3

ai

i + 1
. (4.86)
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We also require that the interfacial boundary condition (4.83) is satisfied, which gives

a1 + 2a2 = hτ̂w[h] −
N∑

i=3

iai . (4.87)

Solving (4.86) and (4.87) for a1 and a2, we find

a1 = 3
q

h
− 1

2
hτ̂w[h] +

N∑

i=3

(
i

2
− 3

i + 1

)
ai, (4.88)

a2 = −3

2

q

h
+

3

4
hτ̂w[h] +

N∑

i=3

(
3

2(i + 1)
− 3i

4

)
ai . (4.89)

In effect, the elimination of a1,2 ‘homogenises’ the tangential stress boundary condition
and is equivalent to a tau method (see also Kalliadasis et al. 2003a ,b). Substituting
the above expressions for a1 and a2 into (4.85) yields

u = u(0) + u(1) +

N−1∑

i=2

ai+1φi(η), (4.90)

where

u(0) = 3
q

h

(
η − 1

2
η2

)
, u(1) = −1

2
hτ̂w[h]

(
η − 3

2
η2

)
, (4.91)

and also,

φi(η) =

(
i + 1

2
− 3

i + 2

)
η +

3

4

(
2

i + 2
− i − 1

)
η2 + ηi+1. (4.92)

Expansion (4.90) can also be written as

u = u(1) +

N−1∑

i=1

biφi(η), (4.93)

where φ1(η) = η − η2/2 and b1 = 3q/h, bi = ai+1 for i = 2, . . . , N − 1.
In general, N should be sufficiently large to achieve convergence. However, like the

free-falling film problem, it is sufficient to take N = 2 and use a Galerkin projection
with one test function, φ1, in order to obtain a model fully resolving the behaviour
close to criticality and to describe satisfactorily the nonlinear regime. Thus, we
substitute

u = u(1) + b1φ1(η) = u(0) + u(1) (4.94)

into (4.34) to obtain the following residual:

R = ǫRe
[
u(0)

τ + u(1)
a τ +

(
u(0) + u(1)

a

)(
u

(0)
ξ + u

(1)
a ξ

)
+ w(0)

(
u(0)

y + u(1)
a y

)]

+ ǫ[2 cot θ hξ + ǫ2 We Re hξξξ ] − u(0)
yy − u(1)

a yy − u
(1)
b yy − 2 + O(ǫ2Re), (4.95)

where

u(1)
a = −1

2
τ̂w0h

(
η − 3

2
η2

)
, u

(1)
b = −1

2
ǫν̄|τ̂w0|hτ̂w1[h]

(
η − 3

2
η2

)
(4.96)
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and

w(0) = −
∫ y

0

[
u

(0)
ξ (ξ, ȳ, τ ) + u

(1)
a ξ (ξ, ȳ, τ )

]
dȳ. (4.97)

We assume that ǫRe ' 1 (which gives a tighter upper bound on Re compared to the
requirement ǫ2Re ' 1 for the boundary-layer equations) and we ignore terms O(ǫ2Re)
in (4.95). Next, we require that the residual is orthogonal to a weight function w1,

〈R, w1〉 ≡
∫ 1

0

R w1 dη = 0. (4.98)

In the case of the Galerkin method, w1 = φ1. Then, (4.98) yields the following partial
differential equation:

qτ = −17

7

qqξ

h
+

9

7

q2hξ

h2
− 5

2ǫRe

q

h2
+

5

3ǫRe
h − 5 cot θ

3Re
hhξ +

5ǫ2 We

6
hhξξξ

+ τ̂w0

(
5

4ǫRe
− 19τ̂w0

672
hhξ − 19

336
hqξ − 5

112
qhξ +

5 sign(τ̂w0)ν̄

4Re
τ̂w1[h]

)
, (4.99)

where hτ has been replaced by −qξ by using the kinematic compatibility (4.84).
Equation (4.99) together with (4.84) is the IBL approximation for a falling film in
contact with a turbulent gas. By writing these equations using x and t variables, we
eliminate the film parameter ǫ:

ht + qx = 0, (4.100)

qt = −17

7

qqx

h
+

9

7

q2hx

h2
− 5

2Re

q

h2
+

5

3Re
h − 5 cot θ

3Re
hhx +

5We

6
hhxxx

+ τ̂w0

(
5

4Re
− 19τ̂w0

672
hhx − 19

336
hqx − 5

112
qhx +

5 sign(τ̂w0)ν

4Re
τ̂w1[h]

)
. (4.101)

The terms in the second line of (4.101) correspond to the influence of the gas. When
the gas shear-strength parameter Θ vanishes, τ̂w0 also vanishes and (4.100) and (4.101)
reduce to the ‘first-order model’ of Ruyer-Quil & Manneville (1998, 2000, 2002) for
a free-falling film. Note that the influence of the normal stress exerted by the gas on

the interface, P̂1[h], turns out to be a higher-order effect, as in the long-wave model
(4.63), and should not be taken into account, in contrast to the work by Demekhin
(1981).

Let us now demonstrate that the first-order long-wave equation (4.62) can be
recovered from an appropriate expansion of our IBL system. For this purpose, we
use the variables ξ and τ and assume that We = We/ǫ2, where We = O(1). Then, we
expand q as q = q0 + ǫq1 + · · · . From (4.99), we obtain at leading order

q0 = 2
3
h3 + 1

2
τ̂w0h

2. (4.102)

At next order, we find

q1 =
2Re

5
h2

(
−q0τ − 17

7

q0q0ξ

h
+

9

7

q2
0hξ

h2
− 5

3

cot θ

Re
hhξ +

5

6
Wehhξξξ

+ τ̂w0

[
− 19

672
τ̂w0h

2hξ − 19

336
q0ξh − 5

112
q0hξ +

5ν̄

4Re
τ̂w1[h]

])
. (4.103)
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Substituting (4.102) into (4.103) yields

q1 = −4Re

5
h4hτ − 16Re

15
h6hξ − 2 cot θ

3
h3hξ +

ReWe

3
h3hξξξ

− 2τ̂w0Re

5
h3hτ − 4τ̂w0Re

3
h5hξ − 2τ̂ 2

w0Re

5
h4hξ +

τ̂w0ν̄

2
h2τ̂w1[h]. (4.104)

Replacing hτ with −q0ξ + O(ǫ) and using q0 from (4.102), we obtain

q1 =

[
8Re

15
h6 − 2 cot θ

3
h3

]
hξ +

ReWe

3
h3hξξξ +

4τ̂w0Re

15
h5hξ +

τ̂w0ν̄

2
h2τ̂w1[h] + O(ǫ).

(4.105)

Equation (4.84) with q = q0 + ǫq1, where q0 and q1 are given by (4.102) and (4.105),
respectively, yields the long-wave equation (4.62). Hence, our IBL model fully resolves
the behaviour close to criticality.

5. Nonlinear waves

5.1. Travelling waves

Here, we investigate travelling-wave solutions of our IBL model. Such solutions are
known to exist in the case of free-falling films. We begin by writing (4.100) and (4.101)
in a frame moving with the velocity c of a travelling wave. For steady solutions in
this frame, we have the system of equations:

−chx + qx = 0, (5.1)

−cqx = −17

7

qqx

h
+

9

7

q2hx

h2
− 5

2Re

q

h2
+

5

3Re
h − 5 cot θ

3Re
hhx +

5We

6
hhxxx

+ τ̂w0

(
5

4Re
− 19τ̂w0

672
hhx − 19

336
hqx − 5

112
qhx +

5 sign(τ̂w0)ν

4Re
τ̂w1[h]

)
. (5.2)

This system is solved on a periodic domain with a numerical scheme based on
spectral representation of the derivatives and Newton iterations to obtain solutions
from initial guesses. In our computations, we fix the volume of the liquid in one period
so that the undisturbed film thickness is 1. We restrict our attention to single-hump
waves, the so-called γ2 waves (see, for example, Chang, Demekhin & Kopelevich 1993;
Chang & Demekhin 2002), which are the main feature of the evolution following
destabilisation of the flat base flow in the case of a free-falling film. In the limit of the
wave period tending to infinity, such waves converge to one-hump solitary waves that
travel faster than infinitesimally small waves. The flow downstream can be described
as a superposition of such near-solitary waves.

We use a counter-current helium–methanol flow as a working system. Figure 14
shows the dependence of the velocity, c, of periodic travelling waves as a function
of the Reynolds number, Re, for various values of the gas shear-stress parameter, Θ .
The travelling waves are computed in a periodic domain whose half is 91.96. This
equals to the period of the most unstable wave for Re = 5, when there is no gas flow
above the liquid film. As the gas shear-stress parameter, Θ , is increased, the velocity
of the waves decreases. Note that the curve obtained for Θ = 0 is qualitatively similar
to that computed by Ruyer-Quil & Manneville (2000, figure 4) using a mixture of
glycerol and water as the working fluid. The numerical results are obtained with a
pseudo-arclength continuation procedure. In figures 15 and 16 we plot the dependence
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Figure 14. Dependence of the velocity, c, of periodic travelling waves on the Reynolds
number, Re, for various values of the gas shear-stress parameter, Θ , obtained from the IBL
model. The working system is helium–methanol. The half-length of the periodic domain is
91.96, which equals to the period of the most unstable wave for Re = 5 when there is no gas
flow above the liquid film.

of the maximum and the minimum, respectively, of the wave height on the Reynolds
number, Re, for various values of the gas shear-stress parameter, Θ . For non-zero Θ ,
both the maximum and the minimum approach unity (i.e. the solution converges to
a flat solution) as Re tends to a certain value that depends on Θ . Note that if Θ is
sufficiently large (see the curves for Θ = 1.0772 and 1.6158), then the maximum and
minimum curves exhibit local minima, maxima and turning points.

Figure 17 shows wave profiles for Re =5 as the gas friction velocity is increased.
Figures 18–20 depict the dependence of the velocity, the minimum and the maximum
of the periodic travelling wave as functions of the gas friction velocity for several
values of the Reynolds number, Re =5, 7 and 9. The computations are done on
a periodic domain whose half-length is equal to the period of the most unstable
wave. As the gas friction velocity increases, the travelling wave velocity decreases
and at the same time the maximum height of the wave grows, whilst the minimum
value decreases. At a certain value of the gas friction velocity, U ∗

f , a large-amplitude
standing wave (c = 0) forms, which should then correspond to the onset of flooding.
The dependence of the gas friction velocity corresponding to flooding, U ∗

f , on the
Reynolds number is depicted in figure 21. As the Reynolds number increases, the
velocity U ∗

f decreases, which is consistent with experimental findings, e.g. by Semyonov
(1944) described in the Introduction. It should be noted that the results are sensitive
to the period. This is to be expected and was also found by Trifonov (2010). It
suggests that the flooding velocity is sensitive to the typical wave-separation length.
It should also be noted that we refrain from comparing quantitatively our results
with experiments since our model is two-dimensional, unlike the experiments which
are often done in three-dimensional geometries, i.e. tubes (the experiments used for
the comparison with our theoretical predictions for the gas phase in § 3.2.1 were
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Figure 15. Maximum height of the periodic travelling waves computed in figure 14 as a
function of the Reynolds number, Re.

2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re

m
in

(h
)

 

 
Θ = 0
Θ = 0.5386
Θ = 1.0772
Θ = 1.6158

Figure 16. Minimum height of the periodic travelling waves computed in figure 14 as a
function of the Reynolds number, Re.

done in wide channels and hence the corresponding geometries can be considered
as two-dimensional). A noted exception is the study by Drosos et al. (2006) with a
channel but for much larger Re (∼100). Nevertheless, we find qualitative agreement
with experiments, and the developed framework allows for a systematic theoretical
investigation of the onset of flooding. A three-dimensional study is left as a topic for
future research.

Once again, we have analysed the influence of a turbulent gas only on the γ2 waves,
because such waves are the main feature of the evolution of the system following
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Figure 17. Periodic travelling waves for helium–methanol flows obtained from the IBL
model when Re =5 and the gas friction velocity is increased.
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Figure 18. Dependence of the velocity, c, of a periodic travelling wave on the gas friction
velocity, U ∗, for various values of the Reynolds number, Re, obtained from the IBL model.
The working system consists of helium and methanol. The half-length of the periodic domain
equals to the period of the most unstable wave when there is no gas flow above the liquid
film, i.e. U ∗ vanishes.

the destabilisation of the flat solution. However, there must exist other wave families
as in the free-falling film problem, for example, Chang et al. (1993), Ruyer-Quil &
Manneville (2000), Chang & Demekhin (2002) and Meza & Balakotaiah (2008). Let
us consider the influence of the turbulent gas on the so-called γ1 waves, for instance.
For the IBL model we have derived, these waves are near-sinusoidal ones for the case
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Figure 19. Dependence of the maximum height of a periodic travelling wave on the gas
friction velocity, U ∗, for the waves computed in figure 18.
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Figure 20. Dependence of the minimum of a periodic travelling wave on the gas friction
velocity U ∗, for the waves computed in figure 18.

when the wave period is just above the instability threshold, π

√
5We/2, and approach

one-hollow inverted solitary waves when the period tends to infinity. Figures 22–24
depict the dependence of the velocity, the minimum and the maximum of the periodic
travelling waves as functions of the gas friction velocity for Re =5. The computations
have been performed in a periodic domain whose half-length is equal to the period of
the most unstable wave. A pseudo-arclength continuation procedure has been used to
produce the curves. The circles in the figures correspond to a γ1 wave and indicate the
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Figure 21. Dependence of the gas friction velocity corresponding to the onset of flooding,
U ∗

f , on the Reynolds number, Re. At each value of the Reynolds number, the computations

are done in a periodic domain equal twice the period of the most unstable wave when U ∗

vanishes.
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Figure 22. Dependence of the velocity, c, of a periodic travelling wave on the gas friction
velocity, U ∗, for Re = 5 obtained from the IBL model. The working system consists of helium
and methanol. The half-length of the periodic domain equals to the period of the most unstable
wave when there is no gas flow above the liquid film, i.e. U ∗ vanishes. The circle corresponds
to a γ1 wave and indicates the point at which the continuation starts.

point at which the continuation was started. As is evident from the figures, the gas
friction velocity cannot be increased beyond a certain critical value (U ∗ ≈ 1.52 m s−1)
for the computed branch. The curves have turning points, and the continuation ends
up at U ∗ = 0 m s−1, connecting the γ1 branch with another branch. We have checked
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Figure 23. Dependence of the maximum height of a periodic travelling wave on the gas
friction velocity, U ∗, for the waves computed in figure 22.
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Figure 24. Dependence of the minimum of a periodic travelling wave on the gas friction
velocity U ∗, for the waves computed in figure 22.

that the waves of this branch approach a two-hollow inverted solitary wave when
the wave period tends to infinity. Figure 25 shows the wave profile at the start of
the continuation procedure (the γ1 wave displayed as a solid line), at the maximal
value of the gas friction velocity (dot-dashed line) and at the end of the continuation
procedure (dashed line). The analysis of the influence of the turbulent gas on other
wave families is left as a topic for further investigation.

Finally, we note that recent literature shows the existence of flow reversal in falling
liquid films, e.g. Malamataris & Balakotaiah (2008), Dietze, Leefken & Kneer (2008)
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Figure 25. Periodic travelling waves for helium–methanol flows obtained from the IBL
model when Re = 5 and the gas friction velocity is increased. The solid line is the γ1 wave
(U ∗ =0ms−1), the dashed line shows the wave corresponding to the maximum gas friction
velocity, U ∗ = 1.35m s−1, obtained in figure 22, and the dot-dashed line corresponds to the final
wave profile computed in figure 22 at which the continuation procedure stopped (U ∗ =0ms−1).

and Dietze, Al-Sibai & Kneer (2009). In these studies, the value of the Reynolds
number was taken to be sufficiently far away from its critical value, e.g. in the study
of Malamataris & Balakotaiah (2008), the value of the Reynolds number was 18.6
(according to our definition of the Reynolds number) and the value of the Kapitza
number was 202.27, and then a roll formation was observed below a minimum of the
wave. The larger the Kapitza number is, the more rolls are present, e.g. for the Kapitza
number 1000 three regions of flow reversal were observed, but we should note that
at the same time the value of the Reynolds number was taken to be approximately
45, which is well beyond the range we considered in our work. Our results are mainly
relevant to the case of the Reynolds number not too far away from its critical value,
implying large values of the Weber number, where flow reversal is not so significant
or not present at all (see, for example, figure 1 in Meza & Balakotaiah 2008).

5.2. Time-dependent evolution

To examine the spatio-temporal dynamics of the film, we must numerically solve
the system (4.100) and (4.101) as an initial-value problem. This will also allow us
to address the question of relevance of large-amplitude standing wave solutions we
computed earlier, which is related to the way such solutions attract initial conditions.

To solve (4.100) and (4.101) as an initial-value problem, we have used a fully
implicit time-dependent scheme based on a Fourier pseudo-spectral representation
of the derivatives together with fast Fourier transforms. To advance the solution
dynamically from the time level n to the time level n + 1, the system of nonlinear
equations for the unknown solution at the new time level, n + 1, is solved iteratively
using Newton’s method. Typical results of our computations are shown in figure 26
for Re = 5. First, the evolution of the film is computed using as initial condition
random noise of amplitude 0.05 in the absence of a turbulent gas up to t =10 000
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Figure 26. Time evolution of the gas–liquid interface. Plots (a–d) correspond to
Θ = 1.26, 1.89, 2.52 and 3.15, respectively, or, equivalently, to U ∗ = 1.50, 1.83, 2.11 and
2.36m s−1, respectively. The computations are performed on the periodic domain [−300, 300].
The initial condition for (a) is the solution obtained by using a random noise for the case
when the turbulent gas is absent and integrating up to t = 10 000. The initial condition for
(b) is the solution at the final time in (a), and the initial condition for (c) and (d) is the solution
at the final time in (b).

on a periodic domain, [−300, 300]. The resulting solution at t =10 000 is used as
an initial condition for the computations with the presence of a turbulent gas. For
figure 26(a), Θ = 1.26, which corresponds to U ∗ = 1.50 m s−1. The amplitude of the
pulses increases as time progresses. For figure 26(b), Θ = 1.89, which corresponds to
U ∗ = 1.83 m s−1, and the initial condition is the solution obtained at the final time in
figure 26(a). We now see that the amplitude of the pulses increases further and the
pulses slow down. For figure 26(c), Θ = 2.52, which corresponds to U ∗ = 2.11 m s−1,
and this value is close to the flooding gas friction velocity obtained in the previous
section by computing periodic travelling waves. The initial condition is the solution
obtained at the final time in figure 26(b). The amplitude of the pulses increases further
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and the pulses eventually become stationary. This corresponds to the onset of flooding.
In contrast, if Θ is increased from 1.5 to 2.5, we observe pulses of smaller amplitude
than those in figure 26(c) travelling in the negative x-direction. This is observed in
figure 26(d), where Θ = 3.15, which corresponds to U ∗ = 2.36 m s−1, while the initial
condition is the solution obtained at the final time in figure 26(b). The observed
behaviour is in qualitative agreement with, for example, the experimental findings of
Semyonov (1944) on gas–liquid flows in a tube, as described in the Introduction.

Of course, as the wave amplitude keeps on increasing the wave will eventually
escape the long-wave description. The normal stresses will no longer be a higher-
order effect compared with the tangential ones while quite likely a recirculation zone
will appear below the wave hump. In this limit, the full equations for the liquid and
the gas will have to be used without any approximations.

6. Discussion

We have investigated the dynamics of a thin laminar liquid film flowing under the
action of gravity down the lower wall of an inclined channel in the presence of a
turbulent gas flowing above the film. The solution of the full system of equations
describing the gas–liquid flow is an almost formidable problem. However, through a
number of assumptions, analytical progress is possible. These assumptions are that
the dynamic viscosity of the gas is much smaller than that of the liquid, the typical
velocity in the liquid and of the interfacial waves is much smaller than the typical
velocity in the gas and the turbulent fluctuations in the gas for the gas–liquid flow
decay in the same way as the fluctuations in the gas flowing over a rigid wall. These
allow a substantial simplification, namely to consider the gas problem independently
to that for the liquid by modelling the interface as a solid wall.

By focusing on the gas problem first, we used a simple mixing-length model
and found the perturbations to the pressure and tangential stresses at the interface
imposed by the turbulent gas. We worked in curvilinear boundary-layer coordinates
first introduced by Benjamin (1959) and followed the approach of Thorsness et al.
(1978), who neglected waviness-induced normal Reynolds stresses in their so-called
model A. This approach is the simplest one that provides us with sufficiently good
agreement with experiments on turbulent flows over wavy walls (see, for example,
Thorsness et al. 1978, for the discussion of various approaches) as we demonstrated
here by using a coordinate system which approaches a Cartesian one away from the
wall and hence is natural for the particular geometry.

We subsequently analysed the problem for the liquid film and derived model
equations describing the dynamics of the interface, e.g. boundary-layer equations
and a long-wave model. The weakly nonlinear analysis for the latter model resulted
in a modified Kuramoto–Sivashinsky equation with an additional term compared
with the usual Kuramoto–Sivashinsky equation. This term is due to the presence
of the turbulent gas. We found that, for the counter-current gas–liquid flow, the
turbulent gas effect is to destabilise the long waves, to stabilise the short ones and
to add dispersion. Time-dependent computations for the weakly nonlinear model
revealed that the turbulent gas can regularise the dynamics of the usual spatio-
temporal chaos of the Kuramoto–Sivashinsky equation in favour of regular trains
of travelling pulses of approximately the same shape. The situation is then similar
to that observed with the generalised Kuramoto–Sivashinsky equation, the usual
Kuramoto–Sivashinsky equation with a third-derivative term (e.g Kawahara 1983;
Duprat et al. 2009; Tseluiko et al. 2010a ,b).
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Both the weakly nonlinear prototype and the long-wave equation are valid
sufficiently close to criticality. To describe nonlinear waves far from criticality, we
developed a model based on the IBL approximation for free-falling films. The starting
point for this approximation is the first-order boundary-layer equations and a self-
similar semi-parabolic profile for the fluid velocity. By combining the long-wave
approximation and a simple Galerkin projection with just one test function (the semi-
parabolic profile itself), we obtained a two-equation IBL model for the film thickness
and streamwise flow rate which, for the case of free-falling films, provides a good
description of the film dynamics sufficiently far from criticality (e.g. Ruyer-Quil &
Manneville 2000). It is then used in our problem for a systematic investigation of the
flooding phenomenon in counter-current gas–liquid flows.

As the gas flow rate is increased, the film starts to travel upwards while just before
wave reversal the amplitude of the waves grows rapidly. We confirmed the existence
of large-amplitude stationary waves by computing travelling waves for our IBL
approximation using a helium–methanol system in an inclined channel as a putative
experimental set-up. The travelling waves were computed on periodic domains keeping
the volume fixed. We found that as the gas flow velocity is increased, the amplitude of
the waves grows and, at the same time, the velocity of the waves decreases and tends
to zero at a certain critical gas velocity, which corresponds to the onset of flooding.
Also, the critical gas velocity decreases as the liquid Reynolds number is increased, as
was observed experimentally (e.g. Semyonov 1944). Our travelling-wave results were
confirmed by time-dependent computations of the IBL model.

We acknowledge financial support from the Engineering and Physical Sciences
Research Council of England through grant no. EP/F009194.

Appendix. Analysis in orthogonal boundary-layer coordinates

Here, we briefly discuss curvilinear coordinates. For simplicity, we denote the
Cartesian coordinates by (x1, x2) ≡ (x, y) and curvilinear coordinates by (ξ1, ξ2). We
have

xi = xi(ξ1, ξ2), (A 1)

for i = 1, 2, and

ξj = ξj (x1, x2), (A 2)

for j = 1, 2. Next, the covariant basis is defined by

gi =
∂x

∂ξi

=
∂xj

∂ξi

x̂j , (A 3)

where i, j =1, 2 and the Einstein summation convention is used, i.e. there is a
summation over an index that appears twice, i.e. index j in the latter expression.
Also, x̂i denotes a unit vector pointing in the direction of xi , i = 1, 2. The metric
coefficients (entries of the metric tensor) are defined by

gij = gi · gj =
∂xk

∂ξi

∂xk

∂ξj

. (A 4)

We will assume that (ξ1, ξ2) is an orthogonal basis, i.e. the metric tensor is diagonal.
The normalised covariant basis is

ξ̂ i =
1

hi

gi, (A 5)

for i = 1, 2, where hi =
√

gii are the scale factors, also called Lamé coefficients.



56 D. Tseluiko and S. Kalliadasis

The transformation from the ‘old’ orthonormal basis (x̂1, x̂2) to the ‘new’

orthonormal basis (ξ̂ 1, ξ̂ 2) is given by

ξ̂ j = γij x̂i, (A 6)

where

γij =
1

hj

∂xi

∂ξj

(A 7)

(here, no summation is assumed with respect to j ). Note that the matrix Γ = (γij ) is

an orthogonal one, i.e. Γ Γ T =Γ TΓ = I or, equivalently, γikγjk = γkiγkj = δij . We will
additionally assume that det(Γ ) = 1, i.e. Γ is a special orthogonal matrix, which implies
γ11 = γ22 and γ21 = − γ12. Next, let us indicate how the components of a vector and

a tensor field of rank 2 are transformed. Let u = ui x̂i = ūi ξ̂ i and τ = τij x̂i x̂j = τ̄ij ξ̂ i ξ̂ j .
Then,

ui = γij ūj , ūj = γijui, (A 8)

and

τij = γikγj l τ̄kl, τ̄kl = γikγj lτij . (A 9)

Finally, we discuss an equation satisfied by the streamfunction for the
incompressible Reynolds-averaged Navier–Stokes equations. Let ψ be the
streamfunction, i.e.

U = ψx2
x̂1 − ψx1

x̂2 =
1

h2

ψξ2
ξ̂ 1 − 1

h1

ψξ1
ξ̂ 2, (A 10)

or, equivalently, the components of the velocity field have the following form:

U1 = ψx2
, U2 = −ψx1

(A 11)

in Cartesian coordinates, and

U 1 =
1

h2

ψξ2
, U 2 = − 1

h1

ψξ1
, (A 12)

in curvilinear coordinates. Then, on eliminating the pressure from the incompressible
Reynolds-averaged Navier–Stokes equations, the following equation for the
streamfunction is obtained:

∇4ψ = − 1

h1h2

∂(ψ, ∇2ψ)

∂(ξ1, ξ2)
− R, (A 13)

where

∇2 =
1

h1h2

[
∂

∂ξ1

(
h2

h1

∂

∂ξ1

)
+

∂

∂ξ2

(
h1

h2

∂

∂ξ2

)]
, ∇4 = (∇2)2, (A 14)

and

∂(f1, f2)

∂(ξ1, ξ2)
=

∂f1

∂ξ1

∂f2

∂ξ2

− ∂f1

∂ξ2

∂f2

∂ξ1

. (A 15)

Here R is the contribution due to Reynolds stresses, which in Cartesian coordinates
has the form

R = τ11x1x2
+ τ12x2x2

− τ12x1x1
− τ22x1x2

. (A 16)
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To obtain R in curvilinear coordinates, we can use the transformation law
τij = γikγj l τ̄kl and the fact that

(
∂/∂x1

∂/∂x2

)
=

(
∂ξ1/∂x1 ∂ξ2/∂x1

∂ξ1/∂x2 ∂ξ2/∂x2

)(
∂/∂ξ1

∂/∂ξ2

)
=

(
∂x1/∂ξ1 ∂x2/∂ξ1

∂x1/∂ξ2 ∂x2/∂ξ2

)−1 (
∂/∂ξ1

∂/∂ξ2

)

=

(
γ22/h1 −γ21/h2

−γ12/h1 γ11/h2

)(
∂/∂ξ1

∂/∂ξ2

)
=

(
γ11/h1 γ12/h2

γ21/h1 γ22/h2

)(
∂/∂ξ1

∂/∂ξ2

)
, (A 17)

where matrix notations have been used, i.e.

∂

∂xi

=
γij

hj

∂

∂ξj

. (A 18)

Therefore,

R =
γ1i

hi

∂

∂ξi

(
γ2j

hj

∂

∂ξj

(γ1kγ1l τ̄kl)

)
+

γ2i

hi

∂

∂ξi

(
γ2j

hj

∂

∂ξj

(γ1kγ2l τ̄kl)

)

− γ1i

hi

∂

∂ξi

(
γ1j

hj

∂

∂ξj

(γ1kγ2l τ̄kl)

)
− γ1i

hi

∂

∂ξi

(
γ2j

hj

∂

∂ξj

(γ2kγ2l τ̄kl)

)
. (A 19)
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Pulse dynamics in low-Reynolds-number interfacial hydrodynamics: Experiments and theory.
Physica D 239, 2000–2010.

Tseluiko, D., Saprykin, S. & Kalliadasis, S. 2010b Interaction of solitary pulses in active
dispersive–dissipative media. Proc. Est. Acad. Sci. 59, 139–144.

Yih, C.-H. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321–334.
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Zapke, A. & Kröger, D. G. 2000b Countercurrent gas–liquid flow in inclined and vertical ducts.
II. The validity of the Froude–Ohnesorge number correlation for flooding. Intl J. Multiphase
Flow 26, 1457–1468.

Zilker, D. P., Cook, G. W. & Hanratty, T. J. 1977 Influence of the amplitude of a solid wavy wall
on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech. 82, 29–51.


