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Nonlinearity and disorder: Classification and stability of nonlinear impurity modes

Andrey A. Sukhorukov,1 Yuri S. Kivshar,1 Ole Bang,1,2 Jens J. Rasmussen,3 and Peter L. Christiansen2

1Optical Sciences Centre, Australian National University, Canberra ACT 0200, Australia
2Department of Mathematical Modelling, Technical University of Denmark, Building 321, 2800 Kgs. Lyngby, Denmark

3Riso” National Laboratory, Optics and Fluid Dynamics Department, Riso”, Roskilde DK-4000, Denmark
~Received 3 September 2000; published 14 February 2001!

We study the effects produced by competition of two physical mechanisms of energy localization in inho-
mogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear
impurity in the generalized nonlinear Schro¨dinger equation and describe three types of nonlinear impurity
modes, one- and two-hump symmetric localized modes and asymmetric localized modes, for both focusing and
defocusing nonlinearity and two different~attractive or repulsive! types of impurity. We obtain an analytical
stability criterion for the nonlinear localized modes and consider the case of a power-law nonlinearity in detail.
We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including
the mode decay or switching to a new stable state, and collapse at the impurity site.
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I. INTRODUCTION

Wave scattering by localized impurities~or defects! is a
fundamental problem of solid state physics@1#. Impurities
break the translational symmetry of a physical system
lead to several effects such as wave reflection, resonant
tering, and excitation of impurity modes, spatially localiz
oscillatory states at the impurity sites@2#. These two kinds of
problems, i.e., wave scattering in inhomogeneous media
defect-supported localized modes, appear in many diffe
physical problems, such as the scattering of surface aco
waves by surface defects or interfaces@3#, excitation of de-
fect modes in superconductors in the vicinity of the twinni
planes@4# and high-Tc superconductors@5#, the dynamics of
the tight-binding Holstein-type models of the electron
phonon coupling@6,7#, light propagation in dielectric super
lattices with embedded defect layers@8#, excitation of defect
states in photonic crystal waveguides@9#, light trapping and
switching in nonuniform waveguide arrays@10#, etc. In all
such cases, the impurities~or defects! lead to the energy
trapping and localization in the vicinity of the defects, th
occurs in the form of spatially localized impurity modes.

When nonlinearity becomes important, it may lead to se
trapping and energy localization even in a perfect~or homo-
geneous! system in the form of intrinsic localized mode
Spatially localized modes of nonlinear systems are usu
associated with solitary waves~or solitons! in continuous
models, or discrete breathers in lattice models; and they h
been a subject of intensive studies during the past years@11#.
However, the study of nonlinear phenomena in inhomo
neous and disordered systems is still largely an open are
research@12#. Simultaneous presence of nonlinearity and d
order is associated with various dynamical processes in
ids, biological systems, and optics@13#. For example, non-
linearities can become important even in a harmonic lat
due to the interaction of an exciton with the lattice vibratio
@14#, where impurities may appear as a result of doping
materials with atoms or molecules that have stronger lo
coupling. Such impurities can also appear in~inherently non-
linear! spin-wave systems due to, e.g., a local variation of
1063-651X/2001/63~3!/036601~18!/$15.00 63 0366
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coupling between neighboring spins@15#.
When both nonlinearity and disorder are present simu

neously, it is expected that competition between two diff
ent mechanisms of energy localization~i.e., one, due to the
self-action of nonlinearity, and the other one, due to loc
ization induced by disorder! will lead to a complicated and
somewhat nontrivial physical picture of localized states a
their stability. In this paper, we consider one of the examp
of such a competition, and analyze different types of non
ear localized modes and their stability in the framework
the generalized nonlinear Schro¨dinger~NLS! equation with a
pointlike impurity.

The problem we analyze here has a number of impor
physical applications ranging from the nonlinear dynamics
solids@4,6,14,15# to the theory of nonlinear photonic crysta
@8,9# and waveguide arrays@10# in optics. In application to
the theory of electromagnetic waves, this problem descri
a special case of a stratified~or layered! dielectric medium
for which nonlinear guided waves and their stability has be
analyzed during the last 20 years@16,17#. For other applica-
tions, the theory of nonlinear localized modes is less dev
oped and, in particular, only a few publications@7,18–20#
addressed the important issue of stability of nonlinear im
rity modes. In this paper, we study the properties of non
ear impurity modes in the framework of the generalized N
equation and develop, for the first time to our knowledge
systematic classification and linear stability analysis of s
tially localized impurity modes of three distinct types. O
results can be linked to different special cases of the the
of nonlinear guided waves in layered dielectric media, a
they also provide a generalization of the theory of nonlin
impurity modes in solids, together with the analysis of th
stability and instability-induced dynamics, emphasizing t
cases where we can observe a clear evidence of compe
between the two physical mechanisms of energy localizat

The paper is organized as follows. In Sec. II we discu
our physical model and describe three different types of n
linear localized modes supported by a pointlike impuri
symmetric one- and two-hump modes and asymme
modes. Section III includes a summary of the results of
©2001 The American Physical Society01-1
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ANDREY A. SUKHORUKOV et al. PHYSICAL REVIEW E 63 036601
linear stability analysis, and it also presents the analyt
criteria of the mode stability, for a general form of the NL
equation with a nonlinear impurity. A detailed analysis of t
mode structure and stability, as well as the discussion of
competition between two different mechanisms of energy
calization, are presented in Secs. IV–VI, for the particu
case of the power-law nonlinearity and both attractive a
repulsive impurities. At last, Sec. VII discusses two differe
types of the nonlinearity-induced collapse dynamics of
nonlinear modes, including collapse at the impurity site.

II. MODEL AND LOCALIZED MODES

We consider a general problem in which the dynamics
elementary excitations of a physical system~e.g., phonons,
magnons, etc.! is described by an effective equation for th
wave-packet envelopec(x,t) @21#. When the density of such
quasiparticles becomes high enough, their interaction sh
be taken into account, e.g., in the framework of the me
field approximation. In the simplest case, the quasipart
interaction and collective phenomena in an inhomogene
medium can be described by the nonlinear Schro¨dinger
~NLS! equation for the wave-packet envelopec(x,t),

i
]c

]t
1

]2c

]x2
1F~ I ;x!c50, ~1!

whereI[ucu2 characterizes the density of the quasiparticl
t is time, x is the spatial coordinate, and the real functi
F(I ;x) describes both nonlinear and disordered propertie
the medium. We consider the case when the inhomogen
is localized in a small region. Then, if the correspondi
wavelength is much larger than the defect size, in the c
tinuum limit approximation the inhomogeneity can be mo
eled by a delta-function and therefore we can write

F~ I ;x!5F~ I !1d~x!G~ I !, ~2!

where the functionsF(I ) andG(I ) characterize the proper
ties of the bulk medium and impurity, respectively. Hereaf
we assume that the nonlinear termF(I ) does not include a
constant linear part, i.e.,F(0)50, as otherwise it is always
possible to rescale the original Eq.~1! by introducing a new
function c̃5c exp@2iF(0)t#.

The model~1!,~2! appears in different physical problem
of the macroscopic nonlinear dynamics of solids and non
ear optical systems. In particular, it describes a special c
of a more general problem of the existence and stability
nonlinear guided waves in a layered~or stratified! dielectric
medium, where the delta-function defect corresponds t
very thin layer embedded into a nonlinear medium with
Kerr or non-Kerr response~see, e.g., Ref.@16#!; in this case
the time variablet stands for the propagation coordina
along the layer, andx is the transverse coordinate.

For spatially localized solutions, Eqs.~1! and~2! conserve
the power,

P5E
2`

1`

uc~x!u2dx, ~3!
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and the Hamiltonian

H5E
2`

1` H U]c

]xU
2

2E
0

I (x)

F~ I 8;x!dI8J dx. ~4!

Note, however, that the total momentum is not conser
since the translational invariance of the model~1!,~2! is bro-
ken by the presence of the inhomogeneity.

We look for spatially localized stationary solutions
Eqs.~1! and ~2! in the standard form,

c~x,t !5u~x!eivt,

wherev.0 is the mode frequency (v.0 for the mode to be
exponentially localized!, and the real functionu(x) satisfies
the equation:

2vu1
d2u

dx2
1F~ I !u1d~x!G~ I !u50. ~5!

Let us first discuss the well-known case when the imp
rity is absent,G(I )50. Then, a localized solutionu0(x) of
the reduced Eq.~5!,

2vu01
d2u0

dx2
1F~u0

2!u050, ~6!

describes a self-trapped state in a uniform nonlinear medi
Due to the translational symmetry, a localized solution of E
~6! can be presented in the formu0(x2x0), wherex0 is an
arbitrary position. We also note that the mode profile is sy
metric, u0(x)5u0(2x), it does not contain zeros,u0(x)
.0, and it has a single hump sincedu0 /duxu,0 at xÞ0.
Such a localized state is possible in a self-focusing med
in the form of a bright solitary wave~or soliton!, which is
characterized by the power

P0~v!52E
0

`

u0
2~x! dx. ~7!

In contrast, in a defocusing medium, spatially localized
lutions of Eq. ~6! do not exist. However, certain singula
solutions with zero asymptotic atx→6` are still possible in
this case, and they will play an important role for constru
ing localized impurity modes.

When a pointlike defect is introduced into the system,
translational invariance of the model is broken at the def
location,x50. Nevertheless, the nonlinear modes of the
homogeneous model~5! localized near the impurity sitex
50 can be constructed by using the solutions of the hom
geneous equation~6!. Indeed, such a solution should satis
Eq. ~6! on both sides of the defect, and it can therefore
presented in the following general form,

u~x!5H u0~x2x0!, x>0,

u0~x2sx0!, x<0,
~8!

wherex0 ands are yet unknown parameters. Our task now
to satisfy Eq.~5! at x50 in order to define the unknown
1-2
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NONLINEARITY AND DISORDER: CLASSIFICATION . . . PHYSICAL REVIEW E63 036601
parametersx0 ands through the impurity characteristics. Th
first constraint follows from the field continuity at the impu
rity site, u(01)5u(02). For Eq. ~8! it immediately yields
the conditions561. Thus the parameters defines the sym-
metry of the localized mode, i.e., the mode is symmetric
s521 and asymmetric fors511. In order to derive the
second matching condition, we integrate Eq.~5! over an in-
finitely small segment around the impurity pointx50 and
obtain the transcendental equation for the parameterx0:

~12s!
du0

dx
~x0!5G~ I 0!u0~x0!, ~9!

whereI 05u0
2(x0).

Let us discuss the general properties of the impu
modes as localized solutions of a homogeneous medium
isfying the matching conditions obtained above. Symme
modes (s521) can be presented in the formu(x)
5u0(uxu2x0), and have the power

P~v!52E
2x0

1`

u0
2~x! dx. ~10!

Using the properties of the homogeneous solitary wave
lution u0(x) we see that if the impurity is attractive@i.e.,
G(I 0).0] thenx0,0. Thus the resulting symmetric profil
u(x) is single-humped@see Fig. 1~a!# andP,P0. When the
impurity is repulsive@i.e., G(I 0),0] then x0.0 and thus
the resulting profile is double-humped withP.P0, as shown
in Fig. 1~b!. We note that the single-hump solution may s
exist in a self-defocusing medium being constructed fr
two pieces of a singular solution of the homogeneous mo
~see below!, whereas the two-hump solutions are possi
only in a self-focusing medium.

For asymmetric modess511 and the left-hand side o
Eq. ~9! vanishes. Thus solutions are possible only if the i
purity response vanishes as well, i.e.,G(I 0)50. This condi-
tion can be satisfied when the nonlinear and linear part
the impurity response compensate each other, i.e., for ce
values ofI 0. Remarkably, the profile of the asymmetric im
purity mode coincides with that of a bright soliton in a
uniform self-focusing medium,u(x)5u0(x2x0), and thus
P5P0. However, its position is fixed by the impurity ac
cording to the relationG(I 0)50 @see Fig. 1~c!#. Naturally
there always exist two degenerate asymmetric solutions
responding to positive and negativex0, respectively.

III. STABILITY ANALYSIS

A. General formalism

One of the key properties of a nonlinear localized mode
its linear stability determined by the character of the mo
dynamics under the action of small perturbations of its s
tionary state. In general, two different scenarios of
perturbation-induced mode dynamics are possible. In the
case, a nonlinear mode can acquire only small distortion
its steady-state profile and the parameters of a nonlin
mode oscillate in the vicinity of its stationary state. In th
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case, we call such a nonlinear mode linearly stable. On
other hand, under the influence of small perturbations ini
deviations of the nonlinear mode parameters from their
tionary values can grow exponentially; and in this case
define the nonlinear mode as linearly unstable.

We consider localized modes that are square-
L2-integrable~have finite power orL2-norm!, and have pro-
file functions that belong to a Hilbert space whose inn
product is theL2-norm

$a~x!,b~x!%[E
2`

`

a* ~x!b~x! dx, ~11!

FIG. 1. Characteristic profiles of nonlinear impurity modes in
self-focusing medium:~a! and ~b! symmetric modes supported b
an attractive (x0,0) and repulsive (x0.0) impurity, respectively;
~c! asymmetric impurity mode withx0.0.
1-3
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ANDREY A. SUKHORUKOV et al. PHYSICAL REVIEW E 63 036601
wherea* (x) denotes the complex conjugate of the functi
a(x). To find the linear stability conditions we consider th
evolution of a small-amplitude perturbationf (x,t) of the sta-
tionary solution, i.e.,

c~x,t !5@u~x!1 f ~x,t !#eivt. ~12!

Writing the perturbation in the form

f ~x,t !5@v~x!2w~x!#eiVt1@v* ~x!1w* ~x!#e2 iV* t,
~13!

and substituting Eq.~12! into Eq. ~1!, we obtain an eigen-
value problem for the functionsv(x) andw(x),

L0w5Vv, L1v5Vw, ~14!

whereV is the complex spectral eigenvalue, and

L j52d2/dx21v2U j , U j5F j1Gjd~x!,

F05F~u2!, F15F012u2F8~u2!,

G05G~ I 0!, G15G012I 0G8~ I 0!.

Here the prime denotes differentiation with respect to
argument. It follows from Eq.~13! that the mode is stable i
all the eigenvaluesV are real and unstable otherwise.

To proceed we reduce Eqs.~14! to a single equation:

L0L1v5V2v, ~15!

where stability requires all eigenvaluesV2 to be positive. It
is straightforward to show thatL05L1L2, where L65
6d/dx 1u21(du/dx), and thus one can instead consid
the auxiliary eigenvalue problem,

L2L1L1ṽ5V2ṽ, ~16!

which reduces to Eq.~15! after the substitutionv5L1ṽ.
Because the operatorL1 has only a single neutral mode
v(x)5u21(x), which is not an eigenmode of Eqs.~15! and
~16!, these two eigenvalue problems have equivalent spe
~see Ref.@20#!. Since the operatorL2L1L1 is Hermitian all
eigenvaluesV2 of Eqs.~15! and ~16! are real.

The operatorsL j ( j 51,2) are well-studied in the litera
ture, in particular as a characteristic example of the spec
theory of second-order differential operators~see Ref.@22#!.
For our problem we use two general mathematical res
about the spectrum of the linear eigenvalue problemL jwn

( j )

5ln
( j )wn

( j ) : ~i! the eigenvalues can be ordered asln11
( j )

.ln
( j ) wheren>0 defines the number of zeros in the corr

sponding eigenfunctionwn
( j ) and ~ii ! for ‘‘deeper’’ potential

wells, Ũ j (x)>U j (x), the corresponding set of eigenvalues
shifted ‘‘down,’’ l̃n

( j )<ln
( j ) .

Let us fist discuss the properties of the operatorL0 whose
spectrum we define asln

(0) . The neutral mode ofL0 is the
stationary solution of Eq.~5!, sinceL0u(x)50. Moreover,
u(x).0 is the ground state solution with no nodes and the
fore ln

(0).l0
(0)50 for n.0. This means that the operatorL0
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is positive definite on the subspace of functions orthogona
u(x), which allows one to use several general theore
@17,23–26# to link the stability properties to the number o
negative eigenvalues of the operatorL1, whose spectrum we
define asln

(1) : ~i! the mode is unstable if there are two~or
more! negative eigenvalues, i.e., ifl1

(1),0; ~ii ! the mode is
stable ifL1 is positively definite, i.e., ifl0

(1).0; and~iii ! in
the intermediate case the stability depends on the slope o
function P(v) according to the Vakhitov–Kolokolov~VK !
criterion @23#, i.e., the mode is stable ifdP/dv.0 and un-
stable otherwise. Thus to distinguish between these case
is sufficient to determine the signs ofl0

(1) andl1
(1) .

In general, the spectral properties of the linear operatorL1
depend on the mode frequencyv, and the number of its
negative eigenvalues can change. This is associated with
so-called critical points in the power dependenceP(v) for
the localized mode@17#. One type of such critical points is
bifurcation into two families of solutions, i.e., symmetric an
asymmetric ones, which exist for the same mode frequen
Thus the stability properties of these distinct types of non
ear localized modes can be expected to be different, so
discuss them separately.

B. Symmetric modes

For symmetric modes withs521 the operatorL1 has the
symmetric neutral mode with zero eigenvalue

L1~du/duxu!50,

for the special value of the defect response

G1
cr52S du0~x!

dx D 21 d2u0~x!

dx2 U
x5x0

. ~17!

For x0.0 the profileu(x) has two humps and the neutr
mode corresponds therefore to the second eigenmodew2

(1)

~two nodes! with l2
(1)50. Thus the two-hump symmetri

modes are unstable~two negative eigenvalues!. For x0,0
the neutral mode is the nodeless ground-statew0

(1) with
l0

(1)50. Thus the single-hump symmetric modes are sta
~no negative eigenvalues!, if G15G1

cr .
For other values of the defect responseG1 it follows from

the spectral theorem that the eigenvalue of the neutral m
decreases whenG1.G1

cr ~deeper well! and increases when
G1,G1

cr . Therefore forx0,0 and G1,G1
cr we havel0

(1)

.0 and the modes are stable. On the other hand, due to
symmetry of the potentials in the linear eigenvalue proble
U j (x)5U j (2x), the amplitude of the first-order eigenmod
vanishes at the defect location (x50), and thus its eigen-
valuel1

(1) does not depend onG1. However, the inequality
l0

(1),l1
(1),l2

(1) is always fulfilled for anyG1, and thus
l1

(1),0 if x0.0 andl1
(1).0 if x0,0.

In the special case whenx050 it is straightforward to
show that the functiondu(x)/dx, which has a single zero a
x50, is a neutral mode ofL1 with l1

(1)50. In Table I we
1-4
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summarize the properties of the operatorL1 and the corre-
sponding general conditions for the stability of nonlinear
calized modes.

It is important to connect the spectral characteristics
the operatorL1, and thus the stability properties, with th
character of the power functionalP(v). To do so we notice
that at the bifurcation point, defined asP(v)5P0(v), the
parameterx0 and thus the eigenvaluel1

(1) changes sign. The
two-hump symmetric modes withP(v).P0(v), for which
x0.0 and thusl1

(1),0, are therefore always unstable. I
stead a new family of asymmetric modes emerges at
bifurcation point, whose stability properties we discuss in
next section.

The single-hump symmetric modes~i.e., x0,0) can only
change their stability properties through a change of sign
the lowest eigenvaluel0

(1) or the slopedP/dv, according to
Table I. In order to find the critical points associated with t
transition ofl0

(1) through zero we employ the approach d
veloped in Ref.@17# and differentiate Eq.~5! with respect to
the mode powerP, treatingv as a function ofP. This gives
us the relation

u~x!~]v/]P!52L1~]u/]P!.

The points wheredv/dP50 or u[0 are thus critical points
since there the operatorL1 has a zero eigenvaluel0

(1)50
with eigenfunction]u/]P. It is possible to show that thes
are the only critical points@17#. Moreover, it can be demon
strated thatG1.G1

cr for the branch originating from the criti
cal point with the positive slope,dP/dv.0, while G1

,G1
cr if dP/dv,0 in the vicinity of the critical point.

Therefore the localized modes are always stable clos
such critical points. This conclusion implies, in particula
stability of modes with a vanishing power,P→0. In this
linear limit the impurity can support a localized mode on
when it is attractive@i.e.,G(0).0], and the mode frequenc
is v05G2(0)/4.

C. Asymmetric modes

The profiles of asymmetric nonlinear modes coincide w
those of solitons~sinceG050), but the spectrum of the op
eratorL1 can become different. Only in the special caseG1
50, there exists a first-order~one node! neutral mode with
l1

(1)50, i.e., L1(du/dx)50. Then, from the spectral theo
rems @22# it follows that l1

(1),0 if G1.0 and l1
(1).0 if

G1,0. Thus the asymmetric mode is always unstable
G1.0, with respect to translational shifts along thex axis.

TABLE I. Stability conditions for symmetric modes.

Condition L1 spectrum Stability

x0.0 l0
(1),l1

(1),0 unstable
x0<0, G1<G1

cr 0<l0
(1),l1

(1) stable
x0<0, G1.G1

cr , dP/dv.0 l0
(1),0<l1

(1) stable
x0<0, G1.G1

cr , dP/dv<0 l0
(1),0<l1

(1) unstable
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To determine the sign ofl0
(1) for G1,0 we consider,

without a lack of generality, the casex0.0 and study the
operatorL̃1 with the potential

Ũ1~x!5H F1@u0
2~x2x0!#, x.x0 ,

2`, x,x0 .
~18!

It is straightforward to check that the lowest eigenvalue ofL̃1
is zero with the ground state

w̃0
(1)5H du0~x2x0!/dx, x.x0 ,

0, x,x0 .

For G1,0 we haveU1(x).Ũ1(x), and thus according to
the spectral theorem the eigenvalues of the correspon
operators are related asln

(1),l̃n
(1) . Thereforel0

(1) is always
negative, meaning that the VK theorem applies. We comb
these findings with the general stability criteria@17,23–26#,
and summarize the stability conditions in Table II.

We note that, for a given defect responseG(I ), there can
exist several families of asymmetric modes each charac
ized by the intensity at the defectI 0, satisfying the relation
G(I 0)50. There are always at least two solutions with t
same I 0 but 6x0. All these degenerate families have th
same power and are thus indistinguishable on theP(v) dia-
gram. To determine the stability we look at the bifurcati
from the symmetric modes atP(v)5P0(v) ~or x050). Per-
forming the analysis similar to that in Ref.@17#, we find that
after the bifurcationG1,0 if the branch for symmetric
modes is above that of the asymmetric modes,P(v)
.P0(v). In the opposite caseG1.0 and the asymmetric
modes are always unstable.

IV. POWER-LAW NONLINEARITY

We now demonstrate the characteristic existence and
bility features of nonlinear localized impurity modes by a
plying the results of Secs. II and III to the illustrative case
power-law nonlinearities. In this section we consider the a
lytically obtainable results. The detailed numerical resu
are presented in Secs. V and VI.

A. Solitons in homogeneous media

To construct the general solutions we consider first
special case of a homogeneous medium withG[0 and the
bulk power-law nonlinearity

F~ I !5rI s, s.0. ~19!

TABLE II. Stability conditions for asymmetric modes.

Condition L1 spectrum Stability

G1.0 l0
(1),l1

(1),0 unstable
G1<0, dP0 /dv.0 l0

(1),0<l1
(1) stable

G1<0, dP0 /dv<0 l0
(1),0<l1

(1) unstable
1-5
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ANDREY A. SUKHORUKOV et al. PHYSICAL REVIEW E 63 036601
For self-focusing bulk mediar511 and for defocusing bulk
mediar521. The profiles of the spatially localized statio
ary solutions can be found in the form

u0~x!5A0H cosh21/s~sAvx!, r511

sinh21/s~sAvx!, r521,
~20!

whereA0[@(11s)v#1/2s. Solution ~20! for r511 is the
well-known bright soliton of the generalized NLS equati
that exists for any positive value ofs. The solution forr5
21 is singular, since bright solitons do not exist in a se
defocusing medium. This singular solution will be used b
low to construct the profiles of the~regular! localized modes
in the general case with an impurity.

To find the soliton power in a self-focusing medium (r
511) we substitute the corresponding solution~20! into Eq.
~7! and obtain the result

P0~v!5v (22s)/2s
22/s~11s!1/s

2s

GS
2~1/s!

GS~2/s!
, ~21!

whereGS is the standard gamma-function. Applying the V
theorem@23# we find that the solitons are stable fors,scr
[2, because in this casedP0 /dv is positive. Fors>2 the
solitons are unstable (dP0 /dv<0) and they either collaps
or decay@27,28#.

B. Nonlinear impurity in a linear medium

We now study the effects due to defect-induced locali
tion only, i.e., we consider the special case when a nonlin
defect with the power-law response

G~ I !5a1bI g, g.0, ~22!

is embedded into a linear medium withF[0. Changing the
signs of the parametersa and b we can describe both lin
early and nonlinearly attractive and/or repulsive impuriti
Assuming thataÞ0 this parameter can be rescaled toa5
62, which we use in the following.

As bright solitons do not exist in a linear medium, asy
metric modes are not possible as well. Using Eqs.~5!,~8!,
and ~9! we obtain the spatial profile of the symmetric on
hump localized modes

ui~x!5Ai exp~2Avuxu!, Ai
2g5~2Av2a!/b, ~23!

and the corresponding power,

Pi~v!5
Ai

2

Av
5

1

Av
S 2Av2a

b D 1/g

. ~24!

Let us analyze the existence properties of these modes:
a.0 a linear impurity mode appears at the cutoff frequen
v05a2/4. If the nonlinearity is attractive (b.0) then a
whole family of localized modes exist with frequenci
above cutoff (v>v0). If the nonlinearity is repulsive (b
,0) then the family exists below cutoff (0,v<v0). For
a,0 no localized modes exist for repulsive nonlinearit
03660
-
-

-
ar

.
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or
y

(b,0), whereas attractive nonlinearities (b.0) support lo-
calized modes at all frequenciesv.0.

To analyze the stability properties we follow the approa
of Sec. III B and calculate the defect response

G15G1
cr12bgAi

2g , ~25!

where the critical valueG1
cr52Av is defined from Eq.~17!.

From the general results summarized in Table I, we see
the localized modes are always stable when the nonlinea
is repulsive (b,0), sinceG1<G1

cr . When the nonlinearity
is attractive (b.0), G1.G1

cr and the VK criterion applies.
From Eq.~24! we obtain that the sign ofdPi /dv is given by
the sign of@2(12g)Av1ag#. Thus we identify the critical
powergcr51, which is half that in a homogeneous mediu
For a.0 ~andb.0) the modes are therefore always stab
for subcritical powersg,gcr . For g>gcr high-frequency
modes withv>v1[v0 /(12gcr /g)2 are unstable, wherea
low-frequency modes (v,v1) are stable. The opposite oc
curs fora,0 ~andb.0): In this case only high-frequenc
modes (v.v1) are stable for g,gcr , whereas low-
frequency modes are unstable. For powers above the cri
value,g>gcr , all modes are unstable.

C. Nonlinear impurity modes

We now consider a more general case when both the b
medium and the defect have power-law nonlinear respon
as defined by Eqs.~19! and ~22!.

1. Symmetric nonlinear modes

Substituting Eq.~20! into Eq. ~9! we obtain the relation:

2pv1/21a1bvG~11s!Gu12p2uG50, ~26!

which defines the spatial shiftx0 for all values of the mode
frequencyv. HereG5g/s and

p~v!5H tanh~sv1/2x0!, r511

coth~sv1/2x0!, r521.
~27!

We see that forupu,1, the solutions of Eq.~26! correspond
to the modes in a self-focusing medium (r511). Note that
localization in a defocusing medium (r521) is only sup-
ported by an attractive impurity (G0.0), so thatx0,0 and
p,21. In both cases the linear limitx0→2` corresponds
to p→21. Impurity response for a localized mode can
expressed in terms of the new variable,

G0522pAv,

G15G012bgI 0
g5~2g11!G022ga, ~28!

G1
cr522Av@p~11s!2s/p#,

which will be useful in the following analysis.
In order to determine the stability of the localized mode

we have to construct the power versus frequency diag
P(v). After a change of variables in Eq.~10! we obtain the
general expression for the power
1-6
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P~v!5v (22s)/2s
2~11s!1/s

s U E
2p

1

u12y2u2111/sdyU.
~29!

To separate the effects induced by the bulk and the impu
we rewrite this expression in the form:

P~v!5P0~v!j~p;s!, ~30!

where the soliton power in homogeneous media,P0(v), is
defined by Eq.~21!. Although bright solitons do not exist in
defocusing homogeneous media, Eqs.~21! and~30! can still
be used for both types of bulk nonlinearity, i.e., forr561.
The functionalj(p,s) changes monotonically with the pa
rameterp, so thatr(]j/]p).0. In the linear limit whena
.0 and v→v0 the mode power vanishes and th
j(21;s)50. Furthermore, for a self-focusing bulk mediu
(r511) the identity j(2p;s)522j(p;s) holds. Thus
j(0;s)51 and j(1;s)52. The functionalj(p;s) cannot
be expressed in elementary functions, but must be calcul
numerically.

Let us outline some general properties of the symme
modes: Consider first linearly attractive impurities (a.0)
and the low-intensity limit when the mode frequency is clo
to the cutoff v0. From Eq. ~26! we find the nonlinearity-
induced frequency shift

S v

v0
21D.H b2G~11s!Gv0

G21/2u11puG, G,1

2~11p!, G.1.
~31!

It follows that forG.1 the sign of the shift depends only o
the bulk nonlinearity: the frequency is shifted up in se
focusing bulk media (r511) and down in self-defocusing
bulk media (r521). For G,1 the shift depends only on
the defect nonlinearity: the frequency is shifted up whenb
.0 and down whenb,0. However, Eq.~31! presents only
an asymptotic result valid at vanishingly small intensities
simple graphical analysis of Eq.~26! demonstrates that com
petition of the defect and bulk nonlinearities forrb,0 can
lead to a more complicated~e.g., multivalued! structure of
the power dependenceP(v).

Second, we analyze the properties of high-freque
modes in self-focusing media (r511). Analysis of Eq.~26!
reveals that such modes always exist. Substituting appr
mate solutions forp(v) when v→` into Eq. ~29! we find
the power of the high-frequency modes

P~v!→H P0~v!~12bCvG21/2!, G<1/2

Pi~v!, G.1/2 and b.0

2P0~v!, G.1/2 and b,0,

~32!

whereC is a frequency-independent positive coefficient.
follows from Eq.~32! that for a nonlinearly repulsive defec
(b,0) we haveP(v).P0(v) and thus the high-frequenc
symmetric modes have two humps and are unstable.
nonlinearly attractive defects (b.0) the modes have on
hump, i.e.,21,p,0. It is straightforward to check usin
Eq. ~28! that under these conditionsG1.G0.G1

cr , and
therefore according to Table I the mode stability follows
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rectly from the power slope. In particular, ifG,1/2 then the
nonlinearity of the bulk is effectively stronger than that
the defect, so that the localized modes resemble the soli
in homogeneous media, which are stable fors,2. In the
opposite case,G.1/2, the modes resemble the nonlinear d
fect modes of linear media, which are stable forg,1. Com-
bining these results we come to the conclusion: Symme
localized modes supported by a nonlinearly attractive im
rity (b.0) in a self-focusing bulk medium are stable in th
high-frequency limit ifs,2 andg,1 simultaneously.

Finally, we study the properties of high-frequency loca
ized modes in self-defocusing bulk media (r521). In this
case Eq. ~26! has solutions for v→1` only for a
‘‘strongly’’ nonlinear attractive impurity withG.1/2 and
b.0 or G51/2 andb.bcr52/A11s ~the modes can also
exist if G51/2, b5bcr, anda.0, but we will not consider
this special case!. The corresponding modes have the sa
properties as in a self-focusing bulk medium, because
bulk nonlinearity acts only as a small perturbation. In p
ticular, Eq. ~32! can be used to determine the mode pow
~but the sign of the constantC is not fixed!. On the other
hand, according to Eq. ~28! we have G12G1

cr

522Av@s/p1p(2g2s)#22ga.0 for v@1, and there-
fore the mode stability follows from the power slope.

2. Asymmetric nonlinear modes

Asymmetric modes can exist in self-focusing bulk med
when the impurity response vanishes,G(I 0)50. This is pos-
sible whenab,0 and the mode intensity at the defect site
I 05ua/bu1/g. Then, the spatial shiftx0 is given by the rela-
tion

cosh~sAvx0!5A0
s/I 0

s/2. ~33!

Asymmetric modes bifurcate from the symmetric modes
the bifurcation pointvb5I 0

s/(11s) whenA0
25I 0 and they

exist for higher frequencies only. An asymmetric mode
actually a soliton trapped by the defect and is therefore o
stable fors,2. However, the trapping@defined by the con-
dition G0(I 0)50] is stable if G152bgI 0

g,0 ~see Sec.
III C !, which is satisfied for nonlinearly repulsive impuritie
with b,0.

V. SELF-FOCUSING MEDIUM

In this section we present a detailed numerical analysi
the nonlinear impurity modes for power-law nonlinearities
a self-focusing bulk medium (r511). The self-defocusing
bulk medium is treated in Sec. VI. We term the impuri
attractive when it supports a localized mode in the line
limit ( a.0) and has a self-focusing~attractive! nonlinear
response (b.0). This case is considered in Sec. V A. Th
same impurity, but with a self-defocusing nonlinear respo
(b,0) is termed a mixed impurity that supports line
modes~see Sec. V B!. The case when the defect is repulsi
in the linear limit (a,0) but may become attractive fo
larger intensities (b.0) due to its nonlinear properties is th
most complicated. This mixed impurity with attractive no
linearity is investigated in Sec. V C. When botha andb are
negative the properties of localized modes in self-focus
bulk media are trivial: they always have two-hump symm
ric profiles and are therefore always unstable.
1-7
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ANDREY A. SUKHORUKOV et al. PHYSICAL REVIEW E 63 036601
A. Attractive impurity

Let us consider self-focusing bulk media (r511) and
defects that support localized modes in the linear limita
.0). In this case the symmetric mode branch on theP(v)
diagram always starts atv5v0, whereP vanishes. As fol-
lows from the stability analysis this point is critical, an
therefore the localized modes are always stable in its c
vicinity, see Figs. 2 and 3. However, for higher frequenc
v the properties of the localized modes depend on the c
acteristics of the nonlinearity, determined by the powersg
ands and the coefficientb.

FIG. 2. Power vs frequency diagram forg/s51 and two char-
acteristic mode profiles corresponding to the points~a! and ~b!.
Dotted curve: powerPi(v) of impurity modes in linear bulk media
Parameters:s51, g51, a52, andb51.

FIG. 3. Power vs frequency diagram forg/s51/4. Solid and
dashed thick curves show stable and unstable modes, respect
Thin dashed curve: soliton powerP0(v). Thin dotted curve: power
Pi(v) of impurity modes in linear bulk media. Modes correspon
ing to points~a! and ~b! are shown below. Parameters:s54, g
51, a52, andb50.1.
03660
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We first consider the influence of defect nonlineariti
that enhance the attraction (b.0). In this case the asymme
ric modes do not exist. For the symmetric localized states
always havex0,0 and, as follows from Eq.~28!, G1.G0

.G1
cr , so that the VK criterion@23# applies according to

Table I. To illustrate the general results given in Sec. IV
we present examples in Figs. 2 and 3, and the stability
gram in Fig. 4. Localized modes always exist above cuto
v>v0, and the functionalP(v) is single-valued. Such a
behavior is observed because both the defect and the
medium have self-focusing nonlinearities, which induce
positive frequency shift, as mentioned earlier.

The parameters for Figs. 2 and 3 correspond to qua
tively different cases. Forg/s.1/2 ~Fig. 2! the defect non-
linearity is effectively stronger than the bulk nonlinearit
and thus the modes resemble the nonlinear defect mode
linear bulk media. Sinceg ands do not exceed their critica
valuesgcr51 andscr52 @see Fig. 4, point~a!#, all modes
should be stable. Forg/s,1/2, the high-frequency symmet
ric modes resemble the solitons of homogeneous media@see
Fig. 3~b!#. Therefore these modes are unstable if the b
nonlinearity is supercriticals.scr @see Fig. 4#.

To study the instability-induced dynamics of symmet
localized modes we solve Eq.~1! numerically with slightly
perturbed modes as an initial condition. Depending on
perturbation, two different scenarios are possible. If
power is initially decreased, then the mode spreads out
transforms into a lower-frequency stable mode, as show
Fig. 5~a!. We note that this switching process is accompan
by some power loss due to radiation. An initial increase
the mode power can lead to collapse if the nonlinear s
focusing dominates the linear diffraction. Figure 5~b! shows
a collapsing mode, whose amplitude goes to infinity in
finite time due to the effect of a supercritical bulk nonlinea
ity, s>2, even though the collapse occurs at the impur
site. This collapse instability was earlier investigated for u
form nonlinear media@27#, with many of the general feature
applying to the impurity modes as well. For example, t
collapsing solution typically consists of a slowly evolvin

ely.

-

FIG. 4. Stability regions for symmetric localized modes wi
a.0 andb.0 in self-focusing media (r511). I: the modes are
stable and exist forv.v0; II: stable modes exist only near cuto
v.v0. Points~a! and~b! correspond to the cases shown in Figs
and 3, respectively.
1-8
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background and a highly localized central part having
almost self-similar profile.

B. Mixed impurity that supports linear modes

We now consider defects that have a repulsive nonline
ity, b,0 ~and still a.0). Due to the competition betwee
focusing bulk and defocusing defect nonlinearities the po
functional of the symmetric modes can become multivalu
with two or three states having the same frequency~see Figs.
6 and 7!. Such states can even exist below the linear cu
frequency, i.e., forv,v0. This is always possible forg
,s, because the branch starting at the critical pointP50
has a negative slope~still stable sinceG1,G1

cr), and then the
slope changes sign as the branch goes through another
cal point, as shown in Fig. 7. Forg.s the initial slope is
positive, but then the branch can go through two criti
points, which appear ifb,bcr ~see Fig. 6!, where

bcr52uau122G
~G21!

~2G21! U 2~2G21!2

~11s!G2~G21!
UG

. ~34!

The branch of asymmetric modes emerges at the bifu
tion point whereP(v) coincides with the power of soliton
in homogeneous media,P0(v) ~open circles in Figs. 6 and
7!. As demonstrated in Sec. IV C the stability of asymmet
modes forb,0 is the same as that of solitons in bulk med

FIG. 5. Evolution of an unstable mode@Fig. 3~b!# with the input
power decreased~a! or increased~b! by 0.1%. Two different sce-
narios of the instability-induced mode dynamics are observed:~a!
switching from an unstable to a stable state, and~b! collapse in-
duced by the bulk nonlinearity.
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~see Sec. IV A!, i.e., the modes are stable fors,2 and un-
stable otherwise. After the bifurcation point, i.e., forv
.vb , the symmetric localized mode becomes two-hump
and therefore unstable.

In Figs. 8~a! and 8~b! we show the evolution of two-hump
symmetric modes when the bulk nonlinearity is sub- a
super-critical, respectively. In both cases a symmetry bre
ing occurs, and the mode is repelled to one side of the de
In case~a! a stable asymmetric state is excited~as s,2),
leading to a slowly decaying quasiperiodic beating. On
other hand, if bright solitons are unstable, the mode collap
in the bulk medium as shown in Fig. 8~b!. Note that the

FIG. 6. Power vs frequency diagram forg.s (s51, g52,
a52, b521, and bcr.20.21). Solid and dashed thick curve
show stable and unstable localized modes, respectively. O
circle: bifurcation point from symmetric~S! to asymmetric~AS!
modes. Thin dashed curve: soliton powerP0(v). The modes cor-
responding to points~a!, ~b!, and~c! are shown below.

FIG. 7. Power vs frequency diagram forg,s (s52, g51).
Parameters and notations are the same as in Fig. 6. Dotted c
impurity mode power in a linear medium,Pi(v).
1-9
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ANDREY A. SUKHORUKOV et al. PHYSICAL REVIEW E 63 036601
amplitude at the impurity always remains finite due to t
repulsive nonlinear response of the defect.

C. Mixed impurity with attractive nonlinearity

We finally consider the most complicated case of a l
early repulsive, but nonlinearly attractive defect (a,0, b
.0). Some properties of the symmetric localized modes
revealed by the symmetry constraints following Eqs.~26!
and ~30!. Specifically, under an inversion of the defect r
sponse, (a,b)→(2a,2b), the normalized shiftp(x0) and
power P change as follows:p→2p and P(v)→2P0(v)
2P(v). Applying this transformation to the casea,0 and
b.0 and using the results obtained above, we find that
branch of symmetric localized modes in theP(v) functional
starts at the pointP(v0)52P0. In the vicinity of this point
the symmetric modes are unstable becausex0.0 ~see Figs.
9, 10, and 11!. At the bifurcation point~open circle! the
family of asymmetric modes emerges, having the sa
power as solitons in a bulk medium,P0(v). The symmetric
modes have one-hump profiles after the bifurcation.

FIG. 8. ~a! and ~b! Evolution of perturbed unstable two-hum
symmetric localized modes shown in Figs. 6~c! and 7~c!, respec-
tively. In ~a! the mode transforms into a stable asymmetric mode
~b! the transition occurs to an unstable asymmetric mode, wh
subsequently collapses in the bulk medium.
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The stability of symmetric one-hump localized modes d
pends on the nonlinearity characteristics. Since we havb
.0 and x0,0, it follows from Eq. ~28! that G1.G0

.G1
cr , and stability is determined by the power slope a

cording to Table I. In particular, as demonstrated in S
IV C, the modes are stable in a range of frequencies unl
ited from above ifs,2 andg,1 ~see, e.g., Fig. 9!. This
parameter region I in Fig. 12 is identical to that fora.0 ~see
Fig. 4!; the mode properties are also similar, because in
limit v@v0 the linear response of the defect acts as onl
small perturbation. However, there is an important diffe
ence: while fora.0 the modes are always stable forv
.v0, this is not so for a linearly repulsive impurity. Al
though in the latter case the high-frequency modes are
unstable if the nonlinearity powers exceed critical values,
found that for the nonlinearity parameters corresponding

n
h

FIG. 9. Power vs frequency diagram fors51, g50.5, b51,
anda522. Notations are the same as in Fig. 6.

FIG. 10. Power vs frequency diagram fors51, g51.5, b
50.01, andbmax.0.0262. Parameters and notations are the sam
in Fig. 9.
1-10
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NONLINEARITY AND DISORDER: CLASSIFICATION . . . PHYSICAL REVIEW E63 036601
regions II or III in Fig. 12 the modes can still be stabilized
some frequencies.

The first mechanism of stabilization in a bounded f
quency region above the bifurcation frequencyvb is realized
when the modes are close to stable solitons~for s,2) @see
Fig. 10#, and the strength of the defect is relatively we
~region II in Fig. 12!. This is possible if the nonlinearity
coefficient does not exceed a threshold value, which can
calculated from the condition (dP/dv)v5vb

.0,

0,b,bmax5
uau

~11s!G F ~22s!22/sGS
2~1/s!

4guauGS~2/s!
G2G

. ~35!

On the other hand, ifs.2 the modes can be stabilized b
the attractive defect nonlinearity, as demonstrated in Fig.
provided the impurity supports noncollapsing highly loc

FIG. 11. Power vs frequency diagram fors52.5, g50.5, b
53.3, andbmin.3.17. Parameters and notations are the same a
Fig. 9.

FIG. 12. Stability regions of localized modes for impurities wi
a.0 andb.0 in self-focusing bulk media. I: the modes are stab
for frequencies above a threshold,v.v th ; II and III: stable local-
ized states can exist in a bounded frequency range. In the re
without shading all modes are unstable. Parameter values at p
~a!, ~b!, and~c! correspond to Figs. 9, 10, and 11, respectively.
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ized states~i.e., for g,1, see region III in Fig. 12!, and has
a sufficiently strong nonlinearity,b.bmin . The minimum
value bmin cannot be determined analytically. Its charact
istic dependencies ons for several values ofg are shown in
Fig. 13.

As demonstrated in Sec. IV C the asymmetric modes
unstable forb.0 with respect to a translational shift alon
the x axis. To study the development of this instability w
perform numerical simulations. The results confirmed t
the mode is either attracted or repelled by the impurity,
pending on the type of perturbation, as illustrated in Fi
14~a! and 14~b!, respectively. These examples correspond
the case of subcritical defect and bulk nonlinearities, a
thus the mode eventually transforms into a stable impu
mode or a moving soliton. However, for stronger nonlinea
ties the instability induced dynamics can result in a collap

VI. SELF-DEFOCUSING MEDIUM

In this section we consider self-defocusing bulk med
(r521). In contrast to self-focusing bulk media inves
gated above, bright solitons cannot exist in homogene
self-defocusing bulk media, and thus localized modes app
solely due to the presence of the impurity, having alway
one-hump profile. Again we consider the different cas
separately.

A. Attractive impurity

First we consider attractive defects with botha.0 and
b.0. It follows from the analysis presented above that
calized modes exist and are stable near the cutoff freque
v.v0. For defects with a purely linear response (g→0)
there exists a single branch of localized solutions on
P(v) diagram in the region 0,v<v0. This case was con
sidered in Ref.@20# for s51.

Remarkably, defects with a nonlinear response can s
port localized modes with frequencies above the linear cu
frequency. Indeed, as we demonstrated in Sec. IV C, the
tial slope of theP(v) functional for weakly nonlinear mode
is determined by the nonlinearity of the impurity forG,1. If
G,1/2 the branch goes through a critical point and dis

in

on
nts

FIG. 13. Parameterbmin versus bulk power nonlinearitys for
g50.1 ~dotted!, 0.5 ~solid!, and 0.8~dashed!.
1-11
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ANDREY A. SUKHORUKOV et al. PHYSICAL REVIEW E 63 036601
pears asv→0 @see Fig. 15~c!#, while the powerP remains
bounded fors,2, and is unbounded fors.2. For 1/2,G
,1 the critical point appears only forb,bcr , wherebcr is
defined by Eq.~34! @see Fig. 15~a!#.

If the nonlinear response of the impurity is effective
stronger than that of the bulk, highly localized hig
frequency modes can exist. As was found in Sec. IV C t
occurs forG.1/2. These modes have the powerP.Pi(v)
whenv@v0, and are thus stable forg,1 ~region I in Fig.
16!. The mode frequency is bounded from below,v
.vmin , for b.b0, where

b0~a,s,G!5
uau

u2G21u~11s!G U2G21

aG U2G

, ~36!

as shown in Fig. 15~b!. For b,b0 the functionalP(v) has
two branches originating atv50, with the upper branch
corresponding to the highly localized modes discus
above. The lower branch approaches the linear limitP(v0)
50 and has initially a negative slope, which changes at
critical point for 1/2,G,1, as shown in Fig. 15~a! ~consis-
tent with the inequalityb0,bcr).

FIG. 14. ~a! and ~b! Evolution of the perturbed asymmetri
mode shown in Fig. 9~b!. ~a! Attraction by the impurity and trans
formation into a stable symmetric mode.~b! Repulsion by the im-
purity and transformation into a moving soliton.
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To clarify some features of unstable modes in this ca
we perform numerical simulations for the mode correspo
ing to the marked point in Fig. 15~a!. We find that all small
perturbations result in switching to a more localized state
the same~upper! branch, as illustrated in Fig. 17~a!. How-
ever, if the power is decreased below the minimum of
upper branch, the mode evolves towards a stationary m
of the lowest branch@see Fig. 17~b!#. In this case a substan
tial amount of power is radiated away due to the gap betw
the two branches.

B. Mixed impurity that supports linear modes

When both the bulk and defect have a self-defocus
nonlinear response (r521, b,0) low-intensity localized

FIG. 15. Power vs frequency diagrams for~a! 1/2,G,1 (s
51, g50.7, b50.52, bcr.0.603, andb0.0.533); ~b! G.1 (s
51, g51.5, b50.11, andb0.0.105); ~c! G,1/2 (s53, g51,
and b50.5). Notations are the same as in Fig. 3 anda52. The
marked point in~a! corresponds to an unstable solution whose
stability dynamics is illustrated in Fig. 17.
1-12
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modes can still exist when the linear attraction (a.0) domi-
nates the nonlinear delocalization effect. In this case
nonlinearity-induced frequency shift is negative~see Sec.
IV C! and the localized solutions exist for frequencies bel
the linear cutoff, v,v0. The corresponding dependen
P(v) is single-valued, as demonstrated in Fig. 18. In

FIG. 16. Stability regions of localized modes for defects w
a.0 andb.0 in defocusing media. I: modes exist and are sta
at both low and high frequencies; II: stable modes exists only c
to and below the linear cutoffv.v0. Points~a!–~c! correspond to
Figs. 15~a!–~c!, respectively.

FIG. 17. Evolution of a perturbed asymmetric impurity mo
corresponding to the marked point in Fig. 15~a!. ~a! Switching to a
higher-frequency mode of the same branch.~b! A reduction of the
power by 5% leads to transformation to a broader low-freque
mode of a lower branch.
03660
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limit v→0, the power remains finite ifs,2, but is un-
bounded otherwise. It follows from Eq.~28! that G1,G0

,G1
cr , and therefore according to Table I the correspond

localized modes are always stable.

C. Mixed impurity with attractive nonlinearity

Finally, we consider the case when localized modes
not exist in the linear limit. i.e., whena,0 andb.0. As
was pointed out above, the properties of localized mo
depend on the relative strength of the bulk and defect n
linearities, characterized by the ratioG. We have analyzed
Eq. ~26! and found that in the case of a ‘‘strong’’ defect wit
G.1/2 the modes exist for all frequenciesv.0, and corre-
spond to a single branch in theP(v) diagram, which asymp-
totically approachesPi(v) at high frequencies, according t
Eq. ~32! @see Fig. 19~a!#. Thus these modes are stable abo
a certain cutoff,v.vs , only if the impurity supports stable
modes, i.e., forg,1. This parameter range corresponds
region I in the diagram shown in Fig. 20. Note that forv
@v0 the linear impurity response is negligible and the mo
characteristics should not depend on the sign ofa. Indeed,
we see that region I is the same in the cases shown in
Fig. 16 and Fig. 20.

For G,1/2 ~region II in Fig. 20! the modes only exist if
the nonlinearity of the impurity exceeds the threshold va
defined by Eq.~36!, i.e., for b.b0. Then P(v) has two
branches, which appear atv50 and merge again at the crit
cal pointvc , as shown in Fig. 19~b!. From the properties of
the critical points discussed in Sec. III we conclude that
stable modes correspond to~i! the upper branch (0,v
,vc) and ~ii ! part of the lower branch close tovs , for
which the slopedP/dv is positive.

VII. COLLAPSE DYNAMICS

A. Virial relation

The nonlinearity-induced energy localization is a fund
mental physical problem. The localization can occur in t
form of stationary nonlinear impurity modes, and it is esse
tial to understand the underlying physical mechanisms le
ing to localized states. A very efficient way for energy loca
ization is the so-called collapse~or ‘‘blow-up’’ ! dynamics

e
e

y

FIG. 18. Power vs frequency diagram fors51, g51, a52,
andb521. Dotted curve: asymptotic given by the powerPi(v) of
linear impurity modes.
1-13
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when, under certain conditions, nonlinear self-focus
dominates over diffraction, leading to an unlimited growth
the field intensity in a finite time. In real physical system
the actual ‘‘blow-up’’ never occurs, however, the initial co
lapse dynamics can be correctly described in the framew
of the continuous model equations, as long as the co
sponding assumptions are not violated.

FIG. 19. Power vs frequency diagram for defocusing bulk me
with a522 andb53. ~a! s51 andg50.8; ~b! s53, g51, and
b0.2.38. Dotted curve: asymptotic given by the powerPi(v) of
linear impurity modes.

FIG. 20. Stability regions for localized modes witha,0 and
b.0 in a defocusing medium. I: the modes are stable for frequ
cies above a certain threshold; II: localized modes can exist an
stable in a bounded region of frequencies. In the region with
shading localized modes exist for allv.0, but are unstable. The
points~a! and~b! correspond to Figs. 19~a! and 19~b!, respectively.
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In this section we briefly discuss the collapse dynamics
the frame of our model equations~1!,~2! and derive sufficient
conditions for collapse in the presence of an impurity. F
the sake of simplicity, we are considering the case of
power-law nonlinearities, as introduced in Sec. IV C.

Studying the collapse-induced effects due to a nonlin
impurity, we distinguish two cases:~i! collapse in a bulk
medium, away from the impurity site, and~ii ! collapse at the
impurity site. In the first case, the impurity acts similar to
small perturbation, and thus collapse can occur if the po
of the nonlinearity exceeds the critical value for a homog
neous self-focusing~i.e.,r511) bulk medium,scr52 @27#.
We note that, for the case of a nonlinearly repulsive impur
~e.g.,b,0) at high intensities, the maximum field amplitud
is always achieved away from the impurity site so that c
lapse can only occur in the bulk, see, e.g., Fig. 8~b!. Collapse
at the impurity site can only take place if the impurity po
sesses attractive nonlinearity~i.e., b.0). We hereafter con-
sider this case.

In order to analyze the collapse conditions, we assu
that the initial profile of the impurity mode is symmetric, an
thereforec(x)5c(2x) at all t>0 due to the symmetry o
Eq. ~1!. Then, the effective mode widthR can be defined as
follows:

R2~ t !5
1

PE2`

1`

x2uc~x,t !u2dx. ~37!

We determine the temporal evolution ofR(t) by following
the standard procedure@27# and derive the so-called viria
relation:

P
d2~R2!

d t2
58H14aI 014r

~22s!

~11s!
E

2`

1`

ucu2s12dx

14b
~12g!

~11g!
I 0

g11 , ~38!

whereP and H are the power and Hamiltonian defined b
Eqs.~3! and ~4!, respectively, whileI 05uc(0,t)u2 here des-
ignates the intensity at the impurity site. BecauseP and H
are conserved quantities, Eq.~38! can be integrated when th
powers of the nonlinearities attain the critical values:scr
52, gcr51, and linear defect response vanishes (a50):

R~ t !5AR0
214t2~H/P!, ~39!

whereR0 is the width of the input mode, and we assume th
the initial mode profile does not have a phase modulation
H,0, it immediately follows that the mode width decreas
and eventually vanishes at a finite time, indicating that
peak intensity goes to infinity since the powerP is con-
served, thus the energy collapses to a single point, the im
rity site. Therefore a negative value of the Hamiltonian is
sufficient condition for collapse in this case.

If the power of the impurity nonlinearity is enhanced, i.e
g.gcr , the corresponding term on the right-hand side of E
~38! becomes negative, indicating an increase in the colla
growth rate. Increasing the power of bulk nonlinearity abo

a

-
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t
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the critical value,s.scr for r511, or decreasing the self
defocusing response,s,scr for r521, we observe a simi-
lar effect. In all these cases, the relationH,0 remains a
sufficient condition for collapse. The same argument ho
for a defect with linearly repulsive response,a,0. On the
other hand, as we have demonstrated in the previous
tions, a linearly attractive defect can support stable locali
modes which do not exhibit collapse. In this case, and m
generally when at least one of the last three terms on
right-hand side of Eq.~38! becomes positive, we cannot d
rectly use the virial relation to predict the collapse con
tions.

B. Collapse conditions

In order to predict whether collapse is possible for ar
trary values of the nonlinearity parameters we may emp
the connection between the collapse dynamics and the p
erties of stationary localized modes. First, we note that
the stationary solutions the right-hand side of Eq.~38! is
identical zero. For the critical case a perturbation of the
lution that makesH negative will result in a collapse. Thu
the collapse may occur when the high-frequency symme
localized modes are unstable. Indeed, in the limit of h
intensities we can neglect the linear impurity response
taking a50, and then an exact collapsing solution can
obtained~at s52 andg51) in the form:

c~x,t !5Al~ t ! u@l~ t !x#eiu(x,t),
~40!

u~x,t !5vCl~ t !2x2l~ t !/~4C!,

wherel(t)5C(t02t)21, C is an arbitrary positive constan
t0 is the collapse time, andu(x) is the profile of a stationary
localized mode with the frequencyv. Although the solution
~40! is unstable and therefore does not describe the ac
collapse dynamics, it demonstrates a link between the
tionary modes and the collapse phenomenon. Moreover
a homogeneous self-focusing medium it was proved tha
unstable soliton will collapse if its power is slightly in
creased~see, e.g., Ref.@29#!. Then, we arrive at the follow-
ing statement: Collapse at the nonlinearly attractive impu
can be observed if and only if the stationary symmetric i
purity modes exist in the limit of high frequencies and th
power is bounded from above, i.e.,P(v→1`),Pmax,
wherePmax is a constant. We note, however, that the stati
ary modes themselves are not necessarily unstable in the
with the critical power of the impurity nonlinearity, as the
power may asymptotically approach a constant from be
~see the example in Fig. 2!. Finally, using the mode proper
ties derived in Sec. IV C, we determine the parameter
gions where collapse can occur~as before, we do not con
sider the special caser521, s52g, b52/A11s, and
a.0!, and summarize these results in Table III.

C. Collapse suppression

The infinite growth of the field amplitude that results fro
the collapse dynamics would not occur in a real physi
system. However, in the framework of the model~1!,~2! we
observe that collapse can be induced by an impurity eve
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a standard nonlinear Kerr medium, i.e., whens5g51, as
demonstrated in Fig. 21~a!. The final stage of self-focusing
preceding the ‘‘blow-up,’’ should be described by modifie
equations that take into account some additional phys
effects which can no longer be neglected when the colla
is approached. Below, we consider two possible mechani
for such a collapse suppression.

The first example is self-focusing of spatial nonline
guided optical modes supported by a thin nonlinear wa
guide embedded in a bulk Kerr medium. When the field
calization becomes very high, the delta-function can
longer be used to approximate the layer response, and
the nonlinear response should be modified as follows

F~ I ;x!5H I , uxu.d/2

ã1b̃I , uxu<d/2,
~41!

whered is the layer width, and the layer response parame
are related to those used in the delta-function approximat
ãd5a and b̃d5b. As can be seen from Fig. 21~b!, a de-
crease of the mode width and a growth of the peak amplit
stop when the energy gets localized inside the nonlin
layer.

As the second example, we study the energy localiza
in an intrinsically discrete system such as a waveguide ar
It has been demonstrated that in homogeneous lattices
collapse and the infinite growth of the peak amplitude
always suppressed@30#. This happens due to the presence
a minimal transverse scale, the characteristic distanceh be-
tween the lattice sites or, for the present example, the w
of the individual waveguides in the array. Therefore wh
the width of the localized mode becomes comparable withh,
the evolution can no longer be described in the framework
the continuum approximation. Therefore the original mod
~1! should be modified to take the form of the discrete NL
type equation:

i
]cn

]t
1

~cn111cn2122cn!

2h2
1F~ I n ;n!cn50, ~42!

wheren is the site number. An example of the energy loc
ization in a discrete system is presented in Fig. 21~c!. When
the mode becomes narrow, its confinement is defined by

TABLE III. Collapse conditions.

Impurity response Bulk nonlinearity Collapse

arbitrary r511 ands>2 bulk

b.0 andg>1 r511
r521 ands,2g impurity

b.2/A11s andg>1 r521 andg528
b.0 andg,1 r511 ands>2

b,0 and/org,1 r521 and/ors,2 does not occur
b.0 r521 ands.2g
1-15
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ANDREY A. SUKHORUKOV et al. PHYSICAL REVIEW E 63 036601
discreteness, and the final state corresponds to breathe
oscillations near a stable stationary solution of a discr
model.

Finally, we note that the initial stage of the collaps
induced dynamics is the same for all three different mod
as is clearly seen in Fig. 22. It is also important to ment
that the power of the high-frequency stationary localized
lutions of the modified models~41!,~42! is no longer limited,

FIG. 21. Comparison of different types of the collapse-induc
dynamics.~a! Impurity-induced collapse, the continuum model~1!
for a self-focusing Kerr medium (s5g51, a52, andb50.55);
~b! Collapse suppression for a layer of a finite width (d50.02); and
~c! Collapse suppression due to the model discreteness (h.0.02).
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and thus the observation of collapse suppression comple
agrees with our general criterion introduced in Sec. VII B

VIII. CONCLUSIONS

We have analyzed spatially localized nonlinear mod
supported by a pointlike impurity, in the framework of th
generalized nonlinear Schro¨dinger equation. We have con
sidered three possible types of such nonlinear impu
modes, i.e., symmetric one- and two-hump modes and as
metric one-hump mode, and described their regions of e
tence and stability, for both focusing and defocusing non
earity of a bulk medium and two different~attractive or
repulsive! types of the impurity. In particular, we have ob
tained an analytical stability criterion for nonlinear localize
modes based on the results of the linear stability analysi
the generalized NLS equation. For more specific phys
applications, we have presented a detailed analysis of
nonlinear impurity modes and their stability in the case
the power-law nonlinearities in both the medium and defe
and discussed several scenarios of the instability-induced
namics of the nonlinear impurity modes. In particular, w
have described a novel physical mechanism of the ene
localization due to the impurity-induced collapse of a no
linear mode at the defect site, which can occur when
power of nonlinearity in the defect exceeds a critical va
~i.e., g>1); this effect can be observed for the Kerr mediu
as well.

The problem we have analyzed above has a numbe
important physical applications ranging from the nonline
dynamics of solids to the theory of nonlinear photonic cry
tals and waveguide arrays in nonlinear optics. In particu
our results can be linked to different special cases of
theory of nonlinear guided waves in layered dielectric med
and they also provide a generalization of the theory of n
linear impurity modes in solids, together with a systema
classification of nonlinear impurity modes and the analy
of the mode stability and its instability-induced dynamic
Additionally, this problem can be considered as one of
first steps towards a deeper understanding of the compet
between two different physical mechanisms of energy loc

d

FIG. 22. Evolution of the field intensity at the nonlinear imp
rity corresponding to the plots shown in Fig. 21~a!, solid; Fig.
21~b!, dotted; and Fig. 21~c!, dashed, respectively.
1-16
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ization. In particular, we have presented our results emp
sizing the cases where one can observe a clear eviden
competition between the disorder- and nonlinearity-indu
localization.
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