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Nonlinearities in Industrial Motion Stages - Detection andClassification

David Rijlaarsdam, Bas van Loon, Pieter Nuij and Maarten Steinbuch

Abstract— Detection and classification of nonlinearities in
motion systems becomes of increasing importance with high
demands on (closed loop) performance. In this paper two
methods are compared that aim to measure both the lin-
earized dynamics and the influence of nonlinearities. First, a
broadband signal is used to measure a linear approximation
of the systems dynamics. This method uses multisine signals
with identical amplitude spectrum, but randomly distribut ed
phases. Averaging over multiple periodic responses to the same
signal and over multiple realizations of the random phase
multisine allows the computation of the level of nonlinearities
and external disturbances separately. This yields both a linear
approximation of the systems dynamics and the amount of
nonlinear ’disturbance’ as a function of frequency. Second,
single sine based measurements are used to measure the Higher
Order Sinusoidal Input Describing Functions (HOSIDF) of the
system under test. HOSIDFs describe the response of the system
by describing not only the ’direct’ response (gain and phase
shift) of the system at the input frequency, but by describing
the response at higher harmonics of the input frequency as well.
This yields a quantitative measure of the power generated by
nonlinearities at harmonics of the input frequency as a function
of this frequency and the signal amplitude. In the paper these
methods are utilized to acquire a non-parametric model for an
industrial high precision stage. The effects of and sourcesfor
nonlinear influences are discussed for this particular caseas
well.

I. INTRODUCTION

In system identification, linearity is often assumed a priori.
If nonlinear influences are small, such assumptions may be
justified. However, the extend to which nonlinearities playa
role in the system dynamics (and thus in possible control)
should be assessed when performing system identification.
This paper addresses two methods that combine the measure-
ment of the linearized system dynamics with tools to detect
the level and type of nonlinearities. In [10] an overview of
methods that allow the detection of nonlinear behaviour is
provided. After the introduction of the industrial application
tested in this paper, a method based on the results in [7], [8],
[9] is presented, which uses multisine signals to compute a
Best Linear Approximation (BLA) of the systems dynamics
and detect and classify possible nonlinearities. The second
method is based on [4], [5] and measures the Higher Order
Sinusoidal Input Describing Functions (HOSIDFs), relating
the magnitude and phase of the harmonics in the output
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signal to a sinusoidal excitation. Finally, a comparison of
both methods and views on future research are presented.

Note that multisine method provides thebest linear ap-
proximation in a stochastic sense for the class of Gaussian
excitation signals. Part of the result of the second method is a
Linear Approximation (LA) of the systems dynamics as well.
However, this LA does not incorporate possible frequency
mixing phenomena Therefore, the obtained linearization is
not necessarily the best or optimal one for the class of
sinusoidal input signals. This difference also becomes clear
from the analysis of both methods that follows in the sequel.

II. MEASUREMENT SET-UP

Fig. 1. System under test: an industrial high precision stage.

The system under test in this study is an industrial high
precision stage (Figure 1). At the high resolution and repro-
ducibility that is required in this case, nonlinear effectsstart
to effect the dynamics of the system to such an extend that
standard measurement techniques are no longer sufficient.
This motivated the measurements presented in this paper.
The stage is a SISO system with the motor voltage as the
input and the position of the stage as its output. The system
is excited and the response is measured using a SigLab20-
42 dynamic signal analyzer providing90 [dB] aliasing pro-
tection and synchronized measurement channels. To measure
the response of the system an industrial measurement system
is used that allows high resolution position measurements
over the entire stroke of the set-up.

III. NONLINEAR DYNAMICS IN THE FREQUENCY
DOMAIN

The discussion in this paper is limited to the class of sys-
tems consisting of all stable, causal, time invariant, nonlinear



systems which have a harmonic response to a harmonic input
signal (see also [6]). A system is said to have a harmonic
response to a sinusoidal input frequency if its response
contains only spectral componentsnω0 (n ∈ N), that are
harmonically related to the input frequencyω0. In this paper,
attention is focussed on this property which is exploited in
both measurement strategies.

In [3] the author presents a way of systematically detect-
ing nonlinearities that provides indications with respectto
possible model choices. This method is based on one of the
fastest ways to detect the presence of nonlinearities, which
is the estimation of the frequency response function for
different levels (power) of the excitation signal. Using band
limited white noise with three different root mean square
(rms) values, a preliminary experiment was performed. The
results are depicted in Figure 2 and clearly indicate nonlinear
behaviour.
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Fig. 2. Best linear approximation measured using band limited white noise
input signals with different power.

IV. BROADBAND EXCITATION

Two types of excitation signals are investigated in relation
to the detection of nonlinear effects. This section deals with
broadband excitations, while the next section provides an
analysis based on single sine excitations. In the followingthe
broadband excitation signals used in this paper are defined
and the signal processing and analysis required to detect
nonlinear effects are introduced. Finally, these methods are
used to analyze experimental data.

A variety of broadband excitation signals exists, for ex-
ample (white) noise and multisine excitations [7]. The latter
consists of a sum of sinusoidal signals and is used in this
paper. Multisine signals allow for leakage free measurements
as opposed to (standard) noise excited measurements, where
windowing is required to counteract the leakage. Further-
more, when the multisine is correctly selected [1], [8], [9],
it is possible to identify the variances on the measured lin-
earized dynamics due to stochastic distortions and nonlinear
effects separately. Finally, it is possible to detect the type of
nonlinearity in this way as well.

Excitation Signal

A multisine signalub(t) is defined as a signal consisting of
N harmonic components with frequencyfb

n [Hz], amplitude
abn and phase shiftϕb

n:

ub(t) =
N
∑

n=1

abn sin(2πf
b

n t+ ϕb

n), (1)

whereb denotes results and parameters related to broadband
excitations. This type of excitation signal is fully defined
by its harmonic contentfb

n ∈ Fb ⊂ R≻0, it’s amplitude
spectrumabn ∈ Ab ⊂ R≻0 and the related phasesϕb

n ∈
Φb ⊂ [−π π).

Next, consider a subset of the signals defined in Eq. (1),
which consists solely of odd harmonics of a certain base
frequencyf0 and randomly chosen phases. This signal type
is referred to as the random odd multisine [9] and is defined
rigorously below.

Definition 1 (Random odd multisine):The mth realization
of a random odd multisine is defined as:

u[m],b(t) =
N
∑

n=1

abn sin
(

2πfb

n t+ ϕ[m],b
n

)

, (2)

with abn possibly different for various frequencies, but con-
stant over different realizations. The phasesϕ

[m],b
n ∈ Φ[m],b

are randomly selected from the interval[−π π) for each
realization and the odd harmonic frequency linesfb

n ∈ Fb
o =

{

(2k − 1)fb
0 | k ∈ N1, f0 ∈ R≻0

}

are selected identically
for all realizations. The random odd multisine is particularly
useful for detection of nonlinear effects when a frequency
line is removed approximately every 5 odd frequency lines
[8]. For convenience the same lines are removed for all
realizations.

A more detailed analysis of the properties of these signals
and the signal processing is presented in the next paragraph.

Signal Processing and Analysis

When using multisines as defined in Definition 1, there
are two ways to detect nonlinearities in the spectral repre-
sentation of the measured response. First of all, energy may
appear on non-excited lines in the output spectrum. Secondly,
a variance, larger than is to be expected based on stochastic
distortions, is observed on the measured output spectrum,
using different realizations of the multisine.

For the first detection method, a single measurement
suffices. This method allows for the classification of the
nonlinear effects (odd or even) since energy may appear on
non-excited odd lines, on even lines or on both [8]. However,
it requires an extrapolation of the effects observed at non-
excited lines to those at excited lines. Furthermore, this
method does not provide a distinction between the variance
of the output spectrum due to noise and the variance due to
nonlinearities. To accomplish this, multiple experimentsare
required with different realizations of the multisine signal
[1]. In this paper these detection methods are combined to
both quantify the extend of nonlinear effects and classify
them.



Consider an experiment withM realizations of the multi-
sine signal defined in Definition 1. Furthermore,P periods of
the input signalu(t)[m],b and output signaly(t)[m],b are mea-
sured. This yieldsP ×M periodic responses and the same
number of estimates of discrete Fourier spectra of the output
Y (ω)[m]. The superscriptb is omitted for the remainder of
this section, to increase readability. Averaging over multiple
periods of the same realization yields the variance on the
average spectrum measured with this particular realization.
This variance will consist of stochastic distortions (noise),
but does not yield nonlinear effects since these occur in the
same way in each of the measured periodic responses to one
particular realization.

Ȳ [m] =
1

P

P
∑

p=1

Y [m]
p (3)

σ2[m]

Ȳ ,noise =
1

P (P − 1)

P
∑

p=1

(

Y [m]
p − Ȳ [m]

)2

(4)

The average spectrāY [m] consist both of the excited lines
and a possible response on non-excited lines. Excited lines
are the frequency lines that are present in the spectrum of
the input signal. Therefore, the analysis splits into two parts.
First, the response on the excited lines will be analyzed
and second, the computation of the response measured
on non-excited lines will be discussed. For the frequency
points where the system was originally excited, the part of
the output spectrum that is generated by the Best Linear
Approximation (BLA) of the system and the corresponding
variance are calculated.

YBLA =
1

M

M
∑

m=1

[

U [m]

|U [m]|

]−1

Ȳ [m] (5)

Mσ2
YBLA,NL + σ2

YBLA,noise

=
1

M − 1

M
∑

m=1

(

Ȳ [m] − YBLA

)2

(6)

where
(

U [m]/|U [m]|
)−1

in equation (5) corrects the phases
of the output spectra with respect to the corresponding input
spectrum, prior to averaging. Furthermore,σ2

YBLA,noise is
the average of the variance induced by stochastic distortions
on the individual measurements of the different realization
as computed from Eq. (4). The variance on the averaged
spectrum over all realization which is due to nonlinear influ-
ences is denoted byσ2

YBLA,NL. This variance is calculated
by analyzing the variance over different realizations since the
nonlinearities are excited differently for different realizations
of the multisine. Note that the calculations above may be
performed on the Frequency Response Function (FRF) as
well as the measured output spectra. In case of stochastic
analysis of the FRF, no phase correction is required.

The response at non-excited lines is obtained by calculat-
ing the variance of the power in the output spectra, measured
at the non-exited lines. The spectrum has random phase at
these lines, but calculating the variance yields the power that

occurs at these frequencies. A distinction is made between
energy occurring at odd and even lines for classification of
the nonlinearities:

PY (ℓo/e) =
1

M − 1

M
∑

m=1

(

ε− Ȳ [m](ℓo/e)
)2

, (7)

whereℓo/e denotes the odd and even non-excited frequency
lines respectively. The average valueε is small, since the
phases of̄Y [m](ℓe/o) are randomly distributed in the interval
[−π π) and the average therefore tends to zero.

Summarizing, by conducting measurements withP pe-
riods of M realizations of the random multisine (Defi-
nition 1), the Best Linear Approximation (BLA) of the
Frequency Response Function or of the part of the output
spectrum generated by this BLA, is obtained using Eq. (5).
Furthermore, the variance on this BLA due to stochastic
disturbances is computed according to Eq. (4). The influence
of nonlinearities can be computed as a variance of the output
spectrum or FRF by Eq. (6). Finally, an estimate of nonlinear
effects as well as a classification of these effects is obtained
from Eq. (7).

Experimental Results

The method described in the previous section is applied
to measure the BLA and the level of nonlinearities in
the industrial high precision stage described in Section II.
Measurements are performed using a SigLab measurement
system with a measurement frequency offs = 2560 [Hz]
and a block length ofNblock = 8192 measurement points.
The multisine signal is defined according to Definition 1,
with fb

0 = fs
Nblock

= 0.3125 [Hz]. Sufficient waiting time
is allowed to assure that transient phenomena have damped
out, avoiding leakage phenomena (no windowing is applied).
M = 10 realizations of the odd random multisine have

been generated and the response has been measured forP =
10 periods (approx. 32 seconds). Furthermore, this experi-
ment is repeated for20 different rms values of the multisines,
logarithmically scaled between0.3 [V ] and 5.0 [V ]. This
leads to a total of20×P = 200 input-output measurements
consisting of 10 sequential periods each. After applying the
above described signal processing and analysis to each of
the measurement sets, a typical output spectrum is depicted
in Figure 3.

Figure 3 shows that nonlinear effects have an average level
that is10 [dB] lower than the power generated in the output
spectrum by the BLA of the system. These nonlinearities
have both an odd and even nature, but the odd components
dominate since they appear at a level that is almost20 [dB]
higher than that of the even nonlinearities. Furthermore, it
becomes clear that the variation due to nonlinearities is of
the same order of magnitude as the odd nonlinearities that
are detected. Finally the variation due to process and / or
measurement noise is almost30 [dB] lower than than the
variation due to nonlinear effects.

Figure 4 depicts the BLA of the system as a function
of both the rms value and frequency of the input. Figure 5
shows three cross section of Figure 4 at high, medium and
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Fig. 3. Output spectrum of a typical multisine experiment, showing
the effects of nonlinearities (σYBLA,NL) and noise (σYBLA,noise) as
variances on the best linear approximation of the spectrum (urms =
3.72 [V ]).

low input power. The difference in the computed BLA and
corresponding variation emphasizes the dependency on input
power as well. From Figure 4 and 5 it becomes clear that
for high input power the response of the system becomes
more linear. This becomes clear from the fact that the both
the gradient∂H/∂urms and the value of the variation due
to nonlinear influences decreases relative to the BLA of the
gain of the system decreases for increasingurms.
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Fig. 4. Best linear approximationHBLA, measured and calculated using
the broadband excitation approach, as a function of input amplitude and
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V. SINGLE SINE EXCITATION

Apart from broadband excitations, single sine based ex-
citations signals provide means to detect nonlinear effects
as well. Rather than using the variance on measured output
spectra, this method exploits the fact that nonlinearitiescause
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Fig. 5. Best linear approximation, measured and calculatedusing the
broadband excitation approach, for various values of the power of the input
signal (rms value). MeasuredHBLA (−), standard deviation (σHBLA,NL)
due to nonlinear effects (−−) and standard deviation (σHBLA,noise) due
to measurement and / or process noise (··).

energy to appear in the output spectrum on frequency lines
that are not present in - but harmonically related to - the
input spectrum. This phenomenon was investigated in the
previous section as well, when analyzing nonlinear influences
using broadband signals. However, in this case the energy
observed on non-excited lines was due to a mixture of all (or
a subset) of the excited frequencies. This section will focus
in particular on describing how this energy is generated at
non-excited lines as a function of the (single) frequency and
amplitude of the input signal.

The principle used to visualize and measure the influence
of nonlinearities in the frequency domain is that of the Higher
Order Sinusoidal Input Describing Functions (HOSIDF).
This section starts with the definition of the HOSIDFs and
the excitation signal used. It continues with a descriptionof
the analysis and processing of the measured signals and the
computation of the HOSIDFs. Finally, experimental results
are presented that illustrate this method in an industrial
application.

Higher Order Sinusoidal Input Describing Functions

A variety of describing functions exist of which the
Sinusoidal Input Describing Function (SIDF) is a well known
example [2]. The SIDF describes the response of a nonlinear
system to a sinusoidal input signal by only considering the
response at the input frequency. For linear systems the SIDF
therefore reduces to the well known frequency response
function. For nonlinear systems the SIDF also considers
only the ’direct’ response (gain and phase shift) at the input
frequency and assumes that no harmonic content is generated
at frequencies other than the input frequencies.

In order to model systems with levels or types of non-
linearities that do not satisfy this assumption the concept
of Higher Order Sinusoidal Input Describing Functions
(HOSIDF) was developed [4], [5]. HOSIDFs describe the
response of the system by describing not only the response



of the system at the input frequency, but by describing the
response at harmonics of the input frequency, generated
by nonlinearities, as well. In order to accomplish this, the
concept of the harmonic generator is introduced. This virtual
nonlinear element receives a single harmonic sine wave at its
input and generates an infinite number of output signals with
equal amplitude but frequencies that are harmonically related
to the spectral content of the input signal. More specifically,
these output signals have frequencies and phases that are
exact multipleskω0, kϕ0, k ∈ N of the frequencyω0 and
phaseϕ0 of the input signal. For each of these channels
the response is described separately by the corresponding
HOSIDF Hk(a

s, fs
0 ), which may be a function of both the

input amplitude and frequency. The systems output is a sum
of all k responses.

The kth order HOSIDF is defined as:

|Hk(a
s, fs

0 )| =
|Y (kfs

0 )|
|U(fs

0 )|
(8)

∠Hk(a
s, fs

0 ) = ∠Y (kfs

0 )− k ∠U(fs

0 ), (9)

wheres denotes results and parameters related to single sine
excitation signals,Y (kfs

0 ) ∈ C is the output spectrum at the
kth harmonic frequency line andU(fs

0 ) ∈ C the spectral
content of the input signal at its fundamental frequency
fs
0 ∈ R≻0. HOSIDFs are generally a function of both the

input frequencyfs
0 and amplitudeas ∈ R≻0, where the input

signal is defined as:

us(t) = as sin(2πfs

0 t). (10)

The aim of this part of the paper is to measure and describe
the HOSIDFs by conducting a series of experiments with
varying input frequency and amplitude. The related signal
processing and analysis is discussed in the next paragraph.

Signal Processing and Analysis

In order to measure a single HOSIDFHk(a
s, fs

0 ) for a
given frequency / amplitude combination, an input signal
as defined in Eq. (10) is applied and the spectrum of the
response is computed using standard DFT algorithms and
Eqs. (8) - (9). By repeating the experimentR times the
average and variance on the measured HOSIDF can be
evaluated according to:

H̄k(a
s, fs

0 ) =
1

R

R
∑

r=1

H[r]
k (as, fs

0 ) (11)

ς2
H̄k

(as, fs

0 ) =
1

R(R − 1)

R
∑

r=1

(

H[r]
k (·)− H̄k(·)

)2

.(12)

By repeating the experiments for different amplitudes and
frequencies the HOSIDFs are obtained. In the sequel, exper-
imental results are presented that illustrate these results.

Experimental Results

Measurements have been performed by exciting the system
introduced in Section II, with frequencies ranging from
5 [Hz] to 300 [Hz] in steps of 5 [Hz]. Furthermore,
each response has been measured for a variety of input

signal powersurms = as/
√
2, ranging from 0.07 [V ]

to 1.41 [V ] (logarithmically spaced). For each frequency-
amplitude combination,10 experiments are performed which
allows calculation of the mean and variance of the mea-
sured value. All measurements have been performed using a
SigLab measurement system with a measurement frequency
of 5120 [Hz] and a block length of2048 points. This results
in leakage free measurements since sufficient waiting time
is allowed for the transient response to damp out.

A typical series of HOSIDFs is depicted in Figure 6. Since
the even HOSIDFs are very low in most cases, only the
odd HOSIDFs are considered in this paper. From Figure
6 it becomes clear that the system becomes more linear
for increasing value ofurms. This can be observed from
the combination of a decreasing gradient∂H1/∂urms and
a decreasing value ofHi ∀ i ∈ N≻1 for all measured
frequencies.
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In Figure 7|H1| is depicted as a function of input power
and frequency. The results depicted in this figure may be
compared to those depicted in Figure 4.

VI. COMPARISON

The methods discussed in this paper both result in a
linear approximation of the systems dynamics. In general
these results will differ, since the multisine based method
results in a statistical best linear approximation, while the
HOSIDFs provide a linear approximation (LA) that does not
incorporate frequency mixing. Furthermore, the LA generally
depends on the signal type that is used for identification
and Gaussian multisine signals have a different amplitude
probability density function (pdf) than single sine signals,
which in general leads to different linearizations as well.

The methods also differ in measurement time and compu-
tational costs. The single sine measurement required30000
measurements versus200 measurements using a multisine.
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Therefore, the measurement using multisine signals might
appear more appealing at first sight. However, although
the nature and level of nonlinearities may be estimated
using this method, it lacks detailed information provided
by the HOSIDFs, about how frequency content (phase and
amplitude) is generated as a function of input frequency and
amplitude. Furthermore, the time argument depends on the
ratio between the required effective measurement time and
time constants of the system.

The LAs that are computed using both methods are
depicted in Figure 8. As becomes clear the linear approx-
imations are similar for high excitation power, except for a
high frequency roll-off (single sine measurement). The main
reason for this similarity at high excitation power, is that
the system behaves close to linear with respect to excitation
signal type, pdf and the generation of harmonic content.
However, both methods indicate a dependency of the BLA on
the excitation level, which does indicate nonlinear behaviour
with respect to excitation power.

VII. CONCLUSION & FUTURE RESEARCH

The methods considered in this paper are both shown
to be effective in measuring a linearization of the system
dynamics. The measurement time and computational cost
differ and depending on the time scale of the system under
test, long transient times might lead to a preference for
the multisine based method. However, HOSDFs provide
more detailed information about the nonlinearities present.
Apart from detailed magnitude information about nonlinear
influences, the HOSIDF also include phase information. This
information is not (directly) available from the multisine
based method. Both methods indicate that the odd nature of
the nonlinearity is dominant over the even nonlinearities and
that the influence of nonlinearities decreases with increasing
excitation level. It is therefore expected that the main source
of nonlinear behaviour is friction in this case.
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Future research will focus on further comparison of these
methods. Finally, for industrial purposes, the multisine signal
is currently more appealing than the HOSIDFs, since the
level of nonlinear distortion may be used in robust control.
The usage of HOSIDFs in control and particularly in nonlin-
ear controller synthesis will be addressed in future research.
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