

Nonlinear Waves in Solid Continua with Finite Deformation


by


Jason Knight


Submitted to the graduate degree program in Department of Mechanical Engineering and


the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements


for the degree of Master of Science.


Chairperson Dr. Karan S. Surana (Advisor)


Dr. Robert M. Sorem


Dr. Peter W. Tenpas


Date Defended: August 25, 2015







The Thesis Committee for Jason Knight certifies


that this is the approved version of the following thesis:


Nonlinear Waves in Solid Continua with Finite Deformation


Chairperson: Dr. Karan S. Surana (Advisor)


Date Approved: August 26, 2015


ii







Acknowledgements


I would like to thank Professor Karan Surana for his support and guidance during this


process. His knowledge, instruction, and patience has helped me grow as a student. I would


also like to recognize Professor Peter Tenpas and Professor Robert Sorem for serving on my


committee. Additionally, I would like to acknowledge the computational infrastructure and


the computational resources provided by the computational mechanics laboratory (CML)


of the Department of Mechanical Engineering of the University of Kansas.


Above all, I would like to thank my wife Lisa for her continuous encouragement and


endless understanding throughout my graduate studies.


iii







ABSTRACT


This work considers initiation of nonlinear waves, their propagation, reflection, and their


interactions in thermoelastic solids and thermoviscoelastic solids with and without memory.


The conservation and balance laws constituting the mathematical models are derived for


finite deformation and finite strain using second Piola-Kirchoff stress tensor and Green’s


strain tensor. The constitutive theories for thermoelastic solids express the second Piola-


Kirchoff stress tensor as a linear function of the Green’s strain tensor [1]. In the case


of thermoviscoelastic solids without memory, the constitutive theory for deviatoric second


Piola-Kirchoff stress tensor consists of a first order rate theory in which the deviatoric


second Piola-Kirchoff stress tensor is a linear function of the Green’s strain tensor and


its material derivative. For thermoviscoelastic solids with memory, the constitutive theory


for deviatoric second Piola-Kirchoff stress tensor consists of a first order rate theory in


which the material derivative of the deviatoric second Piola-Kirchoff stress is expressed as


a linear function of the deviatoric second Piola-Kirchoff stress, Green’s strain tensor, and


its material derivative. For thermoviscoelastic solids with memory, the constitutive theory


for deviatoric second Piola-Kirchoff stress tensor consists of a first order rate theory in


which the material derivative of the deviatoric second Piola-Kirchoff stress is expressed as


a linear function of the deviatoric second Piola-Kirchoff stress, Green’s strain tensor, and


its material derivative. Fourier heat conduction law with constant conductivity is used


as the constitutive theory for heat vector. The mathematical models are derived using


conservation and balance laws. Alternate forms of the mathematical models are presented


and their usefulness is illustrated in the numerical studies of the model problems with


different boundary conditions. Nondimensionalized mathematical models are used in the


computations of the numerical solutions of the model problems.
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All numerical studies are performed using space-time variationally consistent finite ele-


ment formulations derived using space-time residual functionals in which the second varia-


tion of the residuals is neglected in the second variation of the residual functional and the


non-linear equations resulting from the first variation of the residual functional are solved


using Newton’s Linear Method (Newton-Raphson method) with line search. Space-time lo-


cal approximations are considered in higher order scalar product spaces that permit desired


order of global differentiability in space and time. Extensive numerical studies are presented


for different boundary conditions. Computed results for non-linear wave propagation, reflec-


tion, and interaction are compared with linear wave propagation to demonstrate significant


differences between the two, the importance of the nonlinear wave propagation over linear


wave propagation as well as to illustrate the meritorious features of the mathematical mod-


els and the space-time variationally consistent space-time finite element process with time


marching in obtaining the numerical solutions of the evolutions.
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Chapter 1


Literature Review and Scope of


Work


The subject of nonlinear wave propagation in which nonlinearity primarily arises due to


consideration of finite deformation and finite strain is an area of significant interest due


to the introduction of polymeric solids and their abundant use in industrial applications.


Polymers can undergo finite deformation, finite strain, have a dissipation mechanism, and


exhibit rheological behavior. Thus, the deformation physics in such materials is quite com-


plex. Development of mathematical models for finite deformation and finite strain for solid


continua in Lagrangian description using conservation and balance laws resulting in initial


value problems (IVP) and time accurate numerical simulations of the evolution described


by the IVPs is the main objective of this research.
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1.1 Literature Review


A review of the published works related to the research presented here is given in the fol-


lowing. In the published works cited and discussed here we address four basic questions: (i)


what is the source of nonlinearity (ii) type of material considered (elastic, viscoelastic, etc.)


(iii) constitutive theories (iv) methodology or approach used to obtain numerical solution


of the resulting mathematical model. In reference [2] conservation and balance laws are


considered and some aspects of the constitutive theories are also discussed with the main


objective of obtaining simplified mathematical models with various assumptions that would


permit theoretical or semianalytical solutions. Many specialized forms of the 1D and 2D


wave equations and their possible solutions are discussed. Reference [3] considers solids


under high-pressure shock compression. This book presents many aspects of mechanics,


physics, and chemistry in such deformation. Plasticity or irreversible deformation processes


are a central point of focus in this reference. The material in the book is largely devoted


to experiments, design of experiments, and analysis of experimental data. Experimentally


focused work on “nonlinear phenomena in the propagation of elastic waves in solids” is also


presented in reference [4]. The authors consider Green’s strain and many applications to


different and unique materials. Precise mathematical models used and the constitutive the-


ories considered and their derivations are not given. In reference [5], the authors consider


a one degree of freedom oscillator subjected to an external force and a restoring viscoelas-


tic force with memory based on a phenomenological approach. Such models are not valid


in the thermodynamic sense and their extension to R2 and R3 is not possible [1]. Finite


amplitude waves in isotropic elastic plates are considered by Lima and Hamilton [6]. A


perturbation technique with semianalytical solution is used to obtain the solutions of the


governing equation of equilibrium in Lagrangian description. Periodic harmonic solutions
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are presented. In reference [7], thermoelastic small-amplitude wave propagation in nonlin-


ear elastic media is considered. Helmholtz free energy density is expressed as a nonlinear


function of the principal stretches and is used to derive the constitutive equation for stress.


For thermoelastic material based on reference [1], this approach of deriving constitutive


theory is unfounded. This approach is applied to layered structures. Lima and Hamilton


[8] presented a study of finite amplitude waves in isotropic elastic waveguides with arbi-


trary cross-sectional area using perturbation and modal analysis techniques to obtain the


solutions of nonlinear equations of motion for harmonic motion. The second Piola-Kirchoff


stress tensor is expressed as a quadratic function of the Green’s strain tensor using a spe-


cial form given in references [9, 10]. A study of nonlinear deformation waves in solids


and dispersion due to microstructures using Mindlin type model is considered in reference


[11]. Finite volume method is used to study propagation and interaction of one dimen-


sional waves. Nonlinear transient thermal stresses and elastic wave propagation studies in


thick temperature-gradient dependent FGM cylinder using a second-order point-collocation


method are presented in reference [12]. In reference [13], numerical simulations of linear and


nonlinear waves in hypoelastic solids is presented using conservation element and solution


element method (CESE). These investigations are hypothetical as the constitutive theories


for hypoelastic solids are hypothetical since these constitutive theories can not describe the


constitution of solids. Numerical simulation of nonlinear elastic wave propagation in piece-


wise homogeneous media are considered in reference [14]. Wave reflection, transmission,


and interaction of waves are not clearly demonstrated primarily due to complexity of the


properties of the domain. Vibrations and wave propagation in thick FGM cylinders with


temperature dependent material properties is investigated in reference [15]. A nodal discon-


tinuous Galerkin finite element method is considered for nonlinear elastic wave propagation


in reference [16]. Nonlinear transient stress wave propagation in thick FGM cylinder using
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a unified generalized thermoelasticity theory is considered in reference [17]. Nonlinear con-


stitutive model for axisymmetric bending of annular graphene-like nanoplates with gradient


elasticity enhancement effects is considered in reference [18]. In reference [19], nonlinear


semianalytical finite-element algorithm for the analysis of internal resonance conditions in


complex wave guides is considered. Linear stress waves in elastic medium for infinitesimal


deformation linear elasticity have been studied by Surana et al [20].


From the brief literature review presented here we note the following. (i) The mathe-


matical models resulting from conservation and balance laws are not explicitly defined and


stated in most cases. (ii) The constitutive theories for thermoelastic and thermoviscoelastic


materials with and without memory and the basis for their derivations are mostly absent.


In many instances phenomenological approach is used. (iii) A mix of various space-time


decoupled methods based on finite volume, finite element approaches for discretization in


space followed by some time integration scheme are used to obtain evolutions described by


the IVPs. In many instances semi-analytical approaches are considered for highy simplified


mathematical models that lack the desired physics. (iv) In the model problems considered


and the numerical studies presented for them, the complexity of the physics of the model


problem rarely permits the assesment of the importance of nonlinearity when compared to


the corresponding solutions from the linear models. (v) The issue of time accuracy of nu-


merical solutions is never addressed in any of the references. This is of utmost significance


as only with the correct time evolution can we assess the importance and significance of the


nonlinear wave propagation.
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1.2 Considerations in the Present Study and the Scope of


Study


The work presented here considers nonlinear wave propagation, reflection and interaction


in thermoelastic solid continua and thermoviscoelastic solid continua with and without


memory. The mathematical models in Lagrangian description consist of conservation and


balance laws and the appropriate constitutive theories for stress tensor and heat vector


[1]. The primary source of nonlinearity is due to finite deformation and finite strain. The


contravariant second Piola-Kirchoff stress tensor and Green’s strain are used as conjugate


pairs in the derivations of the balance laws and the constitutive theories. The solid con-


tinua is assumed compressible thus permitting finite deformation and associated changes in


density. For thermoelastic solid, rate constitutive theory of order zero is used in which the


contravariant second Piola-Kirchoff stress is a linear function of the Green’s strain tensor.


The work presented here only considers thermal affects due to rate of entropy production


associated with rate of dissipation due to rate of mechanical work, thus for thermoelastic


solids, the energy equation and entropy inequality resulting from the first and second law of


thermodynamics are not required. In the case of thermoviscoelastic solids with and with-


out memory, the second Piola-Kirchoff stress tensor is decomposed into equilibrium stress


tensor and deviatoric stress tensor. The constitutive theory for the second Piola-Kirchoff


equilibrium stress tensor is derived in terms of thermodynamic pressure. The constitutive


theory for deviatoric second Piola-Kirchoff stress tensor for thermoviscoelastic solids with-


out memory is considered as a first order rate theory [1] in which the deviatoric second


Piola-Kirchoff stress tensor is a linear function of the Green’s strain tensor and its material


derivative. In the case of thermoviscoelastic solids with memory, the constitutive theory


for deviatoric second Piola-Kirchoff stress tensor is a first order rate theory in deviatoric
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second Piola-Kirchoff stress tensor as well as Green’s strain tensor.


The mathematical models are non-dimensionalized for use in the computational frame-


work. Explicit forms of the mathematical models are presented in R1. These models are


used to study one dimensional nonlinear wave propagation, reflection, and interaction in the


three types of solid continua considered here. Linear forms of these mathematical models


based on small-strain small-deformation assumptions are also considered in the numerical


studies. The evolutions of the nonlinear and linear waves are compared to demonstrate the


differences between the two. Ramp and pulse stress loadings and pulse velocity loading are


considered in the numerical studies.


The dimensionless form of the mathematical models in R1 are utilized to construct the


space-time coupled finite element processes for an increment of time (giving a space-time


strip) based on space-time residual functionals that are space-time variationally consis-


tent, hence the computations during the entire evolution remain unconditionally stable.


Evolutions are computed by time marching using the space-time strip. The space-time


local approximations for the dependent variables over a space-time element are considered


in higher order scalar product spaces that permit higher order global differentiability of


the space-time approximations over a discretization of the strip as well as at the inter-


strip boundaries. The minimally conforming spaces ensure the space-time integrals over


discretization of a space-time strip are in the Riemann sense. This feature enables compu-


tations of time accurate evolutions.
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Chapter 2


Mathematical Models and


Computational Framework


2.1 Mathematical Models in R3


In this section we present mathematical models for thermoelastic and thermoviscoelastic


solids with and without memory consisting of conservation and balance laws and the consti-


tutive theories. The mathematical models are first presented in R3. These are then followed


by explicit forms of the mathematical models in R1 for 1-D wave propagation including their


dimensionless forms. Finite deformation and finite strain are considered in the mathemati-


cal models. Contravariant second Piola-Kirchoff stress and Green’s strain tensor are used as


conjugate pairs [1]. Solid continua is considered compressible. In the mathematical models,


the energy equation is only considered if the rate of mechanical work results in entropy


production. The mathematical models are considered in Lagrangian description.


7







2.1.1 Thermoelastic Solid Continua in R3


In such solid continua the deformation process is reversible, hence rate of mechanical work


does not result in rate of entropy production. Thus, the specific internal energy in the


absence of strain energy is not affected by the rate of work. As a consequence, mechanical


deformation and thermal effects remain uncoupled, hence the thermal behavior can be


studied independent of the mechanical deformation. Since in the present work we only


consider thermal effects due to rate of entropy production resulting from the rate of work, for


thermoelastic solids the mathematical model only consists of conservation of mass, balance


of linear momenta, and balance of angular momenta. The energy equation in this case


is a linear (or nonlinear) diffusion equation and entropy inequality contains no dissipation


terms but forms the basis for deriving constitutive theory for the heat vector appearing in


the energy equation. The constitutive theory for the contravariant second Piola-Kirchoff


stress (σ[0]) is based on σ[0] and Green’s strain tensor (ε[0]) as conjugagte pair and is


derived using strain energy density function or theory of generators and invariants (see


reference [1] for details). Thus for compressible thermoelastic solids, the mathematical


model consists of continuity equation (conservation of mass), momentum equations (balance


of linear momenta), balance of angular momenta, and the constitutive theory for the stress


tensor. In the absence of body forces, we can have the following in Lagrangian description


[1]. In the constitutive equation for σ[0] we assume σ[0] as a linear function of ε[0].


ρ0 = |J |ρ(x, t); continuity equation (2.1)


ρ0{v̇} − ([J ][σ[0]]T {∇} = 0; momentum equation (2.2)
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[σ[0]] = [σ[0]]T ; balance of angular momenta (2.3)


[σ[0]] = 2µ[ε[0]] + λ(tr[ε[0]])[I]


or


{σ[0]} = [D]{ε[0]}


constitutive theory (2.4)


In which


[J ] =


[
∂{x̄}
∂{x}


]
=


[[
∂{u}
∂{x}


]
+ [I]


]
(2.5)


{v} = {u̇} (2.6)


{σ[0]}T =
[
σ


[0]
11 σ


[0]
22 σ


[0]
33 σ


[0]
23 σ


[0]
31 σ


[0]
12


]


{ε[0]}T = [(ε[0])11 (ε[0])22 (ε[0])33 (ε[0])23 (ε[0])31 (ε[0])12]


(2.7)


[ε[0]] =
1


2


(
[J ]T [J ]− [I]


)
(2.8)


Dii = 2µ+ λ; Dij = λ, i 6= j; Dii = 2µ, i = 4, 5, 6


Dij = 0; i, j = 4, 5, 6 and i 6= j


(2.9)
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The x̄i = xi + ui are coordinates of a material point P (x, t) in the current configuration, ui


are displacements in the xi directions and vi are the corresponding velocities. The density


in the reference configuration (t = 0) is given by ρ0 and ρ(x, t) is the density of the material


point P (x, t) in the current configuration at time t. Subscripts 1, 2, and 3 in 2.7 refer to x1,


x2, and x3 axes of a fixed x-frame. A dot (·) on the quantity implies material derivative.


Equations 2.6 can be substituted into 2.2 thereby eliminating v as a dependent variable. The


contravariant second Piola-Kirchoff stress tensor is symmetric (2.3). Thus the mathematical


model reduces to


ρ0 = |J |ρ(x, t) (2.10)


ρ0{ü} − ([J ][σ[0]]T ){∇} = 0 (2.11)


{σ[0]} = [D]{ε[0]} (2.12)


in which [ε[0]] and [D] are defined by 2.8 and 2.9. Material coefficients are λ and µ. When


the ui, hence [J ], are known, the density, ρ in the current configuration, is deterministic


from 2.10. Thus, for thermoelastic compressible solid continua, ρ(x, t) is not a dependent


variable in the mathematical model. Equations 2.11 and 2.12 are nine partial differential


equations in three displacements ui and six stresses σ
[0]
ij (= σ


[0]
ji ), hence the mathematical


model has closure. Equations 2.10 - 2.12 and [ε[0]] defined by 2.8 is the final form of the


mathematical model for thermoelastic solids in R3 in which 2.10 only needs to be used to


determine ρ(x, t) once [J ] is known in the current configuration.
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2.1.2 Thermoviscoelastic Solid Continua Without Memory in R3


In such solid continua the deformation process is not reversible due to rate of mechanical


work resulting in entropy production (dissipation) which affects the specific internal energy.


Hence, in such solid continua, the material exhibits elasticity as well as dissipation mecha-


nism but has no memory (or rheology). In such solid continua, the mechanical deformation


and thermal effects are coupled implying that the energy equation resulting from the first


law of thermodynamics is an integral part of the complete mathematical model. Entropy


inequality resulting from the second law of thermodynamics along with decomposition of


σ[0] into equilibrium (eσ
[0]) and deviatoric (dσ


[0]) contravariant second Piola-Kirchoff stress


tensor provides mechanism for deriving constitutive theory for heat vector and (eσ
[0]) and


additionally requiress that rate of work due to (dσ
[0]) be positive. The constitutive theory


for dσ
[0] is derived using the theory of generators and invariants [1]. The complete mathe-


matical model for thermoviscoelastic solid continua without memory consists of conservation


of mass, balance of linear momenta, balance of angular momenta, which are the same as in


the case of thermoelastic solids (equations 2.1-2.3). Additionally, the energy equation and


constitutive theories for eσ
[0], dσ


[0], and heat vector q are needed. The complete mathe-


matical model is given in the following in Lagrangian description for compressible matter


(in the absence of body forces). The constitutive theory used for dσ
[0] is a simple first order


linear rate theory in which dσ
[0] is a linear function of ε[0] and ε̇[0] (material derivative


of ε[0]). The constitutive theory for {q} is simple Fourier heat conduction law [1]. The


constitutive theory for eσ
[0] is in terms of thermodynamic pressure [1].


ρ0 = |J |ρ(x, t); continuity (2.13)
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ρ0{ü} − ([J ][σ[0]]T ){∇} = 0; balance of linear momenta (2.14)


[σ[0]] = [σ[0]]T ; balance of angular momenta (2.15)


ρ0ė+ {∇}T {q} − tr([σ[0]]T [ε̇[0]]
T ) = 0; energy equation (2.16)


[σ[0]] = [eσ
[0]] + [dσ


[0]]


[eσ
[0]] = −p|J |[J ]T [J ]−1


[dσ
[0]] = 2µ˜[ε[0]] + λ˜(tr[ε[0]])[I] + 2µ˜1[ε̇[0]] + λ˜1(tr[ε̇[0]])[I] (2.17)


or


{dσ[0]} = [D˜ ]{ε[0]}+ [B˜ ]{ε̇[0]}


D˜ ii = 2µ˜ + λ˜; D˜ ij = λ˜, i 6= j; D˜ ii = 2µ˜, i, j = 4, 5, 6


D˜ ij = 0; i, j = 4, 5, 6 and i 6= j


B˜ ii = 2µ˜1 + λ˜1; B˜ ij = λ˜1, i 6= j; B˜ ii = 2µ˜1, i, j = 4, 5, 6 (2.18)


B˜ ij = 0, i, j = 4, 5, 6 and i 6= j


and


{q} = −k{∇θ}; Fourier heat conduction law (2.19)
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Here µ˜1 and λ˜1 are material coefficients related to dissipation, k is thermal conductivity, θ


is absolute temperature, and e is specific internal energy. The compressive thermodynamic


pressure, p in 2.17 is assumed positive. Equation of state, p = p(ρ, θ) is known for each


specific solid continua under consideration.


2.1.3 Thermoviscoelastic Solids with Memory in R3


In such solid continua the deformation process is also not reversible. In these solids the rate


of mechanical work also results in rate of entropy production (dissipation). Additionally,


such solids exhibit rheological behavior, i.e. memory. Due to rate of entropy production,


the thermal and mechanical effects are coupled, hence the energy equation is an integral


part of the complete mathematical model. Entropy inequality resulting from the second


law of thermodynamics along with the stress decomposition σ[0] = eσ
[0] + dσ


[0] provides


mechanism for deriving constitutive theories for eσ
[0] and heat vector and additionally


requires that rate of work due to dσ
[0] be positive. The constitutive theory for dσ


[0] is


derived using theory of generators and invariants [1]. The complete mathematical model


for thermoviscoelastic solids with memory, in Lagrangian description, consists of continuity


equation, momentum equations, energy equation, and constitutivve theories for eσ
[0], dσ


[0],


and q. Constitutive theories used here are first order linear rate theories in dσ
[0] and ε[0],


i.e. material derivative of dσ
[0] is a linear function of ε[0], ε̇[0], and σ[0]. This constitutive


theory permits dissipation as well as rheology. Constitutive theory used for q is a simple


Fourier heat conduction law. The constitutive theory for eσ
[0] is in terms of thermodynamic


pressure p(ρ, θ). The complete mathematical model is given in the following (in the absence


of body forces).


ρ0 = |J |ρ(x, t); continuity (2.20)


13







ρ0{ü} − ([J ][σ[0]]T ){∇} = 0; balance of linear momenta (2.21)


[σ[0]] = [σ[0]]T ; balance of angular momenta (2.22)


ρ0ė+ {∇}T {q} − tr([σ[0]]T [ε̇[0]]
T ) = 0; energy equation (2.23)


[σ[0]] = [eσ
[0]] + [dσ


[0]]


[eσ
[0]] = −p|J |[J ]T [J ]−1


[dσ
[1]] + c1[dσ


[0]] + c2(tr[dσ
[0]])[I] =


a1
0[ε[0]] + a2


0(tr[ε[0]])[I] + a1
1[ε[1]] + a2


1(tr[ε[1]])[I]


or


{dσ[1]}+ [c˜]{dσ[0]} = [a˜0]{ε[0]}+ [a˜1]{ε[1]}


(2.24)


Where coefficients of [c˜], [a˜0], and [a˜1] are functions of (c1, c2), (a1
0, a


2
0), and (a1


1, a
2
1) and


are defined in the same manner as coefficients of [D˜ ] in 2.18. Additionally, q is defined as


{q} = −k{∇θ}; Fourier heat conduction law (2.25)


We consider compressive thermodynamic pressure to be positive, hence the negative sign in


the constitutive theory for eσ
[0]. Here also, p = p(ρ, θ) is an equation of state and is known


for a material under consideration. The constitutive theory for dσ
[0] (last equation in 2.24)


can also be written (similar to thermoviscoelastic solid continua without memory) in the


following form if we neglect tr([dσ
[0]])) in equation three in 2.24, divide throughout by c1,


14







and define 1/c1 as λ.


{dσ[0]}+ λ1{dσ[1]} = [a0]{ε[0]}+ [a1]{ε[1]} (2.26)


in which


[a0] =
1


c1
[a˜0], [a1] =


1


c1
{ε[1]} (2.27)


Equation 2.26 is the final form used in the present work to obtain its equivalent form in R1.


Remarks


Even though the model problems considered in the present work are wave propagation


studies in R1, the mathematical models in R3 are necessary to demonstrate the presence of


all relevant terms, many of which drop out in R1 as in R1 there is no concept of the other


two dimensions.


2.2 Mathematical Models in R1


In ths section explicit forms of the mathematical models for 1D wave propagation in R1


for thermoelastic and thermoviscoelastic solid continua with and without memory are pre-


sented. These models are derived using the mathematical models presented in section 2.1


for the three dimensional case, i.e. in R3, hence they hold for finite deformation and finite


strain. We assume directions 1 and x1 to be the same as x. Displacement u1 in x1 (or


x) direction is denoted by u and the velocity v1 by v. Details of the mathematical models


based on conservation and balance laws and the constitutive theories for the three types of


material behaviors considered are given in the following (in the absence of body forces).
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2.2.1 Thermoelastic Solid Matter (Compressible) in R1


For 1D wave propagation in R1 the mathematical models of section 2.1.1 in R3 reduce to


ρ0 =
(
f ∂u∂x + 1


)
ρ(x, t)


ρ0
∂2u
∂t2
− ∂


∂x


(
(f ∂u∂x + 1)σ


[0]
xx


)
= 0


σ
[0]
xx = E


(
∂u
∂x + f 1


2(∂u∂x)2
)


(2.28)


in which f = 0 for small deformation and small strain and f = 1 for finite deforation and


finite strain. This is a mathematical model in dependent variable u and σ
[0]
xx. E is material


coefficient in the reference configuration.


Alternate Form of the Mathematical Model Using v


It is some times more convenient to introduce velocity v = ∂u
∂t as a dependent variable


in the mathematical model. This form of the mathematical model is specially helpful in


studies in which velocity needs to be specified as a boundary condition or initial condition.
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Thus, using velocity v = ∂u
∂t as a dependent variable equation 2.28 becomes


ρ0 =
(
f ∂u∂x + 1


)
ρ(x, t)


ρ0
∂v
∂t −


∂
∂x


(
(f ∂u∂x + 1)σ


[0]
xx


)
= 0


σ
[0]
xx = E


(
∂u
∂x + f 1


2(∂u∂x)2
)


v = ∂u
∂t


(2.29)


This mathematical model contains dependent variables u, σ
[0]
xx, and v.
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2.2.2 Thermoviscoelastic Solids without Memory in R1


Using equations in section 2.1.2, we can obtain the following in R1. We consider ė = cp0θ̇ =


cp0
∂θ
∂t .


ρ0 =
(
f ∂u∂x + 1


)
ρ(x, t)


ρ0
∂2u
∂t2
− ∂


∂x


(
(f ∂u∂x + 1)(eσ


[0]
xx +d σ


[0]
xx)
)


= 0


eσ
[0]
xx = −p


(
f ∂u∂x + 1


)


dσ
[0]
xx = dE˜ (ε[0])xx + dc˜(ε̇[0])xx


(ε[0])xx = ∂u
∂x + f 1


2


(
∂u
∂x


)2
ρ0cp0


∂θ
∂t + ∂q


∂x − dσ
[0]
xx(ε̇[0])xx = 0


q = −k ∂θ∂x


(2.30)


in which p(ρ, θ) is thermodynamic pressure defined by the equation of state, thus eσ
[0]
xx


is defined in terms of known p(ρ, θ) in 2.30. Equations 2.30 are five partial differential


equations in u, dσ
[0]
xx, (ε[0])xx, q, and θ, hence the mathematical model has closure. Material


coefficients dE˜ and dc˜ are related to elasticity and dissipation respectively and are defined


in the reference configuration.


Remarks
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For solid matter the equation of state is rather involved [1] even though there is no


particular problem in incorporating it in 2.30. Since the main objective of this research


is the study of linear and nonlinear wave propagation, the constitutive theory for eσ
[0]
xx is


modified by considering the solid continua to be incompressible just for the purposes of


establishing the constitutive theory for the equilibrium stress eσ
[0]
xx. The same assumption


is applied to linear and nonlinear wave propagation so that the comparisons of linear and


nonlinear wave propagation studies remain meaningful. This is obviously an assumption


that will undoubtedly influence the model behavior, the extent of which is believed to be


not serious. There is further work in progress that incorporates actual equations of state


for p(ρ, θ) for compressible solid matter. This work is expected to provide quantitative


measures of the deviations in true behavior of wave propagation due to incompressibility


assumption for the constitutive theory for equilibrium stress. For incompressible matter,


equilibrium stress is mean normal stress. Following [1], for incompressible solid matter we


have the following in R1


eσ
[0]
xx =


1


2
dσ


[0]
xx ; σ[0]


xx =
3


2
dσ


[0]
xx ; dσ


[0]
xx =


2


3
σ[0]
xx (2.31)


Using 2.31, eσ
[0]
xx in 2.30 can be expressed either in terms of dσ


[0]
xx or σ


[0]
xx and the resulting


mathematical model can likewise be expressed either in terms of σ
[0]
xx or dσ


[0]
xx. In the follow-


ing, we choose σ
[0]
xx so that this mathematical model contains the same stress measure as in


19







case of thermoelastic solids 2.2.1.


ρ0 =
(
f ∂u∂x + 1


)
ρ(x, t)


ρ0
∂2u
∂t2
− ∂


∂x


(
(f ∂u∂x + 1)σ


[0]
xx


)
= 0


σ
[0]
xx = E(ε[0])xx + c(ε̇[0])xx; E = 3


2
dE˜ , c = 3


2
dc˜


(ε[0])xx = ∂u
∂x + f 1


2


(
∂u
∂x


)2
ρocp0


∂θ
∂t + ∂q


∂x −
2
3σ


[0]
xx(ε̇[0])xx = 0


q = −k ∂θ∂x


(2.32)


The factor of 2
3 in the dissipation term, in the energy equation, is due to incompressibility


assumption in the constitutive theory. Here also f = 0 for small deformation and small


strain and f = 1 for finite deformation and finite strain. Absolute temperature is given by θ.


Thus, we have five partial differential equations (not including continuity) in five dependent


variables u, σ
[0]
xx, (ε[0])xx, q, and θ, thus the mathematical model has closure. Material


coefficients E and c define the modulus of elasticity and dissipation coefficient respectively.


An alternate form of 2.32 can be derived by using v = ∂u
∂t as additional equation in 2.32


and by replacing ∂2u
∂t2


in the second equation in 2.32 by ∂v
∂t . This model contains v as an


additional variable (compared to 2.32) but also contains additional equation v = ∂u
∂t , hence


has closure.
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2.2.3 Thermoviscoelastic Solids with Memory in R1


Using the mathematical model of section 2.1.3 (in R3) we can obtain the explicit form of


the equations in the mathematical model in R1. In this case also we employ equation 2.31.


The final form of the equations for the mathematical model in R1 is given in the following


(in terms of σ
[0]
xx).


ρ0 =
(
f ∂u∂x + 1


)
ρ(x, t)


ρ0
∂2u
∂t2
− ∂


∂x


(
(f ∂u∂x + 1)σ


[0]
xx


)
= 0


σ
[0]
xx + λ∂σ


[0]
xx
∂t = E(ε[0])xx + c(ε̇[0])xx; E = 3


2
dE˜ , c = 3


2
dc˜


(ε[0])xx = ∂u
∂x + f 1


2


(
∂u
∂x


)2
ρocp0


∂θ
∂t + ∂q


∂x −
2
3σ


[0]
xx(ε̇[0])xx = 0


q = −k ∂θ∂x


(2.33)


Here E = 3
2
dE˜ and c = 3


2
dc˜ are elastic and dissipation material coefficients and λ is re-


laxation time. This model has five equations and five dependent variables (same as for


thermoviscoelastic solids without memory). Similar to section 2.2.2, here also, we can de-


rive an alternate form of 2.33 by using velocity v as a dependent variable. Here also f = 0


for small deformation and f = 1 for finite deformation. The factor of 2
3 in the energy


equation is due to incompressibility assumption in the constitutive theory.
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2.2.4 Dimensionless Form of the Mathematical Models in R1


We present the dimensionless forms of the mathematical models given in sections 2.2.1-


2.2.3 by choosing appropriate reference quantities. We consider the mathematical models


derived in sections 2.2.1-2.2.3 and introduce hat (ˆ) i.e. x changes to x̂, t to t̂, θ to θ̂, etc.


This implies that all quantities with hat have their usual dimensions or units in terms of


force (F̂ ), length (L̂), and time (t̂). Next we choose a reference value of force (F0), length


(L0), and time (t0) which would yield dimensionless force (F ), length (L), and time (t), the


quantities without hat (ˆ ), as F = F̂
F0


, L = L̂
L0


, and t = t̂
t0


. This is a general process of


non-dimensionalizing. Additionally, we may have to choose other reference quantities too,


for example, θ0 for temperature θ̂ so that we can obtain dimensionless temperature θ = θ̂
θ0


.


For wave propagation the reference speed of sound is a good choice for reference velocity


(v0). If we choose L0 as reference length then with v0 and L0, reference time t0 = L0
v0


, i.e.


t0 can not be independent of L0 and v0. We consider the following reference quantities, the


resulting dimensionless variables, and the dimensionless parameters.


x = x̂
L0
, ρ0 = ρ̂


ρ̃0
, cp0 =


ĉp
c̃p0
, u = û


L0
, k = k̂


k0


dσ
[0]
xx = dσ̂


[0]
xx
τ0
, eσ


[0]
xx = eσ̂


[0]
xx
τ0
, σ


[0]
xx = σ̂


[0]
xx
τ0
,


E = Ê
E0
, v0 =


√
E0
ρ̃0


(reference speed of sound) (2.34)


τ0 = E0 = ρ̃0v
2
0 (characteristic kinetic energy)


t0 = L0
v0
, θ = θ̂


θ0


ρ̃0 and c̃p0 are reference values of density and specific heat


Using 2.34, the mathematical models in sections 2.2.1-2.2.3 can be nondimensionalized
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Thermoelastic Solids: R1


The dimensionless forms are the same as in section 2.2.1, equations 2.28 and 2.29, with and


without velocity as a dependent variable respectively, hence they are not repeated here for


the sake of brevity.


Thermoviscoelastic Solids without Memory: R1


The mathematical model in section 2.2.2 (equations 2.32) can be nondimensionalized using


2.34. The resulting dimensionless forms of the equations are


ρ0 =
(
f ∂u∂x + 1


)
ρ(x, t)


ρ0
∂2u
∂t2
−
(


τ0
(ρ̃0v20)


)
∂
∂x


(
(f ∂u∂x + 1)σ


[0]
xx


)
= 0


σ
[0]
xx =


(
E0
τ0


)
E(ε[0])xx + c(ε̇[0])xx; c = ĉ


(τ0t0)


(ε[0])xx = ∂u
∂x + f 1


2


(
∂u
∂x


)2
ρocp0


∂θ
∂t +


(
k0t0


ρ̃0L2
0c̃p0


)
∂q
∂x −


2
3


(
τ0


ρ̃0c̃p0θ0


)
σ


[0]
xx(ε̇[0])xx = 0


q + k ∂θ∂x = 0


(2.35)


The dimensionless modulus of elasticity is given by E and c is the dimensionless dissipation


coefficient. For small deformation and finite deformation we use f = 0 and f = 1 respec-


tively. In 2.35, we can also introduce velocity, v, as an additional dependent variable with


the additional equation v = ∂u
∂t and ∂2u


∂t2
replaced by ∂v


∂t .
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Thermoviscoelastic Solids with Memory: R1


The mathematical model in section 2.2.3 (equation 2.33) can be nondimensionalized using


2.34. The resulting dimensionless form of the equations are


ρ0 =
(
f ∂u∂x + 1


)
ρ(x, t)


ρ0
∂2u
∂t2
−
(


τ0
(ρ̃0v20)


)
∂
∂x


(
(f ∂u∂x + 1)σ


[0]
xx


)
= 0


σ
[0]
xx +De∂σ


[0]
xx
∂t =


(
E0
τ0


)
E(ε[0])xx + c(ε̇[0])xx


(ε[0])xx = ∂u
∂x + f 1


2


(
∂u
∂x


)2
ρocp0


∂θ
∂t +


(
k0t0


ρ̃0L2
0c̃p0


)
∂q
∂x −


2
3


(
τ0


ρ̃0c̃p0θ0


)
σ


[0]
xx(ε̇[0])xx = 0


q + k ∂θ∂x = 0


(2.36)


where Deborah number De = λ
to


.


2.3 Computational Framework for Numerical Simulation of


Evolution


The mathematical models described in sections 2.1 and 2.2 are a system of nonlinear par-


tial differential equations (for finite strain measures) describing evolutions i.e. these are


initial value problems (IVPs). Even in R1, the equations are complex enough not to permit


theoretical or analytical solutions. In the present work, we consider a space-time coupled
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finite element formulation based on space-time residual functional for an increment of time


with time marching for computing evolutions. The space-time local approximations are


considered in higher order scalar product spaces that permit higher order global differentia-


bility in space and time. Details of space-time coupled methods for IVPs, time marching,


higher order global differentiability approximation spaces, space-time variationally consis-


tent integral forms etc. can be found in references [21]-[30]. In the following we present a


summary.


2.3.1 Space-Time Finite Element Formulation Based on Residual Func-


tional and the Solution Procedure


For the sake of simplicity, we consider mathematical models in R1 describing one-dimensional


wave propagation in thermoelastic and thermoviscoelastic media with and without mem-


ory. This choice is due to simplicity of physics so that the significant and subtle features


of linear and non-linear wave propagation can be clearly demonstrated. Thus the mathe-


matical models in section 2.2 (R1) contain x and t as independent coordinates. All three


mathematical modes in section 2.2 can be arranged in the following compact form.


Aφ− f = 0 ∀ (x, t) ∈ Ωxt = Ωx × Ωt = (0, L)× (0, τ) (2.37)


or


Aiφi − fi = 0; i = 1, 2, · · · ,m ∀ (x, t) ∈ Ωxt (2.38)


Equations 2.37 or 2.38 are a system of m partial differential equations. In 2.37, matrix


A contains the differential operators, φ is a vector of dependent variables, and f is a


vector containing nonhomogeneous terms. In 2.37, Ωxt is the open space-time domain such
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that Ω̄xt = Ωxt
⋃


Γ, Ω̄xt being closure of Ωxt and Γ being the closed boundary of Ωxt.


Additionally, the following holds (figure 2.1), Ω̄x = Ωx
⋃


Γx and Ω̄t = Ωt
⋃


Γt such that


Γ = Γx
⋃


Γt. For simplicity, we consider Γ =
4⋃
i=1


Γi as shown in figure 2.1(a). Figure 2.1(b)


shows a subdivision of the space-time domain Ω̄xt into space-time strips such that


Ω̄xt =
⋃
n


nΩ̄xt ∀ (x, t) ∈ nΩ̄xt = Ω̄x × nΩ̄t = [0, L]× [tn−1, tn] (2.39)


The nth space-time strip, with domain nΩ̄xt, is from time tn−1 to tn over the spatial domain


[0, L]. The time interval ∆t for the strips need not be uniform (but assume so here for


simplicity). Consider the nth space-time strip nΩ̄xt and its discretization nΩ̄T
xt into space-


time elements


nΩ̄T
xt =


⋃
e


Ω̄e
xt (2.40)


in which Ω̄e
xt is the space-time domain of a space-time element, e (figure 2.1(c)), a nine


node space-time p-version element. Consider the nth space-time strip with its space-time


domain nΩ̄xt and its discretization nΩ̄T
xt. Let ni φh; i = 1, 2, · · · ,m be the approximations of


φi; i = 1, 2, · · · ,m over nΩ̄T
xt and let ni φ


e
h be the local approximation of φi over a space-time


element Ω̄e
xt such that


n
i φh =


⋃
e


n
i φ


e
h; i = 1, 2, · · · ,m (2.41)


If we substitute n
i φh in 2.38, then we obtain the residual functions (equations), Ei = i =


1, 2, · · · ,m, for the nth space-time strip.


Ei = Ai(
n
i φh)− fi; i = 1, 2, · · · ,m (2.42)
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t = tn−1


t = t2 = 2∆t


t = t1 = ∆t


x = 0 x = L
x


t


...


...
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(c) Discretization for nth space-time strip


· · · · · · · · · · · ·
◦


×
×


×


◦ ◦


◦
×


Ω̄e
xt


×


Figure 2.1: Space-Time Domain, Space-Time Strips, and Discretization for nth Space-Time Strip
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On the other hand, if we substitute n
i φ


e
h in 2.38, we obtain residual equations, Eei , for a


space-time element e.


Eei = Ai(
n
i φ


e
h)− fi; i = 1, 2, · · · ,m (2.43)


We consider the space-time finite element method based on residual functional (space-time


least squares method). See references [21]-[30] for more details. Let nI be the residual


functional for the discretization of the nth space-time strip defined by the sum of the scalar


products of Ei with itself over nΩ̄T
xt.


nI =
m∑
i=1


(Ei, Ei)nΩ̄T
xt


(2.44)


Since (Ei, Ei)nΩ̄T
xt


is a functional, 2.44 can be written in terms of the sum of element


residuals, i.e.


nI =
∑
i


(Ei, Ei)nΩ̄T
xt


=
∑
e


(∑
i


(Eei , E
e
i )Ω̄e


xt


)
=
∑
e


Ie (2.45)


Based on the calculus of variations [21], an extremum of the functional nI is also a solution of


the associated Euler’s equations (partial differential equations in the mathematical models).


An extremum of nI requires that we set its first variation, δ(nI), to zero, a necessary


condition, provided nI is differentiable in its arguments.


δ(nI) =
∑
e


δIe = 2
∑
e


(∑
i


(Eei , δE
e
i )Ω̄e


xt


)
= 2


∑
e


{ge} = 2{g} = 0 (2.46)


Thus, {g} = 0 is a necessary condition for an extremum of functional nI. The sufficient


condition, or extremum principle, is given by
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δ2(nI) = 2
∑
e


(∑
i


(
(δEei , δE


e
i )Ω̄e


xt
+ (Eei , δ


2Eei )Ω̄e
xt


))
(2.47)


In 2.47, δ2(nI) > 0, = 0, < 0, ensures a minimum, a saddle point, or a maximum,


respectively, of nI for the solution n
i φh obtained from 2.46. Equation 2.47 is clearly not an


extremum principle. Following [21]-[30], we approximate 2.47 to obtain a unique extremum


principle.


δ2(nI) ∼= 2
∑
e


(∑
i


(δEei , δE
e
i )Ω̄e


xt


)
> 0 (2.48)


This is a unique extremum principle (see references [21] for details). Since some of the


equations in the mathematical model are nonlinear, some Eei are nonlinear functions of


the dependent variables. That is {g} in 2.46 is a nonlinear function. Consider the local


approximations n
i φ


e
n ∈ Vn ⊂ Hk,p(Ω̄e


xt) in which k = (k1, k2), k1 and k2 being the orders of


the scalar product space Hk,p(Ω̄e
xt) in space and time. Consider the local approximations


of φi over Ω̄e
xt


n
i φ


e
h = [N i]{iδe}; i = 1, 2, · · · ,m (2.49)


in which [N i] are space-time local approximation functions and {iδe} are nodal degrees of


freedom for a dependent variable φi. Let {δe}T = [{1δe}T , {2δe}T , · · · , {mδe}T ] be the


total degrees of freedom for all of the dependent variables φi for an element, e. Therefore,


the total degrees of freedom {δ} for the discretization nΩ̄T
xt can be written as


{δ} =
⋃
e


{δe} (2.50)
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With 2.49 and 2.50, {g} in 2.46 is a nonlinear function of {δ}, hence the necessary condition


{g} = 0 must be satisfied iteratively. We consider Newton’s linear method. Let {δ0} be an


assumed solution (a starting solution), then


{g({δ0})} 6= 0 (2.51)


Let {∆δ} be a change in {δ0} such that


{g({δ0}+ {∆δ})} = 0 (2.52)


We expand {g} in 2.52 in a Taylor series about {δ0} and retain only up to linear terms in


{∆δ}.


{g({δ0}+ {∆δ})} ∼= {g({δ0})}+
∂{g}
∂{δ}


∣∣∣∣
{δ0}
{∆δ} = 0 (2.53)


∴ {∆δ} = −
[
∂{g}
∂{δ}


]−1


{δ0}
{g({δ0})} (2.54)


An improved solution, {δ}, is obtained using


{δ} = {δ0}+ α{∆δ}; 0 ≤ α ≤ 2 such that nI({δ}) ≤ nI({δ0}) (2.55)


Use of α in 2.55 is called line search [21]-[30]. Using {δ} in 2.55, we check if the absolute


value of each component of {g({δ})} is less than or equal to ∆, (generally 10−6 or lower)


a preset tolerance for computed zero. If this condition is satisfied by {δ} in 2.55, then we


have a converged solution {δ} from Newton’s linear method, otherwise we set {δ0} to be


{δ} and repeat (another iteration) the calculations described above. It is worth noting that
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∂{g}
∂{δ}


=
1


2
δ2I (2.56)


which when approximated using 2.48 gives a positive definite coefficient matrix due to the


fact that δ2I > 0. Thus, we can rewrite 2.54 as


{∆δ} = −1


2
[δ2I]−1


{δ0}{g({δ0})} (2.57)


δ2I =
∑
e


(∑
i


(δEei , δE
e
i )Ω̄e


xt


)
=
∑
e


[Ke] (2.58)


in which [Ke] is the element coefficient matrix and [δ2I] in 2.55 are the assembled element


equations for the discretization nΩ̄T
xt. Likewise, the following holds


{g} =
∑
e


{ge}; {ge} =
∑
i


(Eei , δE
e
i ) (2.59)


2.3.2 Time Marching Procedure: Computations of Evolution


We initiate computations with the first space-time strip shown in figure 2.2 with boundary


conditions on two boundaries (for example) and initial conditions at time t = 0, the bound-


ary at t = ∆t being the open boundary where nothing is known about the solution. With


proper choice of discretization, p-level, and minimally conforming space choice [21]-[30], the


integrated sum of squares of the residuals 1I for the first space-time strip are achieved to


be less than or equal to O(10−6). With the minimally conforming choice of k, the orders k1


and k2 of the approximation space in space and time, the space-time integrals are Riemann


over nΩ̄T
xt, hence 1I of the order of O(10−6) or lower indicates that the GDEs are satisfied


accurately in the pointwise sense over 1Ω̄T
xt [21]-[30]. Upon obtaining an accurate solution
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for 1Ω̄T
xt the computations are initiated for 2Ω̄T


xt keeping the same p-levels, same values of


k, and the same discretization as used for 1Ω̄T
xt. For the second space-time strip, 2Ω̄T


xt, ICs


at t = ∆t are from the computed solution at t = ∆t for 1Ω̄T
xt. This process is continued till


the desired time t = τ is reached. The benefits of space-time coupled finite element process


based on residual functional and the computations of evolutions using space-time strip with


time marching are well documented in references [21]-[30].


x
ICs


BCs1Ω̄xt


t = 0


t = ∆t


t


2Ω̄xt


t = 2∆t


t = ∆t


BCsBCs


BCs


ICs from 1Ω̄xt at t = ∆t


open boundary


open boundary


Figure 2.2: First Two Space-Time Strips with BCs and ICs
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Chapter 3


Numerical Studies


We consider one dimensional axial wave propagation in thermoelastic solid continua and


thermoviscoelastic solid continua with and without memory. In all three mathematical


models (section 2.2.4) Green’s strain tensor is used as a measure of finite strain and the


second Piola-Kirchoff stress tensor as energy conjugate stress measure. Figure 3.1(a) shows


a schematic of the dimensionless rod of length one unit. The fixed end at x = 0 is also the


origin of the x-frame. The dimensionless axial rod is of unit length. The right end of the


rod (at x = 1.0) is subjected to three different types of loading.


3.1 Loadings


We consider three different types of loads applied to the end of the rod at x = 1.0.


Loading L1:


This loading consists of a stress pulse σ
[0]
xx(t) of maximum amplitude ±σ1, positive for


tensile loading and negative for compressive loading applied over a time interval of 2∆t. In


figure 3.1(b), σ
[0]
xx(t) is continuous with continuous first time derivative for 0 ≤ t ≤ 2∆t and
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t = 0 t = 2∆tt = ∆t


σ
[0]
xx


σ1


t


(b) Stress Pulse Loading: L1


u = 0


x = 0 x = L = 1


(a) Schematic


x


u


t = 0 t = 2∆tt = ∆t


t


(d) Velocity Pulse Loading: L3


v


v1


t = 0 t = ∆t


σ
[0]
xx


σ1


t


(c) Stress Ramp Loading: L2


Figure 3.1: Problem Schematic, Stress Pulse, Stress Ramp, and Velocity Pulse Loading


is defined using the following.


at t = 0; σ[0]
xx(t) = 0,


∂σ
[0]
xx


∂t
= 0


at t = ∆t; σ[0]
xx(t) = ±σ1,


∂σ
[0]
xx


∂t
= 0 (3.1)


at t = 2∆t; σ[0]
xx(t) = 0,


∂σ
[0]
xx


∂t
= 0


for t ≥ 2∆t; σ[0]
xx(t) = 0
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The stress pulse σ
[0]
xx(t) described by 3.1 has support of 2∆t with maximum amplitude of


±σ1 at t = ∆t such that for 0 ≤ t ≤ 2∆t σ
[0]
xx(t) is a cubic function of time t and σ


[0]
xx(t) = 0


for t ≥ 2∆t.


Loading L2:


This loading consists of stress σ
[0]
xx(t) defined as a ramp function over a time interval


of ∆t with maximum value of ±σ1. Positive and negative signs correspond to tension and


compression respectively. The ramp σ
[0]
xx(t) is continuous with continuous first derivative for


0 ≤ t ≤ ∆t and remains ±σ1 (constant magnitude) for t ≥ ∆t.


at t = 0; σ[0]
xx(t) = 0,


∂σ
[0]
xx


∂t
= 0


at t = ∆t; σ[0]
xx(t) = ±σ1,


∂σ
[0]
xx


∂t
= 0 (3.2)


for t ≥ ∆t; σ[0]
xx(t) = ±σ1


The ramp σ
[0]
xx(t) described by 3.2 is a stress loading with maximum value of ±σ1 such that


for 0 ≤ t ≤ ∆t, σ
[0]
xx(t) is a cubic function of t with zero time derivatives at t = 0 and at


t = ∆t and a constant value of ±σ1 for t ≥ ∆t. Figure 3.1(c) shows a schematic of this


loading.


Loading L3:


This loading (figure 3.1(d)) consists of a velocity pulse, v(t), of maximum amplitude


±v1, positive for tensile loading and negative for compressive loading applied over a time
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interval of 2∆t. Similar to loading L1, we can define v(t) as follows.


at t = 0; v(t) = 0,
∂v(t)


∂t
= 0


at t = ∆t; v(t) = ±v1,
∂v(t)


∂t
= 0 (3.3)


at t = 2∆t; v(t) = 0,
∂v(t)


∂t
= 0


for t ≥ 2∆t; v(t) = 0


The velocity v(t) described by 3.3 is a velocity pulse of support 2∆t with maximum am-


plitude of ±v1 at t = ∆t. For 0 ≤ t ≤ 2∆t v(t) is a cubic function of t and v(t) = 0 for


t ≥ 2∆t.


3.2 Material Coefficients, Reference Quantities and Dimen-


sionless Parameters


We define the material coefficients for thermoelastic sold continua and the thermoviscoelas-


tic solid continua with and without memory, choice of reference quantities, and the resulting


dimensionless material coefficients and the dimensionless variables and the parameters. The


basic material is hard rubber or polymer which we would treat as thermoelastic, thermo-


viscoelastic without memory as well as with memory.


Thermoelastic Solid Continua (TE)


ρ̂ = 1850 kg
m3


Ê = 1.49 × 107 N
m2
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If we choose ρ̃0 = 1850 kg
m3 and E0 = 1.49 × 107 N


m2 as reference values, then the di-


mensionless density ρ0 = ρ̂
ρ̃0


= 1 and the dimensionless modulus of elasticity E = Ê
E0


= 1.


Thermoviscoelastic Solid Without Memory (TVE)


ρ̂ = 1850 kg
m3 ; ĉp = 1650 J


kg·K


k̂ = 0.235 W
m·K ; Ê = 1.49 × 107 N


m2


L0 = 1 m; θ0 = 300 K


reference speed of sound v0 =
√


Ê
ρ̂ = 89.7444 m


s


reference time t0 = L0
v0


= 0.0111 s


ρ̂v2
0 = ρ̂


(√
Ê
ρ̂


)2


= Ê ; characteristic kinetic energy


If we choose ρ̃0 = ρ̂, E0 = Ê, and c̃p0 = ĉp, then ρ0 = ρ̂
ρ̃0


= 1 and E = Ê
E0


= 1 and


cp0 =
ĉp
c̃p0


= 1.


Thermoviscoelastic Solid With Memory (TVEM)


The material coefficients, reference quantities, and dimensionless quantities and parameters


for TVE hold here. Additionally for this solid continua we have Deborah number, De,


defined by De = λ
t0


. Numerical values of De used in the evolution computations are given


with the details of studies.
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3.3 Computations of Evolutions: Numerical Results


In the following sections we report numerical studies for loading L1 and L2 for TE, TVE,


and TVEM solid continua. Evolution in each case is computed using space-time strip with


time marching until the desired value of time is reached. The choice of h, p, and k defining


the scalar product space Hp,k(Ω̄e
xt) containing space-time local approximation function is


important. Since all three mathematical models (dimensionless forms given by 2.28, 2.35,


and 2.36) are a system of first order partial differential equations in space coordinate x


and time t, the choice of k = (k1, k2) = (2, 2) in space and time ensures that the local


approximations are of class C11 in space and time. Here the space-time integrals over nΩ̄T
xt,


discretization of nth space-time strip nΩ̄xt are always Riemann. We consider a sixteen


element uniform discretization of nΩ̄xt giving rise to a spatial discretization length of 1/16.


With E = 1, ρ0 = 1, the dimensionless wave speed is one, thus with ∆t = 0.1, the wave


would be over a spatial domain of 0.1 which is spanned by approximately one and a half


space-time element. Hence, at the onset, the sixteen element uniform spatial discretization


(he = 1/16) appears to be reasonable. With k = (k1, k2) = (2, 2) and he = 1/16, we need to


conduct a p-convergence study to establish at what p-levels this choice of he is adequate to


yield values of the residual functional for the space-time strip low enough for the computed


solution to be considered accurate or time accurate. For this purpose, we consider the first


space-time strip with loading L2 using σ1 = ±0.01 (TE) and σ1 = ±0.1 (TVE and TVEM)


at x = 1.0 and ∆t = 0.1. The p-levels in space and time, (p1, p2), are increased uniformly


(p = p1 = p2) from 3 to 11 in increments of 2. For each p-level, a solution is computed using


a tolerance ∆ = 10−6 for |gi| ≤ ∆, i = 1, 2, · · · in Newton’s linear method with line search.


The behavior of the residual function I for 1Ω̄T
xt is examined as a function of the degrees


of freedom for TE, TVE solids and for TVEM. Plots of residual function I versus degrees
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of freedom for TE, TVE, and TVEM for both linear and nonlinear cases corresponding to


infintesimal (linear) and finite strain formulations (nonlinear) are given in figure 3.2. In the
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Figure 3.2: Convergence of Residual Functional I: I versus dof


mathematical models, f = 0 is used for the linear case in which there is no non-linearity in


any of the equations in the mathematical model. When f = 1 (nonlinear case), the strain


measure is Green’s strain and ρ(x, t) 6= ρ0(x), instead ρ0 =
(
∂u
∂x + 1


)
ρ(x, t) holds due to the


continuity equation. From the graphs in figure 3.2, we note that: (i) in all three cases (TE,


TVE, and TVEM) the residual I is of the order of O(10−12) or lower for p = p1 = p2 = 9 or


greater confirming that he = 1/16, k1 = k2 = 2, and p1 = p2 = 9 are sufficient for accurate


solution for the first space-time strip. For the second space-time strip, ICs at t = ∆t are


obtained from the solution for the first space-time strip at t = ∆t. For these choices of h,


p, and k, the evolution is expected to stay accurate as long as I of the order of O(10−12) or
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lower is achieved. This in fact is the assurance of good accuracy of the computed evolution.


(ii) Even though the slopes of the I vs dof graphs vary slightly in figures 3.2(b) and 3.2(c),


for all practical purposes the change is not significant, hence we can conclude that the rate


of convergence (in the asymptotic range) is almost the same in each plot of I shown in


figures 3.2(a)-(c).


3.3.1 Linear and Nonlinear Waves in TE Solid Continua


In this section, we present computed evolutions for TE solid continua for linear and nonlinear


cases. In linear wave propagation with infintesimal deformation, there is no change in


density and the stress σ
[0]
xx = σ


(0)
xx = σxx and is a linear function of ∂u


∂x , and ∂u
∂x � 1,


hence ρ0 = ρ(x, t) holds during evolution. When considering compressive σ
[0]
xx at x = 1, for


nonlinear case, caution should be exercised regarding the magnitude of −σ1 as for this case


for some value of −σ1 the stiffness due to σ
[0]
xx will become equal to the nonlinear siffness of


the rod causing instability, hence failure of computations [31]-[33]. This will occur at the


fixed end during reflection when the magnitude of the stress momentarily jumps (double


in linear case). In the present studies for TE solid continua, we choose σ1 = ±0.01 for


loading L1 as well as loading L2, well below the stress value that causes instability. In all


computations, constant ∆t = 0.1 is maintained.


Loading L1


(a) Compressive


We consider a compressive stress pulse with σ1 = −0.01. When f = 0 i.e. linear case,


the stress pulse propagates without amplitude decay and base elongation as expected due


to reversibility of the deformation process. Figures 3.3(a)-(f) show stress wave propagation


over 0 ≤ x ≤ 1 for t = 5∆t, 9∆t, 11∆t, 17∆t, and 23∆t. At t = 11∆t, the stress pulse is
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Figure 3.3: Evolution of σ
[0]
xx Along the Length of the Rod: TE, L1, ∆t = 0.1, σ1 = −0.01
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reflecting from the impermeable boundary at x = 0. Exploded view of the pulse reflection at


x = 0 for t = 11∆t is shown in figure 3.3(d). Upon reflection, the reflected pulse propagates


back toward the right end of the rod (x = 1.0) and reflects from the free boundary at


x = 1.0. This reflected stress pulse now propagates toward the left end of the rod (figure


3.3(f) at t = 23∆t). We observe that the amplitude of the stress pulse and its base are


maintained during propagation and repeated reflections as expected.


When f = 1, nonlinear wave propagation, the material experiences compression, hence


increase in density in the deformed portions of the rod which results in reduced wave speed.


From figures 3.3(a)-(f), we note that the nonlinear wave also maintains its support and its


amplitude during propagation and reflections, but lags the linear case due to reduced wave


speed compared to linear case.


Figures 3.4(a)-(f) show plots of velocity v over 0 ≤ x ≤ 1 for the same values of time


as in figures 3.3(a)-(f) for the compressive pulse. Here also we observe the same features


for v versus x for various values of time as in figures 3.3(a)-(f), namely, the velocity pulse


remains unchanged during evolution and the nonlinear velocity wave lags the linear case.


Most dramatic is the reflection of the velocity wave shown in figure 3.4(c) and its exploded


view in figure 3.4(d). Dramatically different behaviors for linear and nonlinear waves are


clearly observed, yet upon further evolution, the wave shape is recovered (figure 3.4(e) for


t = 17∆t).


(b) Tensile


In this study, we choose a tensile stress pulse with σ1 = 0.01 applied at x = 1.0.


Computed evolutions for linear and nonlinear cases are shown in figure 3.5(a)-(f) for the


same values of time, t, as used in figures 3.3(a)-(f). For both linear and nonlinear cases


(f = 0 and f = 1), the wave shape is preserved during propagation and the reflections
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Figure 3.4: Evolution of v Along the Length of the Rod: TE, L1, ∆t = 0.1, σ1 = −0.01
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from the boundaries at x = 0 and x = 1 take place as expected. When f = 1 (nonlinear


tensile wave), then the material density reduces due to elongation, hence increasing the


local wave speed. Thus, in figures 3.5(a)-(f) we observe that the nonlinear wave leads the


linear wave throughout the evolution. The velocity pulse evolution for this case is similar


to compressive case (except the signs). The significantly different behaviors of linear and


nonlinear velocity pulses at reflection from the boundardy at x = 0 is observed here also.


This is quite similar to the reflection shown in figure 3.4(c) and (d), hence not repeated.


Loading L2


(a) Compressive


In this study, we consider loading L2 with σ1 = −0.01, a ramp loading over 0 ≤ t ≤ ∆t


that is of class C1 in time. Here also we consider f = 0 (linear wave) as well as f = 1


(nonlinear case). When f = 0, the magnitude of σ1 remains constant and its support ∆t,


also remains constant i.e. no amplitude decay and base elongation. Figures 3.6(a)-(f) show


propagation of stress wave over 0 ≤ x ≤ 1 for t = 5∆t, 9∆t, 11∆t, 17∆t, and 23∆t. At


t = 11∆t, the stress wave is reflecting from the impermeable boundary at x = 0. Exploded


view of reflection at t = 11∆t is shown in figure 3.6(d). Upon reflection, the reflected stress


wave propagates back toward the right end boundary at x = 1.0 and reflects from the free


boundary at x = 1.0. The reflected stress wave now propagates back toward the left end


of the rod at x = 0.0 (figure 3.6(f) at t = 23∆t). We observe that the amplitude of the


stress wave and its support (base) are maintained during propagation and after reflection


as expected in the thermoelastic solid continua. When f = 1, the waves are nonlinear


compressive as the mathematical model consists of nonlinear partial differential equations.


Due to compression, the density increases in the deformed portion of the medium, hence the


wave speed is reduced. From figures 3.6(a)-(f), we note that the nonlinear stress wave also


44







-0.002


0


0.002


0.004


0.006


0.008


0.01


0.012


0 0.2 0.4 0.6 0.8 1


S
tr


es
s
σ


[0
]


x
x


Distance x


Wave Direction: ←


Linear Nonlinear


(a) t = 5∆t


-0.002


0


0.002


0.004


0.006


0.008


0.01


0.012


0 0.2 0.4 0.6 0.8 1


S
tr


es
s
σ


[0
]


x
x


Distance x


Wave Direction: ←


Linear Nonlinear


(b) t = 9∆t


-0.005


0


0.005


0.01


0.015


0.02


0.025


0 0.2 0.4 0.6 0.8 1


S
tr


es
s
σ


[0
]


x
x


Distance x


Wave Direction: →


Linear Nonlinear


(c) Reflection, t = 11∆t


-0.005


0


0.005


0.01


0.015


0.02


0.025


0 0.02 0.04 0.06 0.08 0.1


S
tr


es
s
σ


[0
]


x
x


Distance x


Wave Direction: →


Linear Nonlinear


(d) Details of Reflection, t = 11∆t


-0.002


0


0.002


0.004


0.006


0.008


0.01


0.012


0 0.2 0.4 0.6 0.8 1


S
tr


es
s
σ


[0
]


x
x


Distance x


Wave Direction: →


Linear Nonlinear


(e) t = 17∆t


-0.012


-0.01


-0.008


-0.006


-0.004


-0.002


0


0.002


0 0.2 0.4 0.6 0.8 1


S
tr


es
s
σ


[0
]


x
x


Distance x


Wave Direction: ←


Linear Nonlinear


(f) t = 23∆t


Figure 3.5: Evolution of σ
[0]
xx Along the Length of the Rod: TE, L1, ∆t = 0.1, σ1 = 0.01
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Figure 3.6: Evolution of σ
[0]
xx Along the Length of the Rod: TE, L2, ∆t = 0.1, σ1 = −0.01
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maintains the amplitude and the support during evolution but lags the linear case due to


reduced wave speed compared to linear case. The velocity evolution shows similar features


as the stress waves, but drastically different behaviors for linear and nonlinear case when


reflecting from the impermeable boundary at x = 0 (similar to figures 3.4(c) and (d)) but


are not reported here for the sake of brevity.


(b) Tensile


In this study, we consider tensile stress loading with σ1 = 0.01 applied at x = 1.0 over


∆t. Computed evolutions for linear and nonlinear cases are shown in figure 3.7(a)-(f) for


the same values of time t as used in figures 3.6(a)-(f). For both linear (f = 0) and nonlinear


(f = 1) cases the wave shape is preserved during evolution i.e. propagation and reflections.


For nonlinear tensile stress wave, the material density reduces locally during deformation


(due to elongation) which results in increasing local wave speed. Hence, in figures 3.7(a)-(f)


we observe that the nonlinear wave leads the linear wave throughout the evolution. The


results for the evolution of velocity are not presented for brevity.


Loading L3


(a) Compressive


In this study, we consider loading L3 with v1 = −0.01, a pulse loading over 0 ≤ t ≤ 2∆t.


Figures 3.8(a)-(f) show propagation of the velocity wave over 0 ≤ x ≤ 1.0 for t = 5∆t, t =


9∆t, t = 11∆t, t = 17∆t, and t = 23∆t. We observe similar behavior of v versus x as in


figures 3.4(a)-(f) for stress pulse loading. There is no amplitude decay or base elongation.


Figures 3.8(c) and (d) show the dramatically different behavior of velocity during reflection


for linear and nonlinear cases, also observed in figures 3.4(c) and (d). Figures 3.8(e) and (f)


show the nonlinear wave lagging the linear case due to an increased density in the deformed


portion of the rod. This results in slower wave speeds for the nonlinear case.
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Figure 3.7: Evolution of σ
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xx Along the Length of the Rod: TE, L2, ∆t = 0.1, σ1 = 0.01
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Figure 3.8: Evolution of v Along the Length of the Rod: TE, L3, ∆t = 0.1, v1 = −0.01
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Figures 3.9(a)-(f) show plots of σ
[0]
xx over 0 ≤ x ≤ 1.0 for the same values of time as


in figures 3.8(a)-(f). Similar behavior is exhibited as in figures 3.3(a)-(f). There is no


amplitude decay or base elongation. Wave reflection, in figures 3.9(c) and (d), occurs in


similar manner as in figures 3.3(c) and (d) where a compressive pulse of σ1 = −0.01 was


applied to the end of the rod.


(b) Tensile


In this study, we apply a tensile velocity pulse with v1 = 0.01 at x = 1.0. Evolutions are


computed for linear and nonlinear cases at the same values of time as in figures 3.8(a)-(f).


Figures 3.10(a)-(f) show these results. As is expected, the wave shape is preserved with no


base elongation or amplitude decay. For the nonlinear case, the wave leads the linear wave


due to a decrease in density in the deformed region. This results in locally higher wave


speeds for the nonlinear case. Reflection, figures 3.10(c) and (d), occurs similar to figures


3.8(c) and (d).


3.3.2 Linear and Nonlinear Waves in TVE Solid Continua


In this section, we consider linear and nonlinear waves in TVE solid continua. These solids


have elasticity, mechanism of dissipation i.e. conversion of mechanical energy into entropy


production which results in heat, hence influences specific internal energy. The dissipation


mechanism is obviously present in linear (small strain) as well as nonlinear cases (Green’s


strain). For linear case, (f = 0), here also (as in the case of TE solid continua, section


3.3.1) ∂u
∂x � 1, hence ρ0 = ρ(x, t) holds during evolution i.e. no change in density hence


constant wave speed during evolution. In the case of TVE solid continua, we can take more


liberty with the magnitude of stress σ1 due to not being restricted by the instability issues.


We consider dimensionless damping coefficient c = 0.006 in all numerical studies presented
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Figure 3.9: Evolution of σ
[0]
xx Along the Length of the Rod: TE, L3, ∆t = 0.1, v1 = −0.01
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Figure 3.10: Evolution of v Along the Length of the Rod: TE, L3, ∆t = 0.1, v1 = 0.01
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in this section.


Loading L1


(a) Compressive


Evolutions are computed for compressive pulse of σ1 = −0.1 over 0 ≤ t ≤ 2∆t. Figures


3.11(a)-(f) show evolutions of linear and nonlinear waves for t = 5∆t, 9∆t, 11∆t, 17∆t,


and 23∆t. In both linear and nonlinear waves, the amplitudes of the waves progressively


decays and the support elongates as the evolution proceeds. At t = 17∆t (figure 3.11(e))


the peak value is only 40% of the peak of the original wave initiated at the commencement


of the evolution. Due to local increase in density for the nonlinear case, the evolution for the


nonlinear wave lags the evolution for the linear case. Nonlinear wave evolution consistently


exhibits lower peak stress values compared to linear case. Since in TVE solid continua,


there is entropy production due to rate of mechanical work, hence heat generation due


to mechanical work, this would result in temperature changes along the length of the rod


during evolution. In the studies conducted here, the initial dimensionless temperature at


time t = 0 is considered to be 1 i.e. θ = 1 is used as initial condition. Figures 3.12(a)-(f)


show temperature distributions along the rod for the same values of time as in figure 3.11.


Figure 3.12(d) is an exploded view of figure 3.12(c). We observe that the nonlinear case


lags the linear case, lower peak values for nonlinear case and quite complex temperature


distribution along 0 ≤ x ≤ 1 after wave reflection from x = 0.0 boundary (figures 3.12(e)


and (f)).


(b) Tensile


When σ1 = 0.1 for loading L1, we have a tensile pulse. Computed evolutions for same


values of time t as in the case of compressive loading are shown in figures 3.13(a)-(f). Due to


dissipation, the wave peaks are reduced for both linear and nonlinear cases. The nonlinear
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Figure 3.11: Evolution of σ
[0]
xx Along the Length of the Rod: TVE, L1, ∆t = 0.1, σ1 = −0.1
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Figure 3.12: Evolution of θ Along the Length of the Rod: TVE, L1, ∆t = 0.1, σ1 = −0.1
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Figure 3.13: Evolution of σ
[0]
xx Along the Length of the Rod: TVE, L1, ∆t = 0.1, σ1 = 0.1
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wave peak values are slightly higher than those of the corresponding linear waves. Whereas


in the case of compression, the peaks of linear waves are higher than those of nonlinear


waves. The evolution of linear waves lags the evolution of nonlinear waves due to a decrease


in density (because of tension), hence increased wave speed in the locally deformed region of


0 ≤ x ≤ 1 occupied by the wave. Reflection of the wave at x = 0.0 (figures 3.13(c) and (d)


at t = 11∆t) and from the x = 1.0 boundary (figure 3.13(f) at t = 23∆t) are smooth and


present no problems. Evolution of temperature is shown in figures 3.14(a)-(f). Evolution


of temperature for the nonlinear wave leads the linear wave. This is consistent with the


evolution of stress wave in figures 3.13(a)-(f). Overall, we observe higher temperature peaks


in this case compared to compressive wave. Complex temperature distribution in figures


3.14 (e) and (f) after reflection are simulated accurately (I of the order of O(10−13) or lower


for each space-time strip).


Loading L2


(a) Compressive


In this study, we consider a compressive ramp of σ1 = −0.1 over 0 ≤ t ≤ ∆t. Figures


3.15(a)-(f) show evolutions for linear and nonlinear waves at t = 5∆t, 9∆t, 11∆t, 17∆t,


and 28∆t. Due to the nature of the loading, a progressive increase in density will result


for the nonlinear case. This increase in density should result in slower wave speeds for the


nonlinear case. At t = 5∆t in figure 3.15(a) the nonlinear wave already lags the linear. The


nonlinear reflection naturally occurs after the linear due to the slower speed of nonlinear


wave. Reflections are smooth and wave shapes recover as seen in figure 3.15(e). Figure


3.15(f), at t = 28∆t, dramatically illustrates the differences in wave speeds. The linear


wave has reflected from the free end at x = 1.0 and has almost reached the impermeable


boundary at x = 0.0. For the same value of time, the nonlinear wave has just reflected from
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Figure 3.14: Evolution of θ Along the Length of the Rod: TVE, L1, ∆t = 0.1, σ1 = 0.1
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Figure 3.15: Evolution of σ
[0]
xx Along the Length of the Rod: TVE, L2, ∆t = 0.1, σ1 = −0.1
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the free end at x = 1.0.


Figures 3.16(a)-(f) show the temperature evolutions for the same values of time as


in figures 3.15(a)-(f). The behavior of the temperature evolutions is similar to what is


observed for the stress wave in figures 3.15(a)-(f). The nonlinear waves propagate more


slowly than the linear waves; again, this is clearly seen in figure 3.16(f). There is a continued


temperature rise within the material due to sustained load at the free end (x = 1.0) and


the associated dissipation mechanism converting mechanical energy into entropy.


Loading L2: Tensile


In this case we consider tensile ramp loading with σ1 = 0.4. We consider such high


values of σ1 to demonstrate more clearly the shock formation in case of nonlinear waves.


In tension, such high values of σ1 can be used as in tension we do not have the problem of


instability. Dimensionless damping coefficient c is choosen to be 0.006, same as in loading


L1. Because of high value of σ1, large elongation and significant progressive reduction


in density will occur. This results in substantial and progressively increased wave speed.


As a consequence, the waves behind the waves are moving at faster speeds resulting in


“piling up” of the waves which ultimately results in a sharp front referred to as a shock.


Figures 3.17(a)-(f) show evolution of stress for both linear and nonlinear cases at times


t = 5∆t, 7∆t, 11∆t, 13∆t, and 18∆t. From figure 3.17(a), we note that even at t = 5∆t,


the nonlinear wave has steepened significantly compared to linear wave confirming shock


formation. Comparing evolutions of the linear and the nonlinear waves in figures 3.17(a)


and (b) for t = 5∆t and at t = 7∆t, we note that between time t = 5∆t to time t = 7∆t,


the right portion of the wave is travelling faster than the lower left portion of the wave


resulting in further steepening of the nonlinear wave in figure 3.17(b). Reflection in figures


3.17(c) and (d) are smooth and present no problem. The nonlinear waves are travelling
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Figure 3.16: Evolution of θ Along the Length of the Rod: TVE, L2, ∆t = 0.1, σ1 = −0.1
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much faster than the linear waves, hence the nonlinear waves are always ahead of the linear


waves throughout the evolution. This is dramatically illustrated in figures 3.17(e) and


(f). The evolution of the temerature for the same time values as in figures 3.17(a)-(f) is


shown in figures 3.18(a)-(f). Shock formation in the temperature evolution and its speed


of propagation are similar to the stress wave evolutions shown in figures 3.17(a)-(f). Due


to the nature of the applied stress wave (ramp), the influence of dissipation can only be


obsserved in the temperature evolution and not the stress evolution. Without dissipation,


there would have been no change in temperature along the length of the rod.


Loading L3


(a) Compressive


For these studies, a velocity pulse, v1 = −0.1, is applied at x = 1.0 over 0 ≤ t ≤ 2∆t.


Dimensionless damping coefficient is chosen to be c = 0.003. Figures 3.19(a)-(f) show the


evolution at times t = 5∆t, 9∆t, 11∆t, 17∆t, and 23∆t. The behavior is similar to what


is observed in figures 3.8(a)-(f). The nonlinear wave lags the linear wave as is expected


due to the increase in density in the deformed region. Both the linear and nonlinear cases


exhibit base elongation and amplitude decay. By t = 17∆t, figure 3.19(e), there has been an


approximately 50% reduction in peak value. Reflection in figures 3.19(c) and (d) exhibits


the same different behavior between linear and nonlinear cases as seen during reflection


in figures 3.8(c) and (d). Temperature evolutions for the same values of time are shown


in figures 3.20(a)-(f). The nonlinear wave lags the linear wave, and there is a reduction


in peak value as the evolution progresses. Upon reflection the temperature distributions


become complex as shown in figures 3.20(e) and (f).


(b) Tensile


In this study, a tensile velocity pulse, v1 = 0.1, was applied. Evolutions are shown in
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Figure 3.18: Evolution of θ Along the Length of the Rod: TVE, L2, ∆t = 0.1, σ1 = 0.4
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Figure 3.19: Evolution of v Along the Length of the Rod: TVE, L3, ∆t = 0.1, v1 = −0.1
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Figure 3.20: Evolution of θ Along the Length of the Rod: TVE, L3, ∆t = 0.1, v1 = −0.1
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figures 3.21(a)-(f) for the same values of time as in the compressive velocity pulse. The


behavior is similar to what was discussed for the compressive case. The one significant


difference is that the nonlinear wave leads the linear wave due to the local reduction in


density in the deformed region. Figures 3.22(a)-(f) show the temperature distribution along


0 ≤ x ≤ 1.0 for the same values of time as in figures 3.21(a)-(f). Behavior is again similar


to what is observed in figures 3.20(a)-(f) with the key difference being the nonlinear wave


leading the linear wave due to local density changes.


3.3.3 Linear and Nonlinear Waves in TVEM


Loading L1: Compressive and Tensile


TVEM are solid continua with dissipation and memory (rheology). If the damping


coefficient is same in TVE and TVEM, then the dissipation remains the same in both. Thus


for the same damping coefficient in TVE and TVEM, the only difference in the behavior of


stress wave in TVEM compared to TVE solid is due to rheology i.e. stress relaxation. Thus,


in this study the most meaningful illustration is the comparison of nonlinear stress waves for


TVE and TVEM. We choose c = 0.006 in both TVE and TVEM and De = 0.002 for TVEM.


The studies are conducted for loading L1 with σ1 = ±0.1 i.e. a compressive and tensile pulse


loading. Figures 3.23(a)-(f) show plots of the stress pulse propagation and reflection for


TVE solid continua and TVEM for σ1 = −0.1 at times t = 5∆t, 9∆t, 11∆t, 17∆t, and 23∆t.


Due to damping, the wave magnitudes progressively diminish along with base elongation


as evolution proceeds. For TVEM, the peak values of pulse are consistently higher due to


rheology, i.e. stress relaxation. In this case, the relaxation time (De) controls the relaxed


state and hence additional time is required to achieve the same lower peak values as for TVE


solid continua. For example, in figures 3.23(a), (b), (e), and (f), the peaks corresponding to
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Figure 3.21: Evolution of v Along the Length of the Rod: TVE, L3, ∆t = 0.1, v1 = 0.1
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Figure 3.22: Evolution of θ Along the Length of the Rod: TVE, L3, ∆t = 0.1, v1 = 0.1
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Figure 3.23: Comparison of Evolution of σ
[0]
xx Along the Length of the Rod: L1, ∆t = 0.1, σ1 = −0.1
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TVEM (dashed line) will achieve the same lower values as the corresponding peaks for TVE


solid continua (solid lines) if more time was allowed to elapse. Secondly, we note that the


supports of the stress waves for TVEM are shorter than those of the corresponding TVE


solid continua.


Similar results are presented in figures 3.24(a)-(f) for σ1 = 0.1 i.e. tensile wave. The


behavior of the stress wave in TVE solid continua and TVEM is similar to what has been


described for compressive stress wave.


Loading L2: Tensile


For loading L2 we consider c = 0.006, De = 0.001 and σ1 = 0.4 (tension). Computed


evolution for linear and nonlinear cases are shown in figures 3.25(a)-(f) for stress and figures


3.26(a)-(f) for temperature. We observe behavior similar to L2 tensile loading for TVE


figures 3.17(a)-(f) and figures 3.18(a)-(f). Steepening of nonlinear wave and formation of


stress and temperature shocks is clearly observed in figures 3.25(a) and (b) and figures


3.26(a) and (b).


Loading L3


(a) Compressive


In this study, a compressive velocity pulse of v1 = −0.1 was applied over 0 ≤ t ≤ 2∆t.


We consider dimensionless damping coefficient c = 0.003 and Deborah number De = 0.0005.


Figures 3.27(a)-(f) show the evolutions computed at t = 5∆t, 9∆t, 11∆t, 17∆t, and 23∆t.


In each of these cases, the nonlinear wave lags the linear wave due to local density increase


in the deformed region for the nonlinear case. Amplitude decay and base elongation is


observed due to dissipation. In comparison with the TVE case, the rheology present in


TVEM solid continua slows the rate of dissipation. Indeed, this is the case with 50% peak


height reduction not occuring until approximately t = 23∆t (figure 3.27(f)) rather than
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Figure 3.24: Comparison of Evolution of σ
[0]
xx Along the Length of the Rod: L1, ∆t = 0.1, σ1 = 0.1
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Figure 3.25: Evolution of σ
[0]
xx Along the Length of the Rod: TVEM, L2, ∆t = 0.1, σ1 = 0.4
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Figure 3.26: Evolution of θ Along the Length of the Rod: TVEM, L2, ∆t = 0.1, σ1 = 0.4
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Figure 3.27: Evolution of v Along the Length of the Rod: TVEM, L3, ∆t = 0.1, v1 = −0.1
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t = 17∆t (figure 3.19(e)) for the TVE case. The temperature profile along 0 ≤ x ≤ 1.0


is shown for the same time steps in figures 3.28(a)-(f). The behavior is similar to that


observed for TVE case with compressive velocity loading shown in figures 3.20(a)-(f).


(b) Tensile


In this case a tensile velocity pulse of v1 = 0.1 is applied over 0 ≤ t ≤ 2∆t. The


evolutions are shown for t = 5∆t, 9∆t, 11∆t, 17∆t, and 23∆t in figures 3.29(a)-(f). The


nonlinear pulse leads the linear pulse due to decreased density in the locally deformed region.


Peak values show amplitude decay, and we observe base elongation both due to dissipation.


As with the compressive velocity pulse, the peaks do not reduce to 50% of original height


until t = 23∆t (figure 3.29(f)) instead of t = 17∆t for TVE case (figure 3.21(e)). The


temperature values for the same time steps are shown in figures 3.30(a)-(f). Again, this


behavior is similar to what was shown for the TVE case with tensile velocity loading shown


in figures 3.22(a)-(f).


3.3.4 Evolution for Large Values of Time: Tensile


In the studies presented here, we consider loading L2 for TVE and also for TVEM. We


choose σ1 = 0.4 (tensile σ
[0]
xx), damping coefficient c = 0.006, ∆t = 0.1, k1 = k2 = 2, p = 9


for the same descritiztion for a space-time strip as used in earlier studies for both TVE solid


continua and TVEM. Evolution is computed for 4000 time steps i.e. 400 units of time that


corresponds to 4.44 seconds as t0 in this case is 0.0111 seconds.


Figure 3.31 shows plots of displacement u at x = 1.0 versus time t for 0 ≤ t ≤ 400


for TVE solid continua for f = 0 (linear case) and f = 1 (nonlinear case). Similar plots


for linear and nonlinear cases for TVEM at De = 0.001 are shown in figure 3.32. From


figures 3.31 and 3.32, we observe that linear and nonlinear responses are drastically different
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Figure 3.28: Evolution of θ Along the Length of the Rod: TVEM, L3, ∆t = 0.1, v1 = −0.1
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Figure 3.29: Evolution of v Along the Length of the Rod: TVEM, L3, ∆t = 0.1, v1 = 0.1
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Figure 3.30: Evolution of θ Along the Length of the Rod: TVEM, L3, ∆t = 0.1, v1 = 0.1
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Figure 3.31: Displacement u at x = 1.0: TVE, L2, ∆t = 0.1, σ1 = 0.4


for TVE as well as for TVEM in terms of peak negative and positive displacement values


and mean values of displacements. The residual functional I values for each space-time


strip are O(10−7) or lower confirming the time accuracy of the evolution. A similar study


for TE solid continua further confirms that the computations are almost free of numerical


dispersion (as the peaks are maintained and the base does not elongate). Thus, the results


reported for TVE solid continua and TVEM are free of numerical dispersion. Upon further


evolution, the stationary states for TVE solid continua and TVEM evolution studies are


obtained. The displacement values (su|x=1.0) corresponding to the stationary states are


TVE Solid Continua:


su|x=1.0 = 0.3999 (linear)


su|x=1.0 = 0.3416 (nonlinear)
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Figure 3.32: Displacement u at x = 1.0: TVEM, L2, ∆t = 0.1, σ1 = 0.4


TVEM Solid Continua:


su|x=1.0 = 0.3999 (linear)


su|x=1.0 = 0.3416 (nonlinear)


These values of displacements at x = 1.0 are almost the same as the mean values of the


displacements in figures 3.31 and 3.32. We observe that: (i) displacement (su|x=1.0) for the


nonlinear case is lower than linear case as expected due to increase of stiffness caused by


tensile stress field which results in lower values of displacement. This holds true in figures


3.31 and 3.32 as well during the evolution. (ii) In the case of TVEM, the displacement


values for su|x=1.0 are exactly the same as those for TVE solid continua. This is due to the


fact that upon complete stress relaxation the TVEM behavior is the same as the behavior of


TVE solid continua. However, the peak values in figure 3.32 for linear as well as nonlinear


cases are not the same as the corresponding values in figure 3.31. Figure 3.33 shows plots


of peak positive displacement of the free end (u|x=1.0) as a function of time t for TVE solid
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continua and TVEM for both linear and nonlinear cases.
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Figure 3.33: Peak Positive Displacement of Free End (u|x=1.0): TVE and TVEM, L2, ∆t = 0.1,
σ1 = 0.4


The differences in the displacement values for TVE solid continua and TVEM solid


continua for linear case (f = 0) are obviously due to rheology in TVEM. The same is true


for TVE solid continua and TVEM for the nonlinear case. Drastically different values of


displacements at x = 1.0 for linear and nonlinear cases for both TVEM and TVE solid


continua are quite obvious from figure 3.33 as well as figures 3.31 and 3.32.


Remarks


Numerical studies were also conducted for loading L3 consisting of a velocity pulse. We


note that if a velocity pulse of the same signature as generated by the loading L1 is applied


at x = 1.0, then the resulting stress pulse is the same as loading L1. Hence, the numerical


solutions for the velocity pulse are intrinsically contained in the stress pulse loading. The


value of Deborah number used here is quite small, hence the influence of rheology is not as


pronounced as it would be for higher Deborah numbers.
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Chapter 4


Summary and Conclusions


In this thesis, initiation, propagation, reflection, and the interaction of one-dimensional


nonlinear waves in thermoelastic solid continua and thermoviscoelastic solid continua with


and without memory have been presented. The mathematical models are first presented in


R3 and then specialized for R1 for 1D wave propagation. The second Piola-Kirchoff stress


and Green’s strain tensors are used as conjugate pairs in the conservation and balance laws.


The constitutive theory for the second Piola-Kirchoff stress tensor is a linear function of


Green’s strain tensor for TE. For TVE and TVEM, the constitutive theories are linear in


strain tensor, its material derivative, and the material derivative of the second Piola-Kirchoff


stress tensor. The constitutive theory used for heat vector is simple Fourier heat conduction


law with constant thermal conductivity. The mathematical models for the nonlinear case


consider the solid continua to be compressible. The mathematical models permit linear as


well as nonlinear wave propagation studies. In the case of linear waves, the Green’s strain


tensor becomes linearized small strain tensor and the second Piola-Kirchoff stress tensor is


simply Cauchy stress tensor. For linear wave propagation the solid matter is incompressible.


In the case of thermoelastic solid continua, the rate of mechanical work does not result
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in rate of entropy production, hence the energy equation can be decoupled from the rest


of the mathematical model. In this case, deformation i.e. wave propagation and thermal


effect can be studied separately. For thermoviscoelastic solid continua with and without


memory, the rate of mechanical work results in entropy production, hence in these solid


continua energy equation is integral part of the mathematical models. The present work is


based on some assumptions in order to simplify the mathematical model.


(i) The equilibrium second Piola-Kirchoff stress expressed as a function of thermody-


namic pressure (equation of state) and [J ] is approxiated by mean normal stress,


thus avoiding equation of state altogether. This is an assumption, but in view of the


fact that the main goal here is to study the nonlinearity in wave propagation due to


Green’s strain tensor, this assumption is not very crucial.


(ii) For compressible matter, the specific heat is a function of thermodynamic pressure


(p) and temperature or density and temperature due to p = p(ρ, θ). In the present


work, a constant value of the specific heat is used.


(iii) Even though lack of precise account of compressibility in the energy equation may


affect the overall results some what, the present forms used here are adequate enough


to demonstrate the complex temperature distribution along the rod due to dissipation


during wave propagation and reflection.


The space-time integral formulation based on space-time residual functional for a space-


time strip with time marching is highly meritorious in (a) reducing the problem size (b)


ensuring accurate evolution for the current space-time strip before time marching is com-


menced. When the space-time residual functional is O(10−6) or lower only then time march-


ing is commenced. This ensures time accurate evolution during the entire range of time.
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The orders of the scalar product approximation space in space and time (k1, k2) are choosen


to be 2 so that the space-time integrals over the discretization of the space-time strip are


Riemann, an essential condition for time accurate evolution.


From the numerical studies we observe the following.


(1) In thermoelastic solid continua, linear or nonlinear waves maintain their amplitude


and support for all space-time strips as well as for extended time evolution confirming


that the computational process utilized here is relatively free of numerical dispersion.


(2) The compressive nonlinear waves lag the linear waves due to increased density, hence


reduced wave speed.


(3) The tensile nonlinear waves lead the linear waves because of reduced density, hence


increased wave speed.


(4) Both (2) and (3) hold for thermoelastic solid continua as well as thermoviscoelastic


solid continua.


(5) In both thermoviscoelastic solid continua with memory as well as the thermoviscoelas-


tic solids without memory, the wave amplitude decays and the wave base elongates


as evolution proceeds due to dissipation i.e. conversion of mechanical energy into


entropy which results in temperature rise along the length of the rod. Complex tem-


perature distribution due to dissipation is free of oscillations and is simulated without


any difficulty together with the deformation field.


(6) Progressively changing density due to compressibility or elongation results in progres-


sively changing wave speed which finally results in piling up of waves forming a shock.


This phenomenon exists in compressive as well as tensile nonlinear waves when the
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matter is compressible. Compared to linear waves, in the case of nonlinear compres-


sive waves the shock formation occurs behind the linear wave. Whereas in the case of


tensile wave the shocks are formed ahead of the linear wave. Since in tension, large


values of σ1 can be used without occurance of instability, the studies shown in figures


3.25(a)-(f) for L2 loading with σ1 = 0.4 clearly show the formation of shock wave


ahead of the linear wave.


(7) In the case of TVEM, the results are similar to TVE solid continua except that in


case of TVEM momentarily higher stress magnitudes are observed during evolutions


because of rheology.


(8) From the extended time evolutions shown in figures 3.31 and 3.32 for TVE and TVEM


(for L2 loading) for 4000 time steps we make some remarks


(1) Transient response has dramatically higher displacements than the static re-


sponse. A rod of length one unit is elongated as much as 0.75 units during


evolution.


(2) Evolutions are smooth and free of numerical dispersion and are time accurate.


This is confirmed by I valules O(10−6) or lower for each space-time strip.


(3) Linear and nonlinear responses differ significantly. Tension increases the effective


stiffness value as compression reduces it.


(4) Peak positive displacement for linear and nonlinear cases for TVE and TVEM


shown in figure 3.33 show the differences in linear and nonlinear responses quite


clearly.


This work demonstrates the significance of nonlinearity due to Green’s strain and the


need for incorporating it in wave propagation studies involving finite deformation. This


86







is dramatically illustrated for tensile loading (L2) with σ1 = 0.4. These studies presented


here can not be performed in a time accurate manner without using the mathematical


models presented here and without using the space-time variationally consistent space-time


finite element formulations, [21]-[30], based on space-time residual functional as used here.


Extensions of this work for R2 as well as with the equation of state and with specific heat


formulation that incorporates compressibility influence are currently in progress.


87







Bibliography


[1] Surana, Karan S. (2015) Advanced Mechanics of Continua. CRC Press, Boca Raton,


FL.


[2] Engelbrecht, J. (1983) Nonlinear Wave Processes of Deformation in Solids. Pitman


Publishing, London.


[3] Graham, R.A. (1993) Solids Under High-Pressure Shock Compression. Springer-Verlag,


New York.


[4] Zarembo, L.K. and Krasil’nikov, V.A. (1970) Nonlinear Phenomena in the Propagation


of Elastic Waves in Solids. Soviet Physics Uspekhi, 13(6), 778-797.


[5] Fosdick, R., Ketema, Y. and Yu, J.H. (1997) A Non-linear Oscillator with History


Dependent Force. Int. J. Non-Linear Mechanics, 33(3), 447-459.


[6] Lima, W.J.N. de and Hamilton, M.F. (2003) Finite-Amplitude Waves in Isotropic


Elastic Plates. J. of Sound and Vibration, 265, 819-839.


[7] Gei, M., Bigoni, D. and Franceschini, G. (2004) Thermoelastic Small-Amplitude Wave


Propagation in Nonlinear Elastic Multilayers. Mathematics and Mechanics of Solids,


9, 555-568.


88







[8] Lima, W.J.N. de and Hamilton, M.F. (2005) Finite Amplitude Waves in Isotropic


Elastic Waveguides with Arbitrary Constant Cross-Sectional Area. Wave Motion, 41,


1-11.


[9] Renton, J.D. (1987) Applied Elasticity: Matrix and Tensor Analysis of Elastic Con-


tinua. Ellis Horwood, Chichester.


[10] Landau, L.D. and Lifshitz, E.M. (1986) Theory of Elasticity. Pergamon Press, New


York.


[11] Engelbrecht, J., Berezovski, A. and Salupere, A. (2007) Nonlinear Deformation Waves


in Solds and Dispersion. Wave Motion, 44, 493-500.


[12] Shariyat, M., Lavasani, S.M.H. and Khaghani, M. (2010) Nonlinear Transient Ther-


mal Stress and Elastic Wave Propagation Analyses of Thick Temperature-Dependent


FGM Cylinders, using a Second-Order Point-Collocation Method. Applied Mathematicl


Modeling, 34, 898-918.


[13] Yu, S.T.J., Yang, L., Lowe, R. and Bechtel, S.E. (2010) Numerical Simulation of Linear


and Nonlinear Waves in Hypoelastic Solids by the CESE Method. Wave Motion, 47,


168-182.


[14] Berezovski, A., Berezovski, M. and Engelbrecht, J. (2006) Numerical Simulation of


Nonlinear Elastic Wave Propagation in Piecewise Homogeneous Media. Materials Sci-


ence and Engineering A, 418, 364-369.


[15] Shariyat, M., Khaghani, M. and Lavasani, S.M.H. (2010) Nonlinear Thermoelas-


ticity, Vibration, and Stress Wave Propagation Analyses of Thick FGM Cylinders


89







with Temperature-Dependent Material Properties. European Journal of Mechanics


A/Solids, 29, 378-391.


[16] Li, Y., Vandewoestyne, B. and Abeele, K.V.D. (2012) A Nodal Discontinuous Galerkin


Finite Element Method for Nonlinear Elastic Wave Propagation. J. Acoust. Soc. Am.,


131(5), 3650-3663.


[17] Shariyat, M. (2012) Nonlinear Transient Stress and Wave Propagation Analyses of


the FGM Thick Cylinders, Employing a Unified Generalized Thermoelasticity Theory.


Internationl Journal of Mechanical Sciences, 65, 24-37.


[18] Yu, Y.M. and Lim, C.W. (2013) Nonlinear Constitutive Model for Axisymetric Bending


of Annular Graphene-Like Nanoplate with Gradient Elasticity Enhancement Effects.


J. of Engineering Mechanics, 139(8), 1025-1035.


[19] Nucera, C. and di Scalea, F.L. (2014) Nonlinear Semianalytical Finite-Element Algo-


rithm for the Analysis of Internal Resonance Conditions in Complex Waveguides. J. of


Engineering Mechanics, 140(3), 502-522.


[20] Surana, K.S., Maduri, R. and Reddy, J.N. (2006) One Dimensional Elastic Wave Prop-


agation in Periodically Laminated Composites Using h; p; k Framework and STLS


Finite Element Processes. Mechanics of Advanced Materials and Structures, 13, 161-


196.


[21] Surana, K.S. and Reddy, J.N. (2015) Mathematics of Computations and the Finite


Element Method for Initial Value Problems. Book manuscript in progress.


90







[22] Surana, K.S., Ahmadi, A.R. and Reddy, J. (2002) The k-version of Finite Element


Method for Self-Adjoint Operators in BVP. International Journal of Computational


Engineering Science, 3(2), 155-218.


[23] Surana, K.S., Ahmadi, A.R. and Reddy, J. (2003) The k-version of Finite Element


Method for Non-Self-Adjoint Operators in BVP. International Journal of Computa-


tional Engineering Science, 4(4), 737-812.


[24] Surana, K.S., Ahmadi, A.R. and Reddy J. (2004) The k-version of Finite Element


Method for Nonlinear Operators in BVP. International Journal of Computational En-


gineering Science, 5(1), 133-207.


[25] Winterscheidt, D. and Surana, K.S. (1993) p-Version Least-Squares Finite Element


Formulation for Convection-Diffusion Problems. International Journal for Numerical


Methods in Engineering, 36(1), 111-133.


[26] Winterscheidt, D. and Surana, K.S. (1994) p-Version Least Squares Finite Element


Formulation for Two-Dimensional, Incopressible Fluid Flow. International Journal for


Numerical Methods in Fluids, 18(1), 43-69.


[27] Bell, B.C. and Surana, K.S. (1994) A Space-Time Coupled p-Version Least-Squares Fi-


nite Element Formulation for Unsteady Fluid Dynamics Problems. International Jour-


nal for Numerical Methods in Engineering, 37(20), 3545-3569.


[28] Bell, B.C. and Surana, K.S. (1996) A Space-Time Coupled p-Version Least Squares


Finite Element Formulation for Unsteady Two-Dimensional Navier-Stokes Equations.


International Journal for Numerical Methods in Engineering, 39(15), 2593-2618.


91







[29] Surana, K.S., Reddy, J.N. and Allu, S. (2007) The k-Version of Finite Element Method


for Initial Value Problems: Mathematical and Computational Framework. Interna-


tional Journal of Computational Methods in Engineering Science and Mechanics, 8,


123-136.


[30] Surana, K.S., Allu, S., Reddy, J.N. and Tenpas, P.W. (2008) Least Squares Finite


Element Processes in hpk Mathematical Framework for Non-Linear Conservation Law.


International Journal of Numerical Methods in Fluids, 57(10), 1545-1568.


[31] Reddy, J.N. (2004) An Introduction to Nonlinear Finite Element Analysis. Oxford


University Press, New York.


[32] Bathe, K.J. (1996) Finite Element Procedures. Prentice Hall, New Jersey.


[33] Riks, E. (1979) An incremental Approach to the Solution of Snapping and Buckling


Problems. International Journal of Solids and Structures, 15, 529-551.


92






