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ABSTRACT Impulsive noise plays an important role in power line communication among other applications.

To improve the communication performance, this paper proposes a novel design of nonlinear processing

which improves the fundamental performance of signal detection in impulsive noise. Power-law tails are

firstly introduced in nonlinearity design to provide adjustable decay factors for different distributions. Four

modes of nonlinearity functions are developed and analyzed. By taking the exponent and the threshold as

two arguments, we formulate the nonlinearity design as an optimization problem of maximizing the efficacy

function, which is the fundamental measurement for detecting a deterministic signal in impulsive noise.

Given that the efficacy function is differentiable, unimodal but without closed-form derivatives, we propose

to solve the optimization problem by derivative-free methods, e.g. the Nelder-Mead simplex method. As

concept demonstration, our method is used for three commonly-used distribution examples. Results show

that our nonlinearity design can achieve almost the same efficacy and detection performance as the locally

optimal detector, with the advantage of easy-to-apply closed form expressions.

INDEX TERMS Impulsive noise, signal detection, nonlinearity, power-law tail, numerical optimization.

I. INTRODUCTION

While Gaussian noise is generally encountered in most

systems, impulsive noise raises additional consideration for

some scenarios, e.g. long-wave communications and ultra-

wideband systems [1], [2]. Specifically, for power line com-

munication (PLC) technology, which is very attractive as a

smart grid application given such advantages as no addi-

tional installation costs [3], [4], the impulsive noise over the

PLC channel may severely deteriorate the communication

performance [5]. Although multi-carrier modulations, e.g.

the orthogonal frequency division multiplexing (OFDM),

are inherently more resistant to impulsive noise than

single carrier modulations, the counter measures to the

performance degradation caused by impulsive noise is

still a challenging research area for communication

engineers [6].

Impulsive noise possesses a unimodal probability density

function (PDF) that is similar to the Gaussian PDF, but

with significantly heavier tails. Up to now, various impulsive
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noise models have been developed and used in research and

applications, including the symmetric α-stable (SαS) distri-

bution [7], [8], theMiddleton Class A/B distribution [9], [10],

the Gaussian mixture model referring to as Bernoulli-

Gaussian random process [11], [12], Poission distribution

of Class A noise and Nakagami-m noise [13]. Recently,

a K -component Gaussian mixture model has been used to

approximate the Class A noise and the SαS noise [6]. A hid-

den Markov Middleton model was adopted to characterize

impulsive noise bursts [14].

For signal detection in impulsive noise, the maximum

likelihood detector (MLD) is optimal; however, it has high

computation complexity and needs prior knowledge of sig-

nal amplitude [15]. Therefore, investigators usually consider

the locally optimal detector (LOD) for its simple structure,

which contains two steps, i.e. nonlinear processing and linear

correlation [16]. In low signal-to-noise ratio (SNR), the LOD

can be almost optimal compared with the MLD. However,

the LOD for impulsive noise has the drawback that its non-

linear function is possibly unavailable in closed-form. For

instance, the SαS model and the Class A model do not admit

closed-form PDFs.
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Methods for impulsive noise suppression can be classified

into two categories. One kind is the zero-memory nonlinear-

ity (ZMNL) transformation, which is developed to replace the

nonlinearity of the LOD. Given a proper design, the ZMNL

functions can be near optimal. Besides, the ZMNL functions

are simple and easy to implement in traditional structures.

The other kind is adaptive filtering, which is usually designed

under a carefully chosen criterion, such as the least square cri-

terion [14], the minimum dispersion criterion [17], the max-

imum correntropy criterion [18], the logarithmic least mean

pth-power criterion [19].

This paper focuses on the ZMNL design. Generally,

the ZMNL function works like a limiter for large-amplitude

samples and consists of two basic regions, i.e. the linear

(or near-linear) region and the nonlinear tail. Usually, tra-

ditional nonlinearity is designed based on a specific noise

model, trying to optimize the breakpoint threshold under cer-

tain considerations, e.g. empirical generalization [20], output

SNR maximization [5], [21] [22], Neyman-Pearson criteria

[23], [24], the PDF analysis and approximation [25], [26], the

signal envelop and peaks [27], [28] [29].

However, as traditional nonlinearity designs emphasize

the evaluation of linear region thresholds, they ignore the

design of tails but preset them instead. The most widely-

used tails are the blanker and the clipper (or called soft

limiter) [8], [25], while other tails are also used, such as joint

blanking/clipping [5], multiple thresholds for blanking or

clipping [6], deep clipping [30], Gaussian tail [20], algebraic

tail [31], Cauchy tail [32]. These tails are proposed, inspired

from the tails of the LOD. Certainly, the LOD function has

the optimal ‘‘tail’’, which varies for different noise models.

However, up to now, researchers have not proposed an effec-

tive approach for approximating the tails of different noise

models.

A fixed tail cannot be optimal for every distribution. The

performances of existing tails vary greatly across different

distributions. For example, the clipper is worse than the

blanker in the Class Amodel, but better than the blanker in the

SαSmodel. Moreover, the algebraic-tailed ZMNL (AZMNL)

can approximate the LODnonlinearity of the SαS distribution

better than the blanker [26]. Our previous work has analyzed

the ZMNL designs based on algebraic tail [33] and Gaussian-

ization [34], both of which are only sub-optimal compared

to the LOD. It is demonstrated that the match between tails

and distributions is essential for nonlinearity in impulsive

noise.

The tail design provides extra gain over the base of

the threshold evaluation. In [35], we improved the Gaus-

sian tail design and obtained nearly optimal performance

for the SαS noise. Recently, two papers proposed new

nonlinear tails. In [6], piecewise attenuation and clipping

with multiple thresholds are developed for the K -component

Gaussian mixture model. But for practical applications,

the threshold number and the performance-complexity trade-

off may be a problem. In [21], the nonlinear function for

the SαS distribution is subject to the cumulative distribution

function (CDF) set. However, this design is only useful for

known signal amplitude.

This paper proposes to optimize the tail by the power-

law function in the nonlinearity design. The decay factor of

tails is varied by employing the power-law function xa for

a ≤ 0, so as to suit different distributions of impulsive noise.

Comparedwith traditional designs that optimize the threshold

T for fixed tails, our design optimizes an extra argument,

i.e. the exponent a. New parametric nonlinear functions are

developed in four modes with different properties.

To formulate the nonlinearity design, the objective func-

tion is defined by the efficacy function, which is closely

related to the output SNR as well as the detection perfor-

mance [21], [25]. Therefore, the design becomes an effi-

cacy optimization problem with respect to two arguments

(T , a). Analysis shows that the efficacy function is contin-

uous, differentiable, and unimodal with respect to T and

a, which makes the optimization problem convenient to

solve by numerical derivative-free methods [36], such as the

Powell’s method [37] and the Nelder-Mead simplex (NMS)

method [38], [39]. The solution algorithm will be provided

and simulated.

Our work in this paper is summarized as follows:

• First, we introduce the power-law tail for the nonlinear-

ity design in impulsive noise. Unlike traditional clipping,

blanking, or other fixed tails, the power-law function xa

can adapt a to vary its decay speed so that it can be

suitable for various distributions of impulsive noise.

• Second, the nonlinearity design is converted into the

problem of optimizing the power-law parameters for

maximizing the efficacy. This problem is hard to solve

theoretically, but can easily be solved by a derivative-

free method, e.g. the NMS method.

• Third, the power-law nonlinearity is effective for the

commonly-used models of impulsive noise, e.g. the SαS

and the Class A models. Given in closed-form expres-

sions, the power-law nonlinearity is nearly as optimal as

the LOD. However, the LOD may bear high computa-

tional complexity without closed-form noise PDFs.

The remainder of this paper is organized as follows.

Section II briefly describes the system model and nonlinear

processing for impulsive noise. Section III develops the non-

linear functions in fourmodes. Section IV formulates the non-

linearity design as an optimization problem and analyzes its

properties. Section V presents the solution algorithm. Then,

Section VI simulates the proposed design in three models

of impulsive noise and discusses the results. Then, Section

VII presents the applications and advantages of the proposed

method. Finally, conclusions are drawn in Section VIII.

II. SIGNAL MODEL AND NONLINEAR PROCESSING

Consider the detection of a deterministic signal in additive

white noise. GivenM samples available for correlation detec-

tion, under hypothesis Hi, the received signal model is

Hi : r[m] = ξi · si[m] + w[m] (1)
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for m = 1, 2, · · · ,M , where si[m], ξi, and w[m] denote the

desired signal, the signal amplitude, and the noise, respec-

tively. The model (1) can describe a wide range of signal

detection scenarios, by adapting the definitions of si[m] and ξi
consistently with different hypotheses. For instance, in com-

munication systems with Hi denoting bit i, si[m] and ξi denote

the corresponding waveform and amplitude, respectively.

For signal detection in impulsive noise, the correlation

detector mostly uses a two-step structure which consists of

nonlinear processing and linear correlation. By denoting the

nonlinear function as g(x), the correlation output is

Ti(g) =
M
∑

m=1

g (r[m]) · si[m]. (2)

Since the noise is white, for low input SNR, by using the

central-limit theorem, the test statistic Ti(g) in (2) asymptot-

ically follows a Gaussian distribution1 as

Ti(g)
a
∼ N

(

ξiEglEi, EggEi
)

(3)

for M → ∞, Ei =
∑M

m=1(si[m])
2, and

Egl = −
∫ ∞

−∞
g(x)f ′(x)dx, Egg =

∫ ∞

−∞
g2(x)f (x)dx, (4)

where f (x) denotes the noise PDF [25], [31]. The output SNR

can be derived from (3).

Among the ZMNL functions for nonlinear processing,

the LOD function

glo(x) = −f ′(x)/f (x). (5)

is theoretically optimal in low SNR. However, the LOD glo(x)

is hard to manipulate when the PDF f (x) or its derivative f ′(x)
is not in closed-form. For instance, the α-stable distribution

cannot provide a closed-form PDF, while the Class A distri-

bution gives its PDF as an infinite series.

Closed-form nonlinearity can be obtained by developing

ZMNL functions that have similar shapes as the LOD func-

tion. Two kinds of limiters, i.e. the blanker and the clipper,

are most popular, formulated as

gbl(x) =

{

x, |x| ≤ T ,

0, |x| > T ,
(6)

gcl(x) =

{

x, |x| ≤ T ,

T · sgn(x), |x| > T ,
(7)

where T is the threshold, and sgn(·) denotes the signum

function. The effectiveness of ZMNL functions in impulsive

noise has been demonstrated in the literature and in practical

applications. However, compared to the LOD, most ZMNL

functions bear some performance loss. Moreover, traditional

ZMNLs are generally developed based on specific models

and applicable to a limited class of impulsive noises.

1Generally, an impulsive noise has zero-mean, is symmetric, and has uni-
modal PDF, so that f (x) is even and f ′(x) is odd. Like the LOD nonlinearity
glo(x) in (5), g(x) is designed as an odd function. To suppress the impulsive
nature of the noise, g(x), as a random variable, has finite variance, which
satisfies the condition for validity of the central-limit theorem.

III. NONLINEARITY DESIGN WITH POWER-LAW TAILS

This section introduces the power function for tail design and

proposes new nonlinear functions with power-law tails.

A. ADVANTAGES OF A POWER-LAW TAIL

We aim to develop a nonlinear processor that can approach

the optimal detection performance for a wide range of heavy-

tailed distributions instead of a specific model. Thus, our

design should work for different distributions and approxi-

mate the LOD better than the traditional ZMNL designs.

Traditional ZMNL designs focus on placing the threshold

of the linear region for preset tails. However, the designed tail

should vary according to the noise distribution, like the LOD

tail which always depends on the noise PDF. The difference

between the designed tail and the LOD tail can lead to signif-

icant loss in the optimality performance.

This paper proposes to optimize the tail function in the non-

linearity design and at the same time add an extra degree-of-

freedom in approximating the LOD function and improving

the detection performance. Since a tail function is generally

odd, we will shape g(x) for x ≥ 0, as the nonlinear function

over x ≤ 0 can be obtained as g(x) = g(|x|) · sgn(x).
The power function y = xa has two significant advantages.

(i) y = xa is simple and analytical. It is much easier to use

than the LOD. (ii) y = xa can achieve various levels of decay

rate by varying the exponent a ≤ 0. We use it in the nonlinear

region and construct a new nonlinearity with a power-law tail

that can generate different levels of decay rate in the nonlinear

region so as to match various distributions.

In addition, traditional ZMNL tails can be viewed as spe-

cial cases of power-law tails. For example:

(i) a = 1 coincides with the linear processing g(x) = x;

(ii) a = 0 obtains the clipper by multiplying by a constant T ;

(iii) a → −∞ approximates the blanker2 by (x/T )a.

Therefore, the power-law tail suite includes the traditional

tails. By employing the exponent a as an additional degree-of-

freedom, the new nonlinearity design can achieve significant

gain, no less than the traditional designs of blanker and

clipper.

B. PARAMETRIC NONLINEAR FUNCTIONS IN FOUR

MODES

After defining the linear region as directly proportional to x

and the nonlinear region as power-law xa, the next question

is how to combine them as a continuous function. Herein,

the continuity is emphasized, not only for the similarity to the

LOD glo(x) which is continuous in common distributions, but

also for the analysis on nonlinearity optimization.

As for combining the linear and nonlinear regions,

four modes can be considered for the nonlinear functions.

2As shown in (6), the blanker has a sudden drop when x exceeds the
threshold T . Consider a continuous limiter with a power-law tail, as will
be introduced in (8), glm(x) = x for 0 ≤ x < T and glm(x) = T (x/T )a

for x ≥ T . When x increases from T to T + ǫ, glm(x) decreases at a rate
g′lm(T + ǫ) ≈ a < 0, where ǫ denotes a small positive number. In this
context, the limiter glm(x) approximates the blanker gbl (x) for a → −∞.
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FIGURE 1. Nonlinear functions in four modes, with continuity across linear regions and power-law tails for T > 1.

Fig. 1 depicts the four modes, where the blue dotted line

denotes the linear function x and the blue solid line denotes

the linear region within the threshold x ≤ T , the red dotted

line denotes the power function xa and the red solid line

denotes the power-law tail beyond the threshold x > T .

In all fourmodes, the linear region alwaysmeets the power-

law tails at the connecting point or breakpoint (T ,T ). With

this common goal, the power function xa is transformed in

four different ways to pass through (T ,T ). The first way is

by scaling, and the others are by moving axes.

The four modes are listed in detail as follows.

1) SCALE TRANSFORM (SCALING)

The scaling of xa makes the dilated or contracted function

graph pass through the breakpoint (T ,T ). Three kinds of

scaling, including along the X-axis, the Y-axis, or both axes,

are equivalent, because of the properties of the power func-

tion. Fig. 1(a) draws the diagram of the scaling xa to pass

through (T ,T ). Thus, the Scalingmode has a ZMNL function

formulated as

gsc(x,T , a) =

{

x, |x| ≤ T ,

T |x/T |a · sgn(x), |x| > T .
(8)

2) MOVE A FIXED POINT (P-MOVE)

The power function xa always passes though the fixed point

(1, 1). Thus, xa can be moved along the 45-deg. axis, hence

moving the original point (1, 1) to reach the breakpoint

(T ,T ), as shown in Fig. 1(b) for T > 1. Noting that, when

a < 0 and T < 1, we get T a > T , so that the scaling function

xa is translated parallel to the 225-deg. axis to meet the

(T ,T ) point. Fig.1(b) now has to be interpreted with the red

solid curve below the red dotted line. Therefore, the scaling

function gpm will generate negative values for x → ∞.

By setting such negative values to zero, as shown in Fig. 7(a),

the P-move mode formulates the ZMNL function as

gpm(x,T , a)

=

{

x, |x| ≤ T ,

max
[

(|x| − T + 1)a − 1 + T , 0
]

· sgn(x), |x| > T .

(9)

TABLE 1. Properties of nonlinear functions g(x, T , a).

3) MOVE ALONG Y-AXIS (Y-MOVE)

The breakpoint (T ,T ) can also be reached by moving the

graph of xa parallel to the Y-axis. This is equivalent to moving

(T ,T a) to (T ,T ), as shown in Fig. 1(c). Like the P-move

mode, for T < 1 and a < 0, xa after a downward translation

parallel to the Y-axis will have negative values for x suffi-

ciently large. Those negative values are set as zero, as shown

in Fig. 7(b). Finally, the ZMNL function in the Y-move mode

is

gym(x,T , a)

=

{

x, |x| ≤ T ,

max (|x|a − T a + T , 0) · sgn(x), |x| > T .
(10)

4) MOVE ALONG X-AXIS (X-MOVE)

The breakpoint (T ,T ) can be reached by moving the graph

of xa parallel to the X-axis. Actually, this is obtained by

moving point (T 1/a,T ) to (T ,T ), as shown in Fig. 1(d). Then,

the ZMNL function in the X-move mode is formulated as

gxm(x,T , a)

=











x, |x| ≤ T ,

(|x| − T + T
1
a )a · sgn(x), |x| > T , a 6= 0,

T · sgn(x), |x| > T , a = 0.

(11)

C. PROPERTIES OF ZMNL FUNCTIONS

The properties of of the four ZMNL functions, including

continuity, differentiability, and breakpoints along x are listed

in TABLE 1, based on the analysis presented in Appendix A.

The P-move and the Y-move modes have breakpoints besides

the common breakpoint at T , due to the max(·) functions,
as analyzed in Appendix A. Note thatX (T , a) is differentiable

relative to T and a.
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The X-move mode has a discontinuous nonlinearity,

whereas the other modes are piecewise continuously differen-

tiable. The piecewise differentiability of g(x,T , a) is impor-

tant, for it yields the differentiability of related integrals,

as will be shown in the next section.

The four functions gsc(x,T , a), gxm(x,T , a), gym(x,T , a),

and gpm(x,T , a) share the same arguments T , a to be opti-

mized, where the differentiability described by Theorem 1

will contribute to the optimization.

As the optimizations of the modes are similar, this paper

provides a generic presentation of the optimization and its

computational solution. The performances of four modes will

be compared in three commonly-used noise models.

IV. OPTIMIZATION OF THE EFFICACY FUNCTION

This section introduces the efficacy function in the nonlinear-

ity design and analyzes its properties.

A. OPTIMIZATION PROBLEM FORMULATION

Basically, nonlinearity design is to improve the detection per-

formance; for example, increasing the detection probability in

radar systems or decreasing the bit error ratio (BER) in com-

munication systems. Instead of direct analysis of the detection

performances or via the distance to the LOD nonlinearity,

the efficacy function has been proposed by researchers to test

the optimality of nonlinear processors [7].

For the nonlinearity with power-law tails, the efficacy

function can be calculated by

E(g,T , a) =
E2
gl

Egg
=
[∫∞

−∞ g(x,T , a)f ′(x)dx
]2

∫∞
−∞ g2(x,T , a)f (x)dx

. (12)

As can be seen from (3), the efficacy function represents

a measurement of the asymptotic output SNR for detecting

a deterministic signal in white noise [7], [21]. The signal

amplitude ξi, or its distribution characterized by the channel

gain, does not change the optimization of the output SNR.

The efficacy function is closely related to the fundamental

performance for signal detection. As the test statistics are

approximately Gaussian distributed, the BER performance

can be calculated in a similar way as for the Gaussian noise

channels.3

For instance, in the minimum shift keying (MSK) system,

assuming the flat-fading channel ξ0 = ξ1 = ξ , a bit-by-bit

detector can achieve the minimum BER as

Pe = Q
[

ξ
√

Es · E(g,T , a)/2
]

, (13)

where Es denotes the bit energy, Q(·) is the tail dis-

tribution function of the standard normal distribution

Q(x) = 1√
2π

∫∞
x exp

(

−t2/2
)

dt . Obviously, the detection

performance is improved when we increase E(g,T , a) .

3Actually, for radar systems, the efficacy function is also closely related
to the receiver operation characteristics. In [34], the relationship between
the false alarm probability and the detection probability is analyzed in
Appendix B and developed as formula (25).

Given the concordant relation between the efficacy and

detection performance, by taking the efficacy as the objective

function, the nonlinearity design is formulated as the opti-

mization problem

max
T ,a

E(g,T , a) s.t., T > 0, a ≤ 1. (14)

For each mode, g(x,T , a) is substituted into (14) and the

arguments (T , a) are to be optimized for maximum efficacy.

Unfortunately, it is hard to develop a theoretical maximizer

or analytical solution to the problem (14), since the efficacy

E(g,T , a) has a complex expression and f (x) does not denote

a specific PDF. This also causes great difficulty in the strict

mathematical analysis of the objective function E(g,T , a).

However, the numerical solution is a good choice for solv-

ing (14). To seek such a solution, we need to investigate the

properties of E(g,T , a) with respect to (T , a), e.g., continuity,

differentiability, and monotonicity.

B. DIFFERENTIABILITY OF THE EFFICACY

First of all, E(g,T , a) is continuous with respect to T and a,

for the nonlinear functions in the Scaling, the Y-move, and

the P-move modes. This is obtained directly based on two

points: g(x,T , a) is continuous; the calculation in (12) does

not change the continuity.

Then, E(g,T , a) is differentiable with respect to T and a.

This can be proved based on the continuity and the piecewise

differentiability of g(x,T , a).

Given that g(x,T , a) is odd and f (x) is even, we can rewrite

the efficacy function in (12) as

E(g,T , a) =
2
[∫∞

0 g(x,T , a)f ′(x)dx
]2

∫∞
0 g2(x,T , a)f (x)dx

. (15)

Given that the denominator never vanishes, as long as the

integrals are differentiable with respect to (T , a), E(g,T , a)

is also differentiable. Moreover, the integral can be simplified

by substituting the sub-functions of g(x,T , a). Then, all the

related integrals can be proved to be differentiable, based on

applications of Theorem 1.

For instance, the Scaling mode gsc(x,T , a) has two subdo-

mains. In the numerator of (15), we have

∞
∫

0

g(x,T , a)f ′(x)dx =
T
∫

0

xf ′(x)dx +
∞
∫

T

g(x,T , a)f ′(x)dx.

Obviously, the first term in the right-hand side is differen-

tiable relative to T and trivially relative to a. The culprit is

hence the second term of the right-hand side, for which the

following holds:

Theorem 1: Given a differentiable function h(x) > 0, for

g(x,T , a) as in (8), (9), or (10), the integral

E(T , a) =
∞
∫

T

g(x,T , a)h(x)dx (16)

is differentiable with respective to T and a.
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FIGURE 2. The efficacy E(g, T , a) is unimodal in both T and a, in the Scaling, the P-move, and the Y-move mode for the SαS noise, α = 1.5 and γ = 1.

FIGURE 3. The efficacy E(g, T , a) is unimodal in both T and a, in the Scaling mode for the SαS noise α = 1.5 and γ = 1. The maximum efficacy is
achieved by the optimal threshold and exponent (To, ao) = (1.77, −0.56).

Proof: See Appendix B.

For the P-move or Y-move mode, there may be two or three

subdomains, according to TABLE 1. The integrals involved in

efficacy calculation are differentiable, invoking Theorem 1.

In all, the efficacy E(g,T , a) in (12) is differentiable with

respect to (T , a), for T > 0 and a ≤ 1, for the nonlinearity in

the Scaling, the P-move and the Y-move modes.

C. UNIMODALITY OF SIMULATED EFFICACY

However, as for monotonicity, it is hard to analyze what

interval of T or a can support an efficacy E(g,T , a) that

is monotonically decreasing or increasing. This difficulty

is partly due to our analysis focusing on a generic case of

‘‘impulsive noise’’ instead of a specified model or PDF f (x).

A ‘‘heavy-tailed’’ PDF is not enough to provide a theoretical

proof of the monotonicity of E(g,T , a).

Alternatively, we employ numerical simulations as an

effective way for shedding light on the monotonicity of the

objective function. As shown by massive simulations, the

variousmodels of impulsive noise share the common property

of unimodality of the efficacy.

A typical simulation is illustrated in Fig. 2, which shows

the E(g,T , a) of the Scaling, the P-move, and the Y-move

modes for the SαS noise, α = 1.5, γ = 1. As can be seen,

the surface plotting E(g,T , a) has only one local maximum,

which is also the global maximum. The efficacy surfaces are

smooth, which demonstrates that E(g,T , a) is differentiable.

Fig. 3(a) depicts the the level sets of the efficacy

E(gsc,T , a) of the Scaling mode. We can see that the level

sets are not convex except in the neighborhood of maximum

point. Figs. 3(b) and 3(c) plot the curves of E(gsc,T , a) versus

T or a when the other one is fixed. Obviously, E(gsc,T , a) is

unimodal for either argument.4

Based on the above analysis, we reach the conclusion

that the objective function E(g,T , a) is unimodal for either

argument T or a, for T > 0 and a ≤ 1, in the Scaling,

the P-move and the Y-move modes, though this is hard to

prove since f (x) is not specified.

As for the X-move mode, since gxm(x,T , a) is discontin-

uous at a = 0, its efficacy E(gxm,T , a) behaves differently.

Discussion of the X-move mode is deferred to Appendix C.

V. SOLUTION TO THE OPTIMIZATION

Based on relevant properties of the efficacy function, we

provide solution guidelines as well as a practical algorithm

for the optimization problem (14).

4The definition of a ‘‘unimodal’’ real function is as follows: y(x) is a
unimodal function in an interval if for some value x0, it is monotonically
increasing for x ≤ x0 and monotonically decreasing for x ≥ x0. In that case,
the maximum value of y(x) is y(x0) and there is not another local maximum.
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A. SOLVABLE BY DIRECT SEARCH METHODS

To summarize the property analysis, E(g,T , a) has two

important properties for T > 0 and a ≤ 1.

• E(g,T , a) is continuous and differentiable for (T , a);

• E(g,T , a) is unimodal relative to both T and a.

This reveals that it is promising to develop a numerical

method to maximize E(g,T , a).

Herein, due to the fact that ‘‘partial derivatives are

unavailable in closed-form’’, derivative-free methods are of

interest for their advantage of no requirements on partial

derivatives. Especially, direct search methods are reliable and

applicable for using function values instead of calculating or

approximating any gradients [36].

To solve problem (14) as a two-dimensional optimization,

two notable direct search methods can be considered, i.e.

Powell’s method and Nelder-Mead simplex (NMS) method.

Though both methods are proposed for minimization, they

are equivalent to maximizing the negative of the objective

functions. Brief introductions to the methods are given as

follows.

Powell’s method adjusts one argument at a time and finds

the minimum in a finite number of steps [37]. The mini-

mization might be accomplished by the application of the

golden section or Fibonacci search as long as the function

is unimodal in this search direction [40]. Powell’s method is

workable, since E(g,T , a) is unimodal for both T and a.

The Nelder-Mead method is inspired by simplex-based

direct search methods in [41] and deliberately modified to

avoid assuming knowledge of relative steps [38]. The NMS

method has four coefficients, including αNM for reflection,

γNM for expansion, βNM for contraction, and σNM for shrink-

age. By constant coefficients, the NMSmethod ‘‘adapts itself

to the local landscape and contracts on to the final mini-

mum’’ [38].

The optimization problem (14) is solvable by the Nelder-

Mead method or Powell’s method. To use the methods, some

details need to be addressed accordingly.

B. SOLUTION BY THE NMS METHOD

This section illustrates the Nelder-Mead method for design-

ing the algorithmic solution to the optimization of efficacy

E(g,T , a). For the NMS procedure, some algorithm details

are summarized as follows.

1) OBJECTIVE FUNCTION

Considering the constraints on the domain of arguments to be

searched, the efficacy is set as zero for T < 0 or a > 0. The

objective function is defined as

ENM(g,T , a) =

{

−E(g,T , a), T > 0 and a ≤ 1

0, T ≤ 0 or a > 1
(17)

Then, the optimization of the efficacy function becomes the

problem of the unconstrained minimization of the objective

function ENM(g,T , a) with respect to (T , a).

2) COEFFICIENTS

Four coefficients are set as standard values, e.g.

αNM = 1, βNM = 0.5, γNM = 2, and σNM = 0.5. (18)

This is a nearly universal choice in the NMS method. It also

reflects the fact that the efficacy optimization is a regular

problem for the NMS method.

3) STARTING POINT

Without prior knowledge about the noise distribution, it is

recommended to set the starting point at (T0, a0) = (1, 0).

The NMS method is also convergent even if the starting

point is not within the neighborhood of the maximum point.

Besides, any information about noise covariance can be used

to define the starting point and help improve the convergence

speed.

4) STOPPING CRITERIA

Afinal point concerns the criterion used for halting the proce-

dure. The criterion adopted in this paper is to take the preset

value 10−4 as final increment on either the objective function

or its arguments.

Based on the above issues, the optimal values of T and a in

each mode can be achieved by substituting the corresponding

nonlinear function into the objective function ENM(g,T , a)

and then minimizing it via the NMS iteration procedure [39].

VI. PERFORMANCE ANALYSIS IN DISTRIBUTIONS

This section deals with simulations of the proposed nonlin-

earity design in three commonly-used models of impulsive

noise, including the SαS noise, the Class A noise, and the

Gaussian mixture noise. Note that these noise models include

the background Gaussian noise.

In each noise, the four modes (8), (9), (10), and (11) are

considered, and the NMS method is implemented to find

the optimal thresholds and exponents. For comparison, tra-

ditional Blanker and Clipper are optimized by substituting

(6) and (7) for g(·, ·, ·) into the efficacy optimization problem

(14) which is also solved by the NMS method.

A. DESIGN IN THE SαS NOISE

The α-stable distribution is considered to be symmetric rel-

ative to zero, the so-called SαS distribution. The SαS prob-

ability density does not exist in closed-form, except for the

Gaussian and the Cauchy distributions. As a result, the SαS

PDF is calculated, numerically, by

fα,γ (x) = IFT
[

exp
(

−γ |w|α
)]

(19)

where 0 < α ≤ 2 is the characteristic exponent, γ is the

dispersion, and IFT (·) denotes the inverse Fourier transfor-
mation. A smaller α means a heavier tail.

The nonlinearity functions of the four modes are designed

in the SαS noise for α running from 1.0 to 1.9, and for γ = 1.

The optimal efficacy of the four modes are shown in Fig. 4(a).

Clearly, the optimal efficacy is achieved by the LOD.
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FIGURE 4. The efficacy, thresholds, and exponents of optimal design of four modes in the SαS noise, γ = 1.

TABLE 2. Optimal efficacy of nonlinearity designs, in the Class A model with parameters (A, Ŵ) for σ = 1.

The designs in all four modes achieve nearly optimal efficacy,

above 99% of the LOD efficacy. More precisely, the Scaling

mode achieves more than 99.5% of the LOD efficacy, while

the Y-move mode and the P-move mode achieve slightly less.

The Clipper is sub-optimal, while the Blanker is significantly

worse than the others. This reveals that the Blanker method

is not suitable for nonlinear processing in the SαS noise.

Analysis on the X-move mode is relegated to Appendix C.

Optimal thresholds and exponents of the four modes are

shown in Fig. 4(b) and Fig. 4(c) respectively. The Blanker has

the maximum threshold and the most rapid decay g(x) = 0

for |x| > T , while the Clipper has the minimum threshold

and the slowest decay g(x) = sgn(x)T for |x| > T . Compared

with the Blanker and the Clipper, the proposed designs in four

modes have moderate thresholds and decay exponents. They

keep changing for varying α. It demonstrates that different

distributions require various decay factors in the tails.

B. DESIGN IN THE CLASS A MODEL

The Middleton Class A distribution has PDF given by

fA,Ŵ(x) =
∞
∑

k=0

exp (−A)Ak

k!
1

√

2πσ 2
k

exp

(

−
x2

2σ 2
k

)

(20)

where σ 2
k = σ 2(k/A+ Ŵ)/(1 + Ŵ), σ 2 is the average power,

A is the impulsiveness index, and Ŵ is the power ratio of the

Gaussian component to the non-Gaussian component.

The nonlinearity of the four modes, as well as the Blanker

and the Clipper, is designed for various cases of the Class

A model. The optimization results are listed in TABLE 2.

Compared with the optimal efficacy resulting from the LOD,

three modes including the Scaling, the X-move, and the

P-move obtain 99.3% average for all the cases. The Y-move

mode is slightly worse, at 98.3%. The Blanker is sub-optimal,

at 96.3%. The Clipper is the worst, at about 70%. It indicates

that the Clipper is unsuitable for suppressing the Class A

noise.

C. DESIGN IN THE GAUSSIAN MIXTURE MODEL

Then, we consider a two-component Gaussian mixture distri-

bution. Its PDF is given by

fε,σ1,σ2 (x)=
1−ε
√

2πσ 2
1

exp

(

−
x2

2σ 2
1

)

+
ε

√

2πσ 2
2

exp

(

−
x2

2σ 2
2

)

(21)

where ε denotes the probability of occurrence of the impul-

sive noise, σ 2
2 ≫ σ 2

1 are the variances of the impulsive and

the Gaussian components, respectively.

In simulations, the nonlinear functions of the four modes

are designed by the NMS method, for various cases of Gaus-

sian mixture. The efficacy of the designed nonlinearities are

listed in TABLE 3. Among the nonlinearity designs, the

Scaling mode is the best, with 99.5% of the LOD efficacy
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TABLE 3. Optimal efficacy of nonlinearity designs, in the Gaussian mixture model with parameters (ε, σ2
2

) for σ1 = 1.

in average. The other three modes obtain over 92.5%,

the Blanker obtains 97.2%, and the Clipper obtains 84.5%.

Next we investigate the robustness of each design. Consid-

ering the worst cases of all designs, the smallest efficacy per-

centages of the Scaling, the X/Y/P-move, the Blanker, and the

Clipper are 98.2%, 95.6%, 83.3%, 84.6%, 89.2%, 57.8%

respectively. Thus, we can see that the Scaling mode is very

robust, while the Clipper is not robust.

D. SUMMARY

From the above analysis of the efficacy performance in the

SαS noise, the Class A noise, and the Gaussian mixture

noise, we can conclude that the proposed nonlinearity design

is more robust and effective than traditional limiters. Since

the exponent in power-law tails is optimized to provide an

adjustable decay factor, the proposed design almost achieves

the optimal efficacy in various noise models. Among the four

modes of power-law tails, the Scaling mode in (8) works best

and so is recommended above all other methods.

VII. DISCUSSION AND SIMULATION OF APPLICATIONS

This section discusses the applications of the proposed

method and compares it with other detectors, such as the

LOD. Detection performance for various nonlinearity is sim-

ulated.

A. TWO STAGES IN PRACTICAL APPLICATION

When the proposed design is used for signal detection in

impulsive noise, any practical application would contain two

stages.

Stage 1: Design—Obtain the optimal parameters (To, ao)

by solving the optimization problem (14). For example, solve

(17) by the NMS method in Section V-B.

Stage 2: Process — Use the nonlinearity g(x,To, ao)

to transform the received data r(m). Then the output

g(r[m],To, ao) will be used for the signal detection.

Fig. 5 depicts the block diagram of designing the nonlin-

earity based on the noise PDF and applying it for the signal

detection from the received data. In practical applications,

the optimal threshold and exponent can be calculated once

and off-line. The noise parameters that are unknown can be

estimated based on noise samples before the design stage.

FIGURE 5. Block diagram of nonlinearity design and application.

The merits of this method can be mainly summarized as

three points:
• The nonlinearity design with power-law tails is almost

as optimal as the LOD, as demonstrated in Section VI.

• The nonlinearity design with power-law tails is effective

for various distributions of impulsive noise.

• The nonlinearity g(x,To, ao) has closed-form expres-

sion, so that its calculation is accurate and efficient.

The first and second points show that our method does

not bear any degradation when it replaces the LOD. The last

point reveals that our method can outperform the LOD on

computational efficiency in the Process Stage, when the PDF

is unavailable in closed-form.

B. ADVANTAGES OVER THE LOD IN PROCESSING

As discussed before, the distribution models of impulsive

noises may not provide closed-form PDFs, e.g. the SαS and

the Class A models. Thus, we cannot process the received

data r[m] easily or directly by the LOD.

To use the LOD, a workable approach is by interpolation. It

may consist of two steps. The first step is to generate discrete

samples glo(kx1), k = −K , −K + 1, . . . ,−1, 0, +1, . . . ,K ,

where x1 is a uniform interval and K controls the range.

The second step is the nonlinear transformation of r[m]
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FIGURE 6. Nonlinear functions and detection performances in the SαS noise, for α = 1.2 and γ = 1.

by interpolation. For each output glo(r[m]), the LOD must

firstly find the location of r[m] and then use linear or nonlin-

ear interpolation.

Contrarily, our method applies more easily to signal pro-

cessing. The optimal parameters (To, ao) are designed only

once in the Design Stage. Then, in the Process Stage,

g(x,To, ao) is directly used for calculating g(r[m],To, ao) for

each received data r[m]. It has less computational complexity

and better accuracy than the LOD. It is also more suitable for

practical applications.

C. PERFORMANCE SIMULATION AND COMPARISON

The nonlinearity design and application is simulated for

communication in the SαS noise for α = 1.2, γ = 1.

Besides the proposed nonlinearity in four modes, the Blanker,

the Clipper and other nonlinearity preprocessors are also

presented for comparison. The AZMNL sets the tail as 1/x

and the threshold as Taz = α2Ŵ(1/α)/Ŵ(3/α) [31]. The

adaptive soft limiter (ASL) method [21] uses a clipper thresh-

old which is obtained by solving the probability equation

Pr(|x| ≤ Tasl) = 1 + 0.7756(α − 2).

Firstly, the nonlinearity in four modes are designed and

depicted in Fig. 6. The LOD function, which corresponds

to the optimal nonlinearity, is continuous and differentiable

everywhere. The four modes have less decay rates than the

LOD, with similar thresholds for the linear regions. From

the comparison of these functions, we can see that the four

modes do not strictly follow the LOD’s shape, but maximize

the efficacy in their own function sets.

Secondly, other nonlinear functions are compared

in Fig. 6(b). The ASL method performs the same way as

the Clipper, which demonstrates that [21] achieves optimal

design of the clipper. From the efficacy values denoted as

‘‘Eff’’ in the legends, we can see that the AZMNL and the

ASL achieve less efficacy than our design.

Finally, the BER is simulated for the MSK modulation

in the flat-fading channel. The SNR is defined as ξ2 Es/γ ,

for M = 1024 samples in one bit. The output of

LOD is calculated by linear interpolation, as discussed in

Section VII-B. The BER results of 107 Monte Carlo simu-

lations are plotted in Fig. 6(c).

As can be seen, the Scaling mode obtains the same

BER as the LOD. The Clipper is sub-optimal, while the

Blanker is worse. The AZMNL is near-optimal, better than

the Clipper but clearly worse than the Scaling mode. Note

that the simulated BERs are consistent with the theoretical

BERs (13) which are not drawn in the figure to avoid the

clutter.

To quantify the performance gain of the proposed scheme

and other nonlinearities, we can use the efficacy of the non-

linearity to measure its SNR loss with relative to the LOD

SNRloss(g) = −10 × log10

(

Efficacy of g(x)

Efficacy of glo(x)

)

. (22)

Based on the efficacy values denoted as ‘‘Eff’’ in the legends

of Fig. 5(b), we can see that the Scaling mode bears a loss of

0.05dB, the Blanking scheme a loss of 1.06dB, the Clipping

method a loss of 0.33dB, and the AZMNL method a loss of

0.22dB. Hence, the nonlinearity with power-law tails bear

little loss compared with the LOD and outperforms all the

optimal designs of traditional tails.

VIII. CONCLUSION

This paper has introduced power-law tails in nonlinearity

design and provided a nearly optimal solution for correlation

detection in various models of impulsive noise. The nonlinear

function is defined as a piecewise-constructed function con-

sisting of a linear function and a power-law function where

the threshold T and the exponent a are two design arguments.

Then, nonlinearity design is formulated as the problem of the

efficacy optimization with respect to T and a. As the efficacy

is differentiable and unimodal, the optimization problem can

be efficiently solved by derivative-free methods, such as the

Nelder-Mead simplex method.

The proposed design has been tested in the SαS noise,

the Class A noise, and theGaussianmixture noise. Simulation

results have shown that our proposed design is significantly

more efficient and robust than the traditional blanker and

clipper, since the power-law tail provides a suitable decay

factor to match the tail of the noise model. Compared with the

locally optimal detector, the designed power-law tail achieves

almost the same optimality and has the advantage of a simple

closed-form formula for nonlinear computation.
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This paper has analyzed the fundamental performance

of signal detection by the power-law tail design. Future

work will discuss the applications in wireless communica-

tion systems under specific modulation and unknown noise

distribution. For instance, when the PLC system employs

the OFDM, the OFDM waveform envelope and the average

peak-to-average ratio have impacts on the nonlinearity and

the BER [5]. Besides, for real-time processing when the

noise model is unknown or time-varying, it is meaningful

to develop efficient approaches for designing the power-law

tails based on the received data instead of prior known noise

distributions.

APPENDIXES

APPENDIX A

PROPERTIES OF NONLINEARITY

IN FOUR MODES

The nonlinearity g(x,T , a) in the fourmodes, i.e. gsc(x,T , a),

gxm(x,T , a), gym(x,T , a), and gpm(x,T , a), possesses similar

but different properties, which can affect the optimization.

The following analyzes the properties of g(x,T , a) for x > 0,

T > 0, and a ≤ 1.

(1). Continuity. The Scaling mode, the P-move mode and

the Y-move mode have continuous nonlinearity functions.

However, in the X-move mode, gxm(x,T , a) is discontinuous

at a = 0.

The proof of discontinuity is simple. Let a → 0+ or

a → 0− denote that a may approach 0 from above (right)

or below (left). For x > T , we can calculate the limits:

lim
a→0+

gxm(x,T , a) =

{

T , 1 ≤ T ,

1, 0 < T < 1,
(23)

lim
a→0−

gxm(x,T , a) =

{

1, 1 ≤ T ,

T , 0 < T < 1,
(24)

which yields

lim
a→0+

gxm(x,T , a) 6= lim
a→0−

gsc(x,T , a), for T 6= 1. (25)

Therefore, gxm(x,T , a) is not continuous at a = 0.

(2). Differentiability. All the nonlinearity functions

gsc(x,T , a), gpm(x,T , a) and gym(x,T , a) are made up with

three types of functions, i.e. y = x, xa, and 0, all of which are

differentiable. Furthermore, all such pieces are connected in a

continuous fashion. Therefore, the nonlinearity functions are

piecewise continuous and continuously differentiable except

at the breakpoints.

However, for the X-move mode, gxm(x,T , a) is not contin-

uous at a = 0 and thus not piecewise differentiable.

(3). Breakpoints. Breakpoints along the x-axis affect the

efficacy, which involves an integral along the x axis. All

the modes share the same breakpoint at x = T . However,

the P-move and the Y-move modes may have additional

breakpoints.

In the Scaling mode, gsc(x,T , a) always has only one

breakpoint at x = T .

FIGURE 7. In the P-move and the Y-move modes, breakpoints
Xp(T , a) = a√

1 − T − 1 + T and Xy (T , a) = a√
T a − T , resp., occur when xa

is moved down for 0 < T < 1 and a < 0.

In the Y-move mode, gym(x,T , a) can be rewritten as

gym(x,T , a)

=











x, 0 < x ≤ T ,

0, x > Xy(T , a), 0 < T < 1, a<0

xa − T a + T , otherwise,

(26)

where Xy(T , a) = a
√
T a − T is the breakpoint in addition to

T .

Similarly, in the P-move mode, gpm(x,T , a) is rewritten as

gpm(x,T , a)

=



















x, 0 < x ≤ T ,

0, x>Xp(T , a),

0<T <1, a<0,

(x − T + 1)a − 1 + T , otherwise,

(27)

where Xp(T , a) = a
√
1 − T − 1 + T is the breakpoint in

addition to T .

Both Xy(T , a) and Xp(T , a) occur only for 0 < T < 1 and

a < 0whenwemove xa down for the continuity of g(x,T , a),

as depicted in Fig. 7.

Finally, notice that all the breakpoints, i.e. T , Xy(T , a) and

Xp(T , a), are differentiable with respect to T and a.

APPENDIX B

PROOF OF THEOREM ‘‘DIFFERENTIABILITY OF INTEGRAL’’

To prove differentiability, we use the related condition that the

partial derivatives ∂E(T , a)/∂T and ∂E(T , a)/∂a exist and

are continuous. As the proofs of the two partial derivatives are

similar, in the following we prove continuity of ∂E(T , a)/∂T .

First of all, consider the P/Y-move mode for T ≥ 1 or

a ≥ 0, as well as the Scaling mode. In such a case, as ana-

lyzed in Appendix A, g(x,T , a) is the power-law function for

x ∈ [T , ∞). Since g(x,T , a) is differentiable in [T , ∞),

by the Leibniz integral rule on (16), we have

∂E(T , a)

∂T
=

∞
∫

T

∂g(x,T , a)

∂T
h(x)dx − g(T ,T , a)h(T ). (28)

Obviously, (28) is continuous.
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Then, in the P/Y-move mode for 0 < T < 1 and

a < 0, g(x,T , a) equals zero for x ∈ [X (T , a), ∞). So we

can rewrite E(T , a) as

E(T , a) =
X (T ,a)
∫

T

g(x,T , a)h(x)dx, (29)

where g(x,T , a) is differentiable for x ∈ [T ,X (T , a)]. Thus,

by the Leibniz integral rule, we have

∂E(T , a)

∂T
=

X (T ,a)
∫

T

∂g(x,T , a)

∂T
h(x)dx − g(T ,T , a)h(T )

+ g[X (T , a),T , a]h[X (T , a)]
∂X (T , a)

∂T

=
X (T ,a)
∫

T

∂g(x,T , a)

∂T
h(x)dx−g(T ,T , a)h(T ), (30)

where g[X (T , a),T , a] = 0 is used. Obviously, (30) is also

continuous.

At last, we need to prove that the derivatives in the

P/Y-move modes are continuous at T = 1 and a = 0, i.e.

lim
T→1−

∂E(T , a)

∂T
= lim

T→1+

∂E(T , a)

∂T
, (31)

lim
a→0−

∂E(T , a)

∂T
= lim

a→0+

∂E(T , a)

∂T
. (32)

Actually, this is easy to obtain, since both lim
T→1−

X (T , a) = ∞
and lim

a→0−
X (T , a) = ∞ make the integrations limits in (30)

and (28) the same.

Therefore, ∂E(T , a)/∂T is continuous. Similarly,

∂E(T , a)/∂a is also continuous. Hence, E(T , a) is

differentiable.

APPENDIX C

PROPERTIES AND PERFORMANCE OF THE X-MOVE MODE

Unlike the other three modes, the X-move mode has discon-

tinuity with respect to a, not only for the nonlinear func-

tion gxm(x,T , a) in (11), but also for its efficacy function

E(gxm,T , a) in (12). This makes the X-move mode behave

differently from the other three modes.

(1) Discontinuity. The efficacy E(gxm,T , a) is not contin-

uous at a = 0. This is due to the discontinuity of gxm(x,T , a)

at a = 0.

Fig. 8 shows the efficacy E(gxm,T , a) for the SαS noise

α = 1.5 and γ = 1. As can be seen, the efficacy surface is

divided into two regions by the vertical break line at a = 0.

Contrarily, the break line does not exist in any efficacy surface

of the Scaling, P-move or Y-move mode.

(2) Differentiability. The efficacy E(gxm,T , a) is differen-

tiable in two subdomains, i.e. a < 0 and a > 0, respectively.

In every subdomain, gxm(x,T , a) is differentiable and thus

E(gxm,T , a) is differentiable.

As can be seen in Fig. 8, E(gxm,T , a) is smooth in each

region of the surface, though it is discontinuous at a = 0.

FIGURE 8. The efficacy E(gxm, T , a) in the SαS noise, for α = 1.5 and
γ = 1. The surface is divided into two regions by the line a = 0.

(3) Unimodality. Simulations show that the efficacy

function E(gxm,T , a) is unimodal with respect to a in each

subdomain for a > 0 or a < 0, respectively.

(4) Optimization results. The NMS method still works

for the optimization of E(gxm,T , a). As shown in Fig. 4(a),

TABLE 2, and TABLE 3, the optimal efficacy in the X-move

mode is close to the efficacy of the other modes. Actually,

the NMS method succeeds in finding the bigger one of two

local maximums for a > 0 and a < 0.

Figs. 4(b) and 4(c) show that the threshold T and the

exponent a for the X-move mode change dramatically around

α = 1.55. In Fig. 4(c) for the X-move mode in α > 1.55,

the optimal exponent ao is a small positive number. The

corresponding nonlinear function and efficacy are close to

those of the optimal clipper.

Finally, due to the discontinuity, the X-move mode is less

recommended than the other modes.
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