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Abstract—We demonstrate the first multiterabit/s wavelength
division multiplexing data transmission through hollow-core an-
tiresonant fiber (HC-ARF). In total, 16 channels of 32-GBd dual-
polarization Nyquist-shaped 256QAM signal channels were trans-
mitted through a 270-m-long fiber without observing any power
penalty. In a single-channel high power transmission experiment,
no nonlinearity penalty was observed for up to 1 W of received
power, despite the very low chromatic dispersion of the fiber
(<2 ps/nm/km). Our simulations show that such a low level of non-
linearity should enable transmission at 6.4 Tb/s over 1200 km of
HC-ARF, even when the fiber attenuation is significantly greater
than that of SMF-28. As signals propagate through hollow-core
fibers at close to the speed of light in vacuum such a link would be
of interest in latency-sensitive data transmission applications.

Index Terms—Coherent transmission, fiber nonlinearity,
hollow-core antiresonant fiber, modulation, optical fiber commu-
nication.

I. INTRODUCTION

D
RIVEN by the continual succession of new applica-

tions and technologies the information transfer capacity

of optical communication networks has grown exponentially

over several decades, transforming almost every aspect of the

global economy and our everyday social lives. This transforma-

tive power has come about as a result of many technological

breakthroughs including the development of low-loss, single
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mode transmission fiber (SMF), the erbium-doped fiber am-

plifier (EDFA), wavelength division multiplexing (WDM), and

more recently digital signal processing (DSP) enabled coherent

transmission. Throughout this technological evolution, silica-

based single mode optical fiber has remained at the heart of

optical communication networks. Spectacular as it is impact has

been, the silica optical fiber has its weakness: the Kerr nonlinear-

ity. This ultimately degrades the quality of propagating optical

signals and limits the maximum information transmission ca-

pacity. This in turn has the potential to result in a “capacity

crunch” at various points in the global optical communication

network [1].

In addition to traditional data transfer, new data hungry ser-

vices such as machine-to-machine communications inside data

centers (DCs), 5G mobile communications, and the Internet of

Things are starting to dominate the network traffic. These new

services place further requirements on the data transfer perfor-

mance, in particular with regards to transmission latency within

the network. For example, data center operators have recently

specified a maximum round-trip time of less than 2.0 ms for

metro inter-DC communication [2]. Emerging applications such

as virtual reality, the tactile internet, and autonomous driving

will impose even more stringent requirements on the maximum

allowed latency, with stability of latency also now becoming an

important consideration in many instances. [3].

The intrinsic problems of silica fiber (nonlinearity and la-

tency), have triggered numerous research activities, ranging

from hardware technologies through to software DSP algo-

rithms. On the mitigation of nonlinearity-induced impairments

front, digital impairment compensation techniques including

digital backward propagation [4] and the nonlinear Fourier

transform [5] have attracted significant research interest as they

can be employed with no/ minimal changes to currently de-

ployed fiber links. Nevertheless, they are intrinsically limited by

the bandwidths and resolutions available for coherent receivers.

Optical phase conjugation (OPC) promises simultaneous com-

pensation of both dispersion and nonlinearity at the expense

of building symmetric transmission links [6]. Phase sensitive

amplification (PSA) can in principle achieve noise-less ampli-

fication and can even be used to regenerate signal constella-

tions. However, it is challenging to implement PSA for wide
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bandwidth WDM signals and requires precise control of chro-

matic dispersion [7], [8]. Effective as the above-mentioned tech-

nologies are, they can only mitigate nonlinearity impairments,

not eliminate them.

In optical networks, especially in long-reach transmission

systems, the data transmission delay is dominated by signal

propagation in the optical fibers [9]. For this reason, network

operators are increasingly looking to deploy low latency sys-

tems by installing as straight as possible fiber links between

sites to support financial and other high value latency sensi-

tive applications [10]. Researchers are also investigating new

solid fiber designs for low latency transmission and a 0.3%

reduction in propagation latency has been obtained by engi-

neering/optimizing the design of solid core silica fiber [11].

By contrast hollow-core fibers (HCF)s exhibit ∼30% reduc-

tion of latency, a high damage threshold and more than three

orders of magnitude lower nonlinear response than standard

silica optical fiber. Such a combination of advantages over con-

ventional solid-core silica fiber make them an exciting option

to meet both the emerging capacity and latency needs in future

optical networks [12], [13].

Broadly speaking, there are two classes of hollow-core fiber:

hollow-core photonic bandgap fiber (HC-PBGF) and hollow-

core antiresonant fiber (HC-ARF). The HC-PBGF guides light

in a hollow core by virtue of photonic bandgap effects deter-

mined by a carefully designed glass microstructure [14]. The

HC-ARFs, however, rely essentially on coherent reflections

from thin and typically tubular glass membranes to confine and

guide light in the hollow region [15]–[19]. These membranes

behave effectively as Fabry-Perot type resonators, with their

transmission signature consisting of sharp peaks (resonances)

separated by high reflectivity regions referred to as antireso-

nance windows. Within these windows, the grazing incidence

provided by the large hollow-core results in very high reflectiv-

ity for the membranes, and translates into orders of magnitude

lower leakage loss. These fibers offer the flexibility of engineer-

ing low-loss transmission windows simply through the choice

of membrane thickness, and numerical simulations are currently

indicating that they can provide lower attenuation than almost

any existing fibers at almost any wavelength [19].

To date, a significant body of work has been done to demon-

strate transmission in hollow-core photonic bandgap fibers, with

both high capacity (73.7 Tb/s) [20] and relatively long lengths

(up to 74.8 km) in a re-circulating loop demonstrated [21]. How-

ever, for HC-ARF, only single-channel 10-Gb/s on-off keyed

(OOK) signal transmission over a fiber length of just 100 m has

been demonstrated [15]. Compared to HC-PBGF, the key advan-

tages of HC-ARF include an ultra-large transmission window

(for example, a 1100 nm wide transmission bandwidth as shown

in ref. [15]) with almost constant mode field diameter and a very

high differential modal loss ( > 10 times higher loss in high or-

der modes than the fundamental mode) that effectively supports

single-mode transmission. Moreover, theoretical studies have

identified a potential low loss (<0.15 dB /km) and a very low

chromatic dispersion (CD) over almost the entire transmission

window (<2 ps/(nm·km)) [20]. This potential is supported by

a recent demonstration of a 0.5 km length HC-ARF with a

loss of 1.3 dB/km [22], outperforming the lowest rigorously

documented loss in a HC-PBGF (1.7 dB/km) [23]. Arguably

the key potential advantage of HC-ARF lies in the potential

for very high transmission capacities using wide wavelength

range dense wavelength division multiplexing (DWDM) and

high-order modulation formats due to the anticipated very high

nonlinearity tolerance. Although the prior art in [15] showed

that the HC-ARF has a broad transmission window, its capa-

bility of supporting DWDM transmission (e.g., no wavelength-

dependent fading or transmission impairments) has not been

confirmed. Further, no study of nonlinear transmission impair-

ments in HC-ARF has been reported to date.

In this paper, we show the significant potential of HC-ARF for

optical communications by demonstrating the coherent trans-

mission of a very high-order modulation format (256QAM)

signal, over two polarizations, in a 16-channel 32 GBd DWDM

system. This results in a > 14 times greater spectral efficiency

(14.5 bit/s/Hz) than the previous demonstration, over a 2.7 time

longer (270 m) length of HC-ARF. Importantly, we demon-

strate for the first time the high tolerance to nonlinearities in

HC-ARF relative to SMF-28 in coherent transmission. These

experiments were first reported at OFC 2017 [24]. This pa-

per extends the conference abstract by showing the superior

nonlinearity tolerance of HC-ARF relative to SMF-28 (even in

experimental conditions that are deliberately biased against the

HC-ARF). Moreover, through simulation, we compare the non-

linear tolerance HC-ARF to SMF-28 and large effective area

solid core fibers, and investigate the potential of using HC-ARF

in a 1200 km long low latency coherent communication system.

Experimental characterization of the CD of the fiber is shown

for the first time, essentially confirming the low values of CD

predicted in [15].

II. LOW DISPERSION ANTIRESONANT FIBER

The two HC-ARF fibers in this work were drawn from the

same cane and have a non-contacting tubular geometry with

seven tubes around a hollow core, as shown in the inset in

Fig. 1. Their loss characterization and simulated dispersion were

previously reported in [15]. Here, we experimentally measure

the CD of the two fibers using the RF phase shift method [25]

employing a tunable laser (1500 to 1585 nm) with a step size of

0.1 nm. The measured group delay was converted to CD using

a 5-term Sellmeier fit to each raw group delay trace [26]. This

measurement system allowed for an accurate CD measurement

with a resolution of 0.1 ps/(nm•km). The solid and dashed lines

in Fig. 1 show the measured CD for fiber A and fiber B, with

core diameters of 38 and 40.2 µm, respectively. The dotted line

shows the simulation result reported in [15] for comparison.

The measured CD is slightly higher than the simulation results

but a very low and flat dispersion is obtained across the full

measurement wavelength range. The average CD for fiber A

and fiber B was 2.0 and 1.7 ps/(nm•km), respectively.

An important benefit comes with the low dispersion of HC-

ARFs is the reduction of DSP complexity. For example, the

number of taps for a 1200 km transmission system with SMF-

28 requires 167 taps (assuming CD of 17 ps/(nm.km)), whereas
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Fig. 1. Measured chromatic dispersion. Fiber A: solid black line; Fiber B:
dashed red line; Simulation: dotted blue line.

Fig. 2. Experimental setup for WDM transmission. EDFA: erbium-doped
fiber amplifier; DAC: digital-to-analog converter; VOA: variable optical atten-
uator.

only 19 taps (assuming CD of 2 ps/(nm.km)) is needed when

using HC-ARF [27]. This means that coherent system can

eliminate the use of static equalizers for CD compensation,

thereby reducing both the DSP complexity and processing delay.

III. TRANSMISSION EXPERIMENT

Fig. 2 shows the experimental set-up of our WDM transmis-

sion experiment. The DWDM transmitter consists of 16 tunable

external cavity lasers (ECLs, linewidth of 100 kHz) spaced be-

tween 1544.13 nm and 1550.12 nm on a 50 GHz ITU grid. The

odd (and even) channels were combined through an 8 × 1 cou-

pler and subsequently modulated with a LiNbO3 IQ modulator

Fig. 3. Experimental setup for single-channel high power transmission.

driven by two 92-GS/s digital-to-analog convertors (DACs). The

modulated odd and even channels were amplified and decorre-

lated before being combined and passed through a polarization

multiplexing emulation stage to form a 16-channel 32 GBd dual-

polarization (DP) 256QAM signal. The power of each ECL was

adjusted to yield a flat DWDM power spectrum (with less than

1 dB power variation) after the high-power EDFA. The high-

power EDFA boosted the total signal power to 35 dBm (3.5 W),

corresponding to 23 dBm per channel. The amplified signal was

then launched into the HC-ARF transmission link via a SMF-

28 to HC-ARF splice connection with a loss of 3.5 dB (due to

the significant mode field mismatch) – see inset (a) in Fig. 2.

The HC-ARF link comprised the two longest HC-ARF spans

available, which were spliced together (inset Fig. 2b) to enable a

transmission distance of 270 m. The first span (fiber A) is 130 m

long and has a 40 µm core and a 200 µm cladding diameters.

The second span (fiber B) is 140 m long and has a 38 µm core

and a 170 µm cladding diameters. Their transmission perfor-

mance were previously reported in [15]. Over the C-band it has

an average loss of 41 dB/km. The second span is 140 m long

and has a 38 µm core and a 180 µm cladding diameter. Its loss

over the C-band is 58 dB/km. After transmission, the signal was

coupled back from the HC-ARF to SMF-28 with a ∼ 4 dB loss.

The average loss of the line at the transmission wavelength

region was approximately 21.5 dB, including 14 dB fiber loss

and 7.5 dB coupling loss. A lower HCF to SMF-28 coupling

loss could be achieved by using a mode field diameter matching

buffer fiber [28], unfortunately though such a buffer fiber was

not available for this experiment. The channel of interest was

selected by passing the DWDM signal through a 50 GHz flat-top

optical filter and was subsequently pre-amplified (EDFA3) and

detected using a 65 GHz dual-polarization coherent receiver.

The local oscillator (LO) laser was a 100 kHz-linewidth tunable

ECL and the detected signals were then sent to four 160 GSa/s

analog-to-digital convertors (ADCs) for offline signal demod-

ulation. In order to compare the result with the back-to-back

performance at the same optical signal-to-noise ratio (OSNR),

the fiber link was replaced with a variable optical attenuator

(VOA) to emulate the loss.

The multi-level drive signals required for the QAM for-

mat were generated from decorrelated pseudorandom binary
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Fig. 4. The loss profile of the 270-m HC-ARF fiber link (black line) and
spectrum of the transmitted WDM signals (blue line), measured using an OSA
with a resolution of 0.1 nm.

Fig. 5. Measured SNR (square marker) and BER (circle marker) both back-
to-back (open marker) and after transmission (closed maker) though the 270 m
HC-ARF fiber link.

sequences (PRBSs) of length 216. The transmitter-side DSP

shaped the generated QAM signal using a root raised-cosine

(RRC) filter with a roll-off factor of 1% to generate the 32 GBd

Nyquist-shaped 256QAM signals. At the receiver side, the sig-

nal was down sampled to 2 Sa/sym before equalizing the digital

signals using a 21-tap blind radially directed equalizer for polar-

ization demultiplexing. The carrier-frequency offset and phase

noise were compensated with conventional DSP algorithms as

described in [29]. The demodulated symbols were used to cal-

culate the bit error rate (BER) and signal-to-noise ratio (SNR).

In addition to the WDM experiment, we investigated the

high-power, single-channel performance of a length of HC-

ARF, in order to enable us to compare the nonlinearity-induced

transmission penalties of HC-ARF with respect to conventional

SMF-28. As shown in Fig. 3, the experimental setup for the

single channel transmission was the same as the WDM experi-

ment except that only one ECL at 1550.12 nm was used and the

270 m HC-ARF link was replaced with 100 m HC-ARF (the

lowest loss sample available, with an attenuation of 40 dB/km)

and a 100 m length of SMF-28. Due to the loss in the HC-ARF

sample (about 4 dB) as compared to the negligible loss in SMF-

28 of the same length, it is difficult to decide at which power to

carry out the comparison of nonlinear impairments. However,

we decided to show the impact of nonlinearity impairment with

reference to the optical power after transmission, meaning that

Fig. 6. SNR of the single-carrier (a) DP-256QAM and (b) DP-64QAM trans-
mission over 100 m HC-ARF (blue square marker), 100 m SMF-28 (red circle
marker), and back-to-back (black triangle marker); Constellation diagrams at
the power of 28.5 dBm after HC-ARF and SMF-28 transmission.

the local power along the HC-ARF length is always higher

than the power along at the equivalent point in the SMF-28.

This biases the comparison in favor of the SMF-28. Limited

by the maximum output power (36.5 dBm) of our high-power

EDFA and the 3.5 dB input coupling loss from SMF-28 to the

HC-ARF, the maximum launch power into the HC-ARF was

32.5 dBm (measured at the input of the HC-ARF), resulting in

28.5 dBm power after HC-ARF transmission. The performance

of the signal was compared to an SMF-28 transmission with

28.5 dBm launch power, as plotted in Fig. 6.

IV. EXPERIMENTAL RESULTS

A. WDM Transmission

Fig. 4 shows the measured loss profile of the HC-ARF link and

the optical spectrum of the transmitted WDM signal. The total

link loss within the C-band increases smoothly from 21.2 dB to

22.2 dB for wavelengths from 1535 nm to 1565 nm. Fig. 5 shows

the SNRs and BERs of the transmitted WDM DP-256QAM sig-

nals over the 270 m HC-ARF link, as closed square and circle

markers, respectively. The achieved SNR values ranged from

22.8 to 23.4 dB and the pre-FEC corresponding BER values

ranged from 2.7 × 10−2 to 3.5 × 10−2. Using soft-decision

decoding with 17% overhead [29], we achieved error free trans-

mission for all channels, yielding a net data rate of 6.8 Tb/s.

The back-to-back results are shown as open markers in Fig. 5.
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The average SNR values for back-to-back and after transmission

were 23.2 and 23.4 dB, respectively. We believe the slight differ-

ence in the SNR lies within the accuracy of our measurement.

B. High Power Single-Channel Transmission

Fig. 6 shows the SNRs of the transmitted single-channel

32 GBd DP-256QAM (Fig. 6a) and DP-64QAM (Fig. 6b) sig-

nals for various optical powers as measured at the output of the

100 m HC-ARF and the 100 m SMF-28, respectively. As men-

tioned earlier, this comparison is biased against HC-ARF as the

optical power propagating in the HC-ARF is at all points higher

than in the SMF-28. In Fig. 6 we can observe that the back-

to-back performance degrades as the input power is increased

above about 26 dBm. This is due to nonlinear impairments

generated within the high-power EDFA, which was operated

at output powers up to 36.5 dBm. The high-power EDFA used

was designed for CW operation and was not optimized for high

power data signal amplification.

In the back-to-back case, the maximum achieved SNR was

24.2 dB due to the electronic noise limitations of the transceiver

[30]. The SNR of the demodulated 256QAM signal remained

about 24 dB before the post transmission power reached

26.5 dBm (corresponding to an EDFA output power of 34 dBm).

The blue circle markers show the SNR obtained after transmis-

sion over the HC-ARF link. The performance was identical

to the back-to-back case, confirming that no nonlinearity im-

pairment occurred in the HC-ARF transmission. In contrast,

SMF-28 fiber nonlinearity further degraded performance for

post transmission powers above 25 dBm. The SNR of the de-

modulated signal dropped from 24.0 dB to 21.5 dB as the power

was increased from 23.5 dBm to 28.5 dBm, corresponding to an

increase in BERs from 2 × 10−2 to 5 × 10−2.

The constellation diagrams corresponding to a transmission

power of 28.5 dBm are shown as insets to Fig. 6. At 28.5 dBm,

the SNR obtained after SMF-28 transmission was 2 dB lower

than in the case of the HC-ARF transmission, highlighting the

superior nonlinear tolerance of HC-ARF compared to SMF-

28. A similar experiment was repeated for a single-channel

32 GBd DP-64QAM signal. The constellation diagrams in

Fig. 6b clearly show the nonlinear phase distortion after 100 m

SMF-28 transmission, while no significant distortion was ob-

served after HC-ARF transmission even at the maximum post

transmission power of 28.5 dBm.

The above results clearly evidenced that HC-ARFs have ultra

low nonlinearity and the capability of handling very high optical

powers. In HC-ARFs based optical communication systems, it

is possible to launch high optical powers beyond the limitations

of conventional SMF-28 based systems.

V. SIMULATION

A. Performance Comparison of HC-ARF with Different Solid

Core Fibers

We conducted simulations to compare the high HC-ARF non-

linearity tolerance to that of various types of commonly-used

solid core fibers including large effective area solid core silica

fiber and non-zero dispersion shifted fiber. We first simulated

Fig. 7. Experimental and simulation results of the single-carrier 32-GBd DP-
256QAM signal.

TABLE I
FIBER PARAMETERS IN SIMULATION

the transmission performance of 32 GBd DP-256QAM over a

100 m length of SMF-28 using the split step Fourier method

with a step size of 1 m. By setting the transceiver noise limit

to the experimentally-obtained value of 24.2 dB, the simulated

SNR values at different optical powers showed good agreement

with the experimental results as shown by the dashed line in

(Fig. 7), which confirms the accuracy of our simulation. Subse-

quently, we changed the fiber parameters by assuming 100 m

of Corning Vascade Ex3000 fiber (large effective area fiber) and

non-zero dispersion shifted fiber (NZDSF), whose key parame-

ters are listed in Table I.

The simulation results are plotted as lines (NZDSF: dotted;

VASCADE: solid) in Fig. 7 together with the experimental re-

sults for SMF-28 (red circles) and HC-ARF (blue squares).

Although the NZDSF fiber has a smaller dispersion, it under-

performs compared to SMF-28 due to the smaller effective area.

The simulation results show that the VASCADE fiber outper-

forms SMF-28 for optical powers higher than 23 dBm. However,

the SNRs start to degrade as we further increase the power past

25 dBm, showing a 0.3 dB SNR penalty at 26.5 dBm. Similar

to the experiment, this comparison is biased against the HC-

ARF in that the optical power along the fiber is always higher

than the solid core fibers, indicating that HC-ARF has a much

higher nonlinearity tolerance than the state-of-the-art large ef-

fective area solid core fiber, though its CD is 10 times smaller.

The combination of ultra-low nonlinearity and dispersion enable
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Fig. 8. Simulation results. Center channel SNR of the 15-channel WDM
transmission over 1200 km HC-ARF link at launch powers of 20 (black square),
22 (red circle), 24 (blue triangle), and 26 dBm (green diamond).

operation at high optical powers and reduces the DSP-generated

latency.

B. ARF-Based Long-Haul Transmission

Current HC-ARF research is focused on reducing the fiber

attenuation and increasing the fiber length. Recent work has

demonstrated a HC-ARF with less than 1.5 dB/km attenuation

over 65 nm [22]. In our simulation, we investigate the per-

formance of HC-ARF in long-reach coherent communications

by considering 15 channels of 50 GBd Nyquist-shaped DP-

16QAM signals. The optical channels centered at 1550 nm with

a 100 GHz channel spacing. The effective nonlinear coefficient

(γ) of the HC-ARF was assumed to be 0.01 W−1km−1 [33].

The in-line EDFAs were assumed to have 30 dB gain and a 7 dB

noise figure.

Fig. 8 shows the simulated SNRs of the center channel with

respect to different fiber attenuation values after transmission

over a 1200 km HC-ARF link. The corresponding span length

for different fiber attenuation levels is depicted as the upper-x

axis. Different markers are used to indicate the SNRs at launch

powers of 20 (square), 22 (circle), 24 (triangle), and 26 (dia-

mond) dBm. Since the launch powers are significantly lower

than those used in the experiment, we assume there is no non-

linearity in the EDFAs. As a result, the signal performance is

limited mainly by the amplified spontaneous emission (ASE)

noise of the EDFAs.

The solid line shows the forward error correction (FEC) free

SNR (22.5 dB) required for DP-16QAM signal transmission

over the simulated link to achieve a BER of 10−9 (under the

assumption of Additive White Gaussian Noise, AWGN), which

indicates that the system can support FEC-free operation with a

fiber attenuation of 0.77 dB/km when the launch power is higher

than 26 dBm, achieving a data rate of 400 Gb/s per channel after

31 spans (39 km per span). The required SNR threshold FEC-

free QPSK (15.6 dB, BER of 10−9) are also shown in Fig. 8

as the dotted blue line. It shows that the system can achieve a

net rate of 200 Gb/s even with 6 dB/km loss HC-ARF when the

launch power to each span is higher than 26 dBm. Obviously, if

the loss of HC-ARF can be reduced below 1 dB/km, the system

can readily support FEC-free transmission at a launch power of

around 16 dBm with a relatively low number of spans.

Although it is possible to achieve high throughput transmis-

sion using high attenuation HC-ARF, it would be at a high

system cost and power consumption due to the large number of

spans. However, the recently demonstrated 1.3 dB/km low loss

HC-ARF (together with the theoretical predictions of even up to

two orders of magnitude lower loss) show the potential of em-

ploying HC-ARF in long-haul communications. Such systems

have an unprecedented advantage of low latency. For example,

assuming a 40 m fiber length in each EDFA and a DSP pro-

cessing latency of 20 µs, a 1200 km transmission link with 240

spans (considering 6 dB/km fiber attenuation) would have a la-

tency of about 4.1 ms, which is 1.9 ms lower than that of an

equivalent-length SMF-28 based transmission link. Similarly,

for a 100 km link, a HC-ARF based system would have a la-

tency of about 340 µs, providing a 150 µs reduction relative to

SMF-28. In addition to the latency reduction, the hollow core

fiber would have a more stable latency due to its significantly

lower thermal coefficient [34], which benefits system stability

in latency-sensitive real-time applications.

VI. CONCLUSION

We have presented 6.8 Tb/s coherent data transmission over

270 m of HC-ARF. The excellent quasi single mode behavior of

the fiber allowed us to transmit dual-polarization-256QAM sig-

nals in a coherent 16-channel WDM system with negligible SNR

penalty, and to achieve the highest data rate transmitted through

an HC-ARF to date. We have also experimentally confirmed

that the fiber can handle high optical powers (up to 36.5 dBm,

giving it 2 dB SNR advantage over SMF-28 in a comparison

that is deliberately biased against the HC-ARF, using a power

after transmission of up to 28.5 dBm. Our simulations show that

HC-ARF has a clear advantage over different types of solid core

fibers in terms of insensitivity to nonlinearities, even though its

CD is significantly smaller. These results, together with inher-

ently lower and more stable latency and potential for significant

further loss reduction make HC-ARF a most promising trans-

mission medium for future low-latency, ultra-high capacity data

transmission applications.
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