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Abstract: Improvements in signal-to-noise ratio (1.2 dB) and transmission reach (16 %) are 

demonstrated for dual-polarization WDM 16-QAM signals through nonlinearity compensation by 

optical phase conjugation in a silicon waveguide with a lateral p-i-n diode. 
OCIS codes: (190.4380) Nonlinear optics, four-wave mixing, (060.0060) Fiber optics and optical communications, 

 

1.  Introduction 

The continuous increase of throughput in optical communication systems driven is currently facing the strong 

challenge of Kerr nonlinearity distorting optical signals during fiber transmission. There is today a lack of effective 

methods to deal with nonlinear distortion, and hence, nonlinearity mitigation and compensation techniques for 

optical communication systems have been receiving a significant research attention over the past years with a dual 

focus on digital and all-optical techniques. Digital techniques can provide effective compensation within the analog 

bandwidth of high-speed electronics, i.e. limiting their effectiveness to intra-channel effects. However, all-optical 

approaches provide the tools to tackle Kerr effects over broader bandwidths, naturally extending the nonlinear 

compensation to include inter-channel interaction. Among the all-optical approaches, optical phase conjugation 

(OPC) has a strong potential, as it can be easily implemented through four-wave mixing (FWM) in nonlinear media. 

Impressive demonstrations have already been reported using highly nonlinear fibers [1,2], periodically poled lithium 

niobate [3] and some preliminary results have been shown in a silicon waveguide [4,5]. Nonlinear devices based on 

silicon are particularly beneficial for future integration. However, in [4,5] the polarization sensitivity of the device 

limited the demonstrations to single-polarization operation. 

In this work, we overcome this limitation with a polarization-diversity scheme using a single silicon waveguide 

to perform dual-polarization OPC. The silicon waveguide has a lateral p-i-n diode for mitigating free-carrier effects, 

thus increasing the FWM conversion efficiency [6]. Using such an OPC scheme, improvements in signal-to-noise 

ratio (SNR) and transmission reach are demonstrated for dispersion-managed transmission of five wavelength 

division multiplexed (WDM) dual-polarization (DP) 16-quadrature amplitude modulation (QAM) channels. 

2.  Experimental setup 
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Fig. 1. Experimental setup for the transmission measurements comparing straight transmission to OPC-based transmission. Insets: i) schematic structure of the 

waveguide with lateral p-i-n diode and ii) optical spectra (red) and CW CE (blue) at port 3 of the circulator in the OPC. 

The experimental setup is shown in Fig. 1. Five external cavity lasers (ECLs) on a 25-GHz grid are modulated in 

two IQ modulators (one for even and one for odd channels) with 16-QAM data at 16 GBd. Polarization multiplexing 

is emulated and the polarization is scrambled. The channels are launched into a recirculating transmission loop (total 

loop length of 161 km) consisting of three dispersion-managed spans of standard single mode fiber (SMF) and 

dispersion compensating fiber (DCF) with lumped erbium-doped fiber amplifiers (EDFAs). Acousto-optical 

switches enable selecting either the OPC path (switch #3) or simple EDFA-based amplification (switch #2).  
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The OPC is based on a single-pump (1545.3 nm, 22 dBm pump power) FWM stage in a 3-cm silicon waveguide 

with a lateral p-i-n diode as in Fig. 1(i). The waveguide, fabricated in the BiCMOS pilot line of IHP [5,6], is 

characterized by an insertion loss of 11.5 dB at -30 V of reverse bias applied to the diode. The low propagation loss 

(<1 dB/cm) and lateral diode enable an output conversion efficiency (CE) of -15 dB. The conversion bandwidth is 

approx. 13 nm (Fig. 1(ii)) and no optical signal to noise ratio (OSNR) degradation is observed after conversion. The 

grating couplers are strongly polarization sensitive, requiring the use of a polarization-diversity scheme to enable 

processing of DP signals. The two signal polarizations are split and counter propagated in the same waveguide 

resulting in two counter-propagating co-polarized FWM processes taking place. At the output of the polarization-

diversity loop, the two signal polarizations are recombined with stable relative phase. The DP conjugate idlers are 

selected by optical bandpass filters (OBPFs) and further transmitted in the recirculating loop before being received 

in a pre-amplified coherent receiver based on 80-GSa/s analog-to-digital (A/D) converters followed by offline 

digital signal processing (as listed in Fig. 1). 

3.  Transmission results 

The signal performance after transmission has been evaluated in terms of mutual information (MI) and received SNR 

estimated from the received waveforms as in [7]. MI and SNR are measured as functions of the launched power into 

each transmission span and comparison between straight (no OPC) and OPC (OPC after three loop turns) transmission 

is shown in Fig. 2. OPC shifts the optimum launched power by approx. 3 dB and enables an increase of 0.4 bit/4D 

symbol in MI and of 1.2 dB in SNR for 966-km transmission (OPC after 483 km). Additionally, after 1127-km of OPC 

transmission (7 loop turns, OPC still after 483 km), the signal quality is still higher than for straight transmission after 

966 km, resulting in a transmission reach extension of 16 %. Finally, the constellation diagrams of Fig. 2(c) further 

highlight the signal quality improvement by the nonlinearity compensation achieved by OPC in the silicon waveguide. 
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Fig. 2.  Estimated receiver MI (a) and SNR (b) of the central WDM channel for straight and OPC-based transmission. c) Constellation diagrams 

for 966-km straight (blue, bottom) and 966-km OPC-based (red, top) transmission at a launched power of +6 dBm. 

4.  Conclusions  

A dual-polarization OPC scheme using a silicon waveguide with a lateral p-i-n diode enables nonlinearity 

compensation of PDM data signals in a dispersion-managed transmission link. Signal-to-noise ratio and 

transmission reach improvements of 1.2 dB (SNR) and 16 % are reported, respectively, by using the OPC scheme. 
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