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Davenport-Schinzel sequences are sequences that do not contain forbidden subsequences of
alternating symbols. They arise in the computation of the envelope of a set of functions. We show
that the maximal length of a Davenport-Schinzel sequence composed of n symbols is 6(noc(n»),
where t1.(n)is the functional inverse of Ackermann's function, and is thus very slowly increasing to
infinity. This is achieved by establishing an equivalence between such sequences and generalized path
compression schemes on rooted trees, and then by analyzing these schemes.

1. Introduction

Consider the following combinatorial problem: Let n, s be positive integers.
A sequence U=(Ul"'" um) of integers is an (n, s) Davenport-Schinzel sequence
(a DS(n, s) sequence for short), if it satisfies the following conditions:

.

(i) 1~ui~n for each i.
(ii) For each i<m we have Ui¥'UI+

l'
(iii) There do not exist 8+2 indices 1 ;§i1<i2< ...<is+2~m such that

U/1=uI3=ui5=...=a, u/2=u/&=uls=...=b, and a¥'b.

We will write IU 1= m for the length of the sequence U.
Define As(n)=max {IUI: U is a DS(n, s) sequence}. The estimation of

A.(n) is the subject of this paper.
This problem has originally been posed by Davenport and Schinzel [4}. Their

interest in it arose from its connection to the analysis of solutions of linear differen-
tial equations. Recently, Atallah [2}has raised it again independently, because of its
significance for problems in dynamic computational geometry. These two applications
are quite similar, and can be briefly described as follows. Let It, ..., f,. be n real-valu-
ed continuous functions defined on a common interval I. Suppose that for each i =;r!;j

the functions/; andfj intersect in at most 8 points (e.g., this is the CaSefor polynomials
affixed degree, orChebycheffsystems, and so on). Let g(x)=min {/;(x): i= 1, ..., n},
for xEI, be the lower envelope (i.e. the pointwise minimum) of the /;'s, and let m be
the smallest number of subintervals lIt ..., 1m of I such that for each k there exists
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an index ik with g(x)=A(x) for all xElk. In other words, m is the number of con-
nected portions of the graphs of the/;'s which constitute the graph of g. Assuming
that II,"" 1m are arranged in this order from left to right, put U(fb'" ,f,.) =
=(i1,...,im). It is now easily seen that U(fh""f,.) is a DS(n,s) sequence. More-
over, it is known (see [2]) that for any DS(n, s) sequence U one can construct a collec-
tion h, ...,f,. of such functions for which U(fl>'" ,f,.) = U. Therefore the largest
possible value of m is precisely A.(n).

Thus, in this setting, Davenport-Schinzel sequences are strongly related to the
problem of computing the (lower) envelope of a set of functions which intersect each
other in pairs in at most some fixed number of points. This problem has manyapplica-
tions in computational geometry and related areas, many of which are given in [2];
some additional applications will be noted in Section 7.

The problem of estimating A.(n) has been studied in several papers [2], [3],
[4], [12], [15]. It is known (and easy to prove) that Al(n)=n and A2(n)=2n-1. For
s~3 the deep result of Szemeredi [15] states that A.(n)=O(nlog*n), where the
constant of proportionality depends on s, and where log*n is the smallest i~ 1 such
that 81~n, where 81=2 and 81+1=2",. (We use here the following standard nota-
tions. Let f, g be two positive functions defined over the integers. Then f(n)=
=O(g(n») (resp. f(n)=Q(g(n»)) if there exists a constant C>O such that f(n);§.
;§.Cg(n) (resp. f(n)~Cg(n») for all n. We write f(n)=B(g(n») if both f(n)=

=O(g(n») and f(n)=Q(g(n») hold, namely, if there exist constants C1, C2>O
such that C1g(n);§.f(n);§.C2g(n) for all n. All logarithms are with base 2.)

However, it was not known whether A.(n), for s~3, is actually nonlinear in
n, i.e. whether Davenport-Schinzel sequences of nonlinear size actually exist.

In this paper we show that A.(n) is indeed nonlinear for s~3, and also impro-
ve the upper bound of Szemeredi for s=3. Specifically, we show that Aa(n)=
=B(noc(n»), where oc(n) is the functional inverse of Ackermann's function; the
function oc(n)is very slowly growing, and tends to infinity with n. The proof is based
on an interesting equivalence between Davenport-Schinzel sequences with s=3 and
sequences of certain operations performed on arbitrary rooted trees, called genera-
lized path compressions.

The paper is organized as follows. Section 2 introduces the notion of genera-
lized path compressions and compression schemes on trees. Section 3 reviews Ithe
definitions of Ackermann's function and its functional inverse, and states the main
theorems of this paper. Section 4 establishes a linear equivalence between DS (n, 3)
sequences and path compression schemes, so that the problem Can be reduced to that
of estimating the maximal length of such schemes. Sections 5 and 6 contain the deri-
vations of the upper and lower bounds, respectively. Concluding remarks, including
some applications of these results, some open problems and a discussion on Acker-
mann's functions, are given in the final Section 7.

2. Generalized path compressions on trees

Let T be an arbitrary rooted tree. It is given by a triple (V, r, (fJ),where V is
a finite set of vertices (or, nodes), rE V is the root of T, and (fJ: V - {r }-+V is the
fatherhood mapping: for each xEv, x~r, (fJ(x) is the father of x, and x is a son of
(fJ(x). The mapping (fJhas no cycles, so that by repeated applications of (fJ,every

.,.
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xE V is eventually mapped into r. A vertex is called a leaf if it has no sons, and inner
otherwise. We will use the following standard notations for x, yE V: x is a descendant
ofy(andyisanancestorofx)ifthereare n~l vertices XI,X2, ...,xnEV, such that

XI=X, xn=y, and CP(Xi)=Xi+1 for i=l,...,n-l;xisaproperdescendantofyif
n>l (thus x~y), and improper otherwise (i.e. x=y).

We define an operation on T, called generalized path compression (GPC for
short) as follows. Let Xl' X2, ..., Xk be a sequence of nodes of T such that each Xi is a
proper descendant of Xi+l, for i=l, ..., k-l. The generalized path compression
f=(XI, X2, ..., Xk) is an operation that modifies T so as to make each Xi, for i=
=1, ..., k-l, a son of Xk' More precisely,fresults in making CP(Xi)=Xk for i=

= I, ..., k -I, and leaving cp(x) unchanged for all other X; see Fig. 2.1.

Fig. 2.1. A generalized path compression

This notion generalizes the notion of standard path compression, in that the
nodes Xl' ..., Xk are not required to be adjacent along their present path. These
standard compressions are used in the efficient implementation of the FIND operation
in the set-union algorithm used for processing equivalence relationships (see [16]
for an extensive analysis and earlier references).

For each GPCf=(XI' ..., xd call Xl the starting node off, and denote it by
aU); the length offis If I=k -I; this is the number of edges (Xl>X2), ..., (Xk-I,Xk)

iniOn general, these are not edges of T).
Another notion we need is that of a postorder on T. It is a linear order of the

nodes of T obtained recursively as follows: Suppose the root r of Thas I sons ql, ...,
q"

Then a postorder on T is obtained by concatenating postorders of the subtrees of T
rooted at ql, ..., q, and appending r at the end. (Thus T can have many postorders,

2 4

~

13

Fig. 2.2. A postordered tree
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depending on the order of the enumeration of the sons of each of its nodes.) An
example of a post ordered tree is given in Fig. 2.2.

Finally, a sequence F=(/I, ... ,fm) of GPC's on a rooted tree Tis admissible
if

(i) it is executable, meaning that each/; is a G PC on the tree Tj obtained from

Tafter the compressions II, ""/;-1 have been executed (TI=T);
(ii) it is postordered, meaning that there exists a postorder on T such that the

starting nodes u(/I)' ..., u(/m) are arranged in (weak) postorder (thus more than
one GPC may start at the same node; however, if u(/;)¥-U(/;+I) then u(/;+J
succeeds u(/;) in the postorder).

m

The length IFI of such a sequence is defined as .L: 1/;1. We are concerned
i=l

here with the maximal possible value of IF I, or, more precisely, with the quantity

x(n, m) = max {IFI: F is an admissible sequence of m GPC's on a tree
Twith n vertices}.

(Note that x(n, m) is well defined, e.g. x(n, m)~(n-l)m, since 1/1~n-l for any
GPC/on T.)

F or our estimation of X it is useful to make the following simplifications: Let
a tree Twith n nodes and an admissible sequence F of m GPC's on Tbe given. For
each I=(xl> ..., xk)EF, we add to Ta new leaf Xo, make it a son of XI' and change

I to (xo, Xl> ..., Xk)' Furthermore, we extend the postorder on T so that all new
leaves of some node x succeed all its original sons, and are arranged according to the
order of the GPC's they correspond to. Since we want to maximize IFI, we can as-
sume without loss of generality that every node belongs to at least one GPC; other-
wise, remove from the tree such a node (that does not appear at all in F), by connect-
ing its sons (if any) directly to its father; add another node to the tree (so that it still
has exactly n nodes) as a son of the starting point of the first G PC in F, and make it a
leaf (the first in the postorder); finally, extend the first GPC so as to start from the
new node; all these changes yield another tree with n nodes and an admissible sequence

F' whose length is greater by 1 than that of F. In particular, each original leaf will
now have at least one son (a new leaf).

All these modifications make T into a tree with n + m vertices: n inner vertices
and m leaves. Moreover, in the modified sequence F each of the m GPC's starts at
a different leaf. We will refer to such a Tas an (n, m)-tree, and to the corresponding F
as a compression scheme on T. Thus, a compression scheme on an (n, m)-tree consists
of m GPC's, exactly one GPC starting at everyone of the m leaves; moreover, the
leaves attached to any node succeed all its inner sons in postorder. In what follows
we will aim at the estimation of the associated quantity

.p(n, m) = max {IFI: F is a compression scheme on an (n, m)-tree}.

Note that in the transformation above the length of each GPC is increased by 1, thus

IFI increases by m. Therefore .p(n,m)=x(n,m)+m foralln,m.
It is known (see [5], [16]) that if no restrictions on the order of the starting

nodes of the GPC's or on the structure of T are imposed, then (even for standard
path compressions) .p(n, n)=B(n log n) (for easier comparison, we state all results
in the Case m=n; usually m=B(n), which of course yields the same bounds). If
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the tree T is required to be balanced and one uses only standard path compressions,
then I/J(n,n)=e(ncx(n)) (cf. [16]). Here we show that, using generalized path com-
pressions, and imposing no restrictions on the structure of T, but requiring that the
GPC's be postordered, I/J(n,n) is also e(ncx(n)). Although the same bounds are
obtained both here and in [16], there is no obvious relation between the two problems
(in particular, our results are not proved by reducing the problem to that studied in
[16], although we adapt some of the techniques in [16] to the derivation of our lower

bounds; see also Section 6.2).

3. Statement of main results

In this section we state our main results, concerning the functions As and I/J.
For this purpose, we recall first the definition of Ackermann's function ("generalized
exponentials" - cr. [1]).

.

Let N be the set of positive integers 1,2, Given it function g from a set into
itself, denote by g(S)

the composition gogo...og of g with itself stimes, for sEN.
Define inductively a sequence {Ak}k"=lof functions from N into itself as follows:

Al(n) = 2n

Ak(n) = A~~l(1), k ~ 2

for all nEN. Note that for all k~2, the function Ak satisfies

Ak(1) = 2,

Ak(n) = Ak-l(Ak(n-l)), n ~ 2.

In particular, A2(n)=2A2(n-l), thus A2 is the "power function"

A2(n) = 2n, nEN.

Then As(n)=2A3(n-l), thus As is the "tower function"

~

,2

As(n) =22"

with n 2's in the exponential tower, for nEN. Finally, put A (n) =An(n). This is
Ackermann'sfunction (actually, there are several variants of this function; their orders
of magnitude are essentially the same, and our results do not depend on which one we
use; see also Lemma 3.1 below). Ackermann's function A grows very fast; its first
values are: A(1)=2, A(2)=4, A(3)=16 and A (4) is a tower of 65536 2's. For basic
properties of the functions defined above, the reader is referred to [16, p. 219] (note
that his index k is one less than ours).

Given a strictly increasing function g from N into itself, its functional inverse
is the function y from N into itself given by

yen) = min {s ~ 1: g(s) ~ n};
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thus, y(n)=s if and only if g(s-I)<n:'2g(s). In particular, let IXkand IXdenote the
functional inverses of Ak and A, respectively. Then, for all nEN,

1X1(n)= r ;1,

1X2(n)= rlog nl.

The functions IXkare easily seen to satisfy the following recursive formula:

IXk(n) = min {s ~ I: IXL~l(n) = I};

that is, IXk(n)is the number of iterations of IXk-lneeded to go from n to I. In particular,
lXa(n)is precisely log* n, as defined in Section 1.
. All the functionslXkare non-decreasing,and convergeto infinity with their
argument. The same holds for IXtoo, which grows more slowly than any of the IXk'Note
thatlX(n):'24 for all n:'2A(4) which is a tower with 65536 2's, thus lX(n):'24 for all
practical purpOses.

.

We-can new state our results-.

Main theorem. A,a(n)= e(nlX(n)).

Thus, there exist constants C1, C2>0 such that

C1nlX(n) :'2 A3(n) :'2 C2nlX(n)

for all n~l; we remark that the constants are of reasonable magnitude (very coarse
estimates are given in the Remarks at the end of Sections 5 and 6). Note moreover
that, in comparison, Szemeredi's result (for A3) Can be stated as A3(n):'2CnIX3(n).

The main theorem is a consequence of the following theorems, the first estab-
lishing connections between Davenport-Schinzel sequences and compression sche-
mes, and the other two yielding (upper and lower) bounds for the latter.

Theorem A. For all n, m~l,

(i) A3(n) :'21jJ(2n, n),

(ii) ljJ(n, m):'2 A,3(m)+(n+m-I).

Theorem B. ljJ(n, m)=O(n+m)lX(n)).

Theorem C. 1jJ(2n,n)=Q(nlX(n)).

Theorems A, Band C will be proved in the following three sections.

Proof of main theorem. Theorem B (with (2n, n) for (n, m)) together with Theorem
A (i) imply A3(n) = 0 (nIX(n)). The other inequality A3(n) = Q (nIX(n)) follows from

Theorem C and Theorem A (ii) (with (2n, n) for (n, m)). (Note that IX(2n):'2IX(n)+ 1
for all n.) I

The inverse of Ackermann's function has also appeared in the analysis of the
union-find algorithm in [16]. The inverse function appearing there is, in our notations

ocT(n)= min{k ~ I: Ak+l(4) >logn}
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(cf. [16, p. 221), for m=n); recall that our function is

a(n) = min {k ~ 1: Ak(k) ~ n}.

However, the two functions are of the same order of magnitude:

Lemma 3.1. For all n~l,

1

4"
a(n) ::§aT(n) ::§2a(n).

To show this, we use the following

Lemma 3.2. For all k~1 and s~3, Ak(s+I)::§Ak+I(S),

Proof. It is easily checked that Ak(s)::§AHI(S) for all k, s~1. Then

AHI(S) = Ak(Ak+I(S-I») ~ Ak(A2(s-1») = Ak(2S-I) ~ Ak(s+l),

for all s~3. I

Proof of Lemma 3.1. If n::§16, then a(n)::§3 and aT(n) = 1. If n>16, then a(n)~
~4, and using Lemma 3.2 we obtain for k=a(n)

thus aT(n)::§2a(n)-5.
For the converse, it is easily checked that if aT(n)=1 or 2, then a(n)::§4;

if aT(n)=3, then a(n)::§5. And finally, if k=aT(n)~4, then

n -< 2Akd4)
= A2(Ak+1(4»)::§ Ak(Ak+I(4») = Ak+I(5) ::§ Ak+l(k+ 1),

thus a(n)::§aT(n)+1. I

log n -< n ::§ Ak(k) ::§ A2k-4(4),

4. Linear equivalence between t/1 and A3

In this section we prove Theorem A, showing that the two functions t/1 and As
are of the same order of magnitude. This will follow by using two transformations,
from DS(n, 3) sequences to compression schemes and vice versa.

4.1. Transforming Davenport-Schinzel sequences into compression schemes

'.

Let U=(Ult U2, "., urn) be a DS(n, 3) sequence. Define, for each i= 1, .", n,

Jli = min{p: up = i},

Vi = max{p: up = i};

that is, Jli is the index of the first occurrence of i in U, and Viis the index of the last
such occurrence. Without loss of generality (permuting 1, ..., n if necessary) assume
that JlI-<Jl2-<".-<Jln'
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A chain c=(up, ..., Uy) is a maximal decreasing contiguous subsequence of
U, i.e.

(Up-I <)up >- UP+I > >- Uy( < Uy+1)'

Chains are obviously disjoint and their union is U.

Lemma 4.1. Suppose that i=UP-I<Up=j. Then either p-l=vj or P=Pj'

Proof. Suppose the contrary; then Y=Pj<P-I and b=Vj>-P. Also, since i<j
we must have e=pi<Pj=Y. Overall, we obtain five indices e<y<p-I<P<b
such that U,=Up-I=U6=i and Uy=up=j, a contradiction which completes the
proof. I

Corollary 4.2. There are at most 2n distinct chains in U.

Proof. By the preceding lemma, a chain can end either at Vi or at pi-I, for some

i= 1, ..., n, and there are at most 2n such places. I

Remark. The correct upper bound on the number of chains is actually 2n -1, since

PI -1 = 0; it is attained, for example, by the sequence (of length 5n- 8)

121 3 1...1 n-l 1 n-l n-2 ...3 2 n 2 n 3 n ... n n-l n.

Enumerate the chains of U in the order they occur as CI, c2, ..., cp' where
p:§. 2n. Let T be a (p, n)-tree, with the p inner nodes 1,..., p corresponding to the

chains cI,..., cp; they are arranged in a single path, with q + 1 the father of q,
for q=I,...,p-l; thenleaves II,...,ln correspond to the symbols 1,...,n
appearing in the sequence U, and are attached to the p inner nodes as follows. For

each i, let tl <t2<... < tq; be the indices of the chains that contain i; we then attach
the leaf Ij to the node tl in T. Define a GPC fi=(l;, tl> ..., tq) on T, and let F=

=(/1' ... In)' The totallength of F is

n n

"IF! = 1: Iftl= 1: qj = 1: Ic,!= IVI.
i=1 i=1 ,=1

Proposition 4.3. The sequence F is a compression scheme on T.

Proof. For each i= 1, ..., n, let SI be the index of the chain containing the first

occurrenceofiin U(i.e. J.ljEc.,); since J.lI<J.l2<...<J.ln and the chains are decreas-
ing sequences, we have SI<S2< ...<Sn, and thus the leaves Ij=C1(fi), whose fathers
are the nodes s;, are indeed in postorder.

Next, suppose to the contrary that F is not executable, and letfi be the first
GPC in Fwhich cannot be executed. Write fi=(/i, tI' ..., tq) and suppose that when
f is to be executed, tk is no longer a descendant of tHI (note that the leaf II of tl has

not yet been involved in any GPC, and is still a son of tI). Then there had to exist
a GPCfj with }<i which has separated tk from tHI; thus fj contains a node U
with tk:§.U<tHI' and its last node v is such that tHI<V. Since j<i, we also have
Sj<Sj=tI:§.tk' Therefore jEc.j, cu, cv, and iEctk' CtUl' implying that U contains

a forbidden subsequence of the form jijij, contrary to assumption (note that this
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occurs even if tk=u, because in the decreasing chain Cuthe symbol i must precede
i). I

Proof of Theorem A(i). The transformation described above yields As(n)i§l{I(p, n)"2
"21{1(2n,n), since I{Iis monotone and p;22n. .

4.2. Transforming compression schemes into Davenport-Schinzel sequences

Let Tbe an (n, m)-tree, and l~t F=(ji,A, ... ;1m) be a compression scheme
on T. We will identify each GPC with the set ora'll 'vertices of T through which it
passes, except for its last vertex. Specifically, for ~achjj=(xl' ""Xk-l,Xk), let
fJ={xl> ""Xk-J. Enumeratethe n+m nodes of Tin the given postorder as 1,2,...
...,n+m, and define, for each v=l, ...,ii+m, as~quenc::e

Uv = U: 1 ;2 j "2 m ~nd vEfJ],

where the elements of each sequenc Uv are,arranged in decreasing order. Let U be
the concatenation

U = UtIIU~11 ... IlUn+m'

To obtain a Davenport-Schinzel sequence V from U, we proceed through the sub-
sequences Uv in order, erasing the first element of Uv whenever it equals the preceding
non-erased element of U; in total, at mostn+m-l elements are erased.

Proposition 4.4. The sequence VisaDS(m, 3) sequence of length JVI~IFI-(n+m-l).

Proof. V is composed of m symbols; the erasing procedure and the fact that each
sequence Uv contains distinct elements imply that no two consecutive elements of V
are equal. For each jjEF, its indexj appears Ijj I times in U (the last vertex ofjj is
ignored), thus IVI = IF! and IVI satisfies the required inequality.

Finally, U - and thus V too - does not contain a subsequence of the form
ijiji. Suppose the contrary; then there exist vertices*

{J;2Y;2(j"2B;20

in T, and two distinct GPC's /;,fjEF such that

iEUp, U6, UB,

jEUy, U.,

and moreover these five occurrences of i and j appear in U in the order ijiji. Let us
denote this illegal subsequence as Q. .

Without loss of generality, we can assume that Q is the (lexicographically) leftmost
occurrence of such an illegal subsequence in U. In particular, no j appears in U before
the occurrence of i in Up (for otherwise we would have an illegal subsequence of the
formjijijlying left of Q). Moreover, we can assume for similar reasons that Up con-

* All inequalities between vertices refer to the given postorder.

6
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tains the first occurrence of i in U and that U1contains the first occurrence of j in U.
By definition we must have P=u(fi), y=u(fj), so that P and}' are distinct leaves of

T. Thus p<y and so i<j since the sequence Fis postordered.
Furthermore we also have ~ ¥B, for otherwise U6 would contain both i and

j, andjwould have to precede i in U6(since i<j). But then our subsequence Q would
appear in U in the order ijjij, contrary to assumption. Moreover, y is a leaf whereas ~
is not Ui starts at p and then passes through ~), so that we also have y ¥~.

Now p<y<~ and p is a proper descendant of ~ (fi contains both of them).
Since the vertices of T are arranged in postorder, y must also be a proper descendant
of ~. By the same argument, ~ must be a proper descendant of e and B must be a
(possibly improper) descendant of e.

Let Cbe the least common ancestor of p and y in T; then Cis a descendant of ~.

Since P¥y are leaves, Cis notaleaf, and so C¥P,y. Let~betheson of' on the path
from y to C; see Figure 4.1.

13."" ,/~1

...Vs.

I~
I
I
I,

t~.
I
I,

r,e:
I
I
r
I

r~

Fig. 4.1. Initial arrangement
of the nodes p, y, ... in T. A

solid edge denotes a nonempty
path. whereas a dashed edge
denotes a possibly empty path

Since p<y we also have P<~, and in fact every leaf of the subtree T~ of T

rooted at ~succeeds p in postorder. Since the GPC's of F are executed in postorder,
it follows that by the timefi is executed, no GPC has yet passed through any vertex
of T~ ; in par@ular y is still a descendant of Cat that time.

Let 17be the first vertex (i.e. furthest from the root of T) in fi which is a
(possibly improper) ancestor of C. Note that since ~Efi, 17must lie on the path bet-
ween Cand ~ (including C,~).

After fi is executed, y remains a descendant ofC and thus of 17too. Let e be the
last node of fi (note that e < e). Execution of fi has made 17a son of e. Now B lied
originally strictly between 17and e (strictly because ~¥ Band e ¥ e). Thus, after
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execution of/;, '1, and hence afortiori y, will no longer be a descendant of 8. But this
implies thatli cannot be executed, a contradiction which completes the proof. I
Proof of Theorem A(ii). The above transformation plainly gives the required inequal-
ity. I

5. The upper bounds

In this section we prove Theorem B, i;e. establish an upper bound on t/J(and
hence also on A3)' To obtain this bound we first derive a recurrence relation for the
function t/J.

Proposition 5.1. Let n, m ~ 1, and let b:> 1 be a divisor of n. Then there exist integers

m*, ml, m2,
0'"

mb~O such that
b

m* + L: m; = m,
;=1

and

(*) t/J(n,m):§ t/J(b-l,m*)+2n+2m*+itt/J(~, mi)'

Proof. It suffices to consider o"nly the extreme case of (n, m)-trees all of whose inner
nodes lie along a single path; we will refer to such a tree as being canonical. Indeed,
given any (n, m)-tree T, transform it into a canonical (n, m)-tree To by arranging its
inner nodes along a single path, according to their given postorder (the leaves remain
attached to the same nodes). It is easily seen that any compression scheme on Tis
also a scheme on To 0

Let then T be any canonical (n, m)-tree, and let b:> 1 be a divisor of n. Par-
tition the tree T into b layers Ll'" 0, Lb as follows: Let 1,..., n denote the inner
nodes of Tin postorder (n is the root), then the layer Li consists of the p=n/b inner
nodes (i-l)p+l, (i-l)p+2, ..o,ip, together with all the leaves attached to them.
Let F be any compression scheme of m G PC's starting at the leaves of T. Classify the
GPC's of F into the following two types.

(I) GPC's that start and end in the same layer. For each i=l, ..., b, let

mi denote the number of GPC's that start and end in layer L;. The total length
of these GPC's is at most

(1) i~t/J(~, ml

(II) GPC's that contain vertices of more than one layer. Let m* denote the
b

number of GPC's of this type; plainly, m* + L: m;=m. The total length of these
i=1

GPC's is the total number of their edges; call an edge (Xj' xi+!) internal if Xj and Xj+!
belong to the same layer, and crossing otherwise. The layer L to which (1(f) belongs
will be referred to as the starting layer of the G PC f

The total length of the G PC's of type II can thus be written as Nl + N2 + N3,
where Nl is the number of internal edges within the starting layer of their GPC, N2
is the number of internal edges within non-starting layers of their G PC, and N3 is the
number of crossing edges.

6.

I.
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To estimate N1 we argue as follows. Fix a layer Li, for i=l, ..., b-l, and let
Qi denote the set of all inner nodes of Li whose fathers do not belong to Li. Initially

IQil=l, and we clearly always have IQ,!;§n/b. Consider any GPCfwhich starts
in L" contains k f ==k}~ 1 internal edges within L" and then crosses over to another
layer. Then f passes through kf inner nodes of Li, all of which become members of
Q, after the execution off. Note that only the last node offin L, could already belong
to Qi before the execution off; all the other k f -1 nodes certainly did not. Hence the
execution offadds at least k1-1 new nodes to Q" so that

n
;:(kl-l) ;§ 7)-1,

where summation is over alII's of type II as above. Let q, be the number of such
GPC's. Then their total contribution to N1 is

n
L: kf = qi+L:(kl-l);§ Qi+-

b
-1.

f f

b-l

Hence, summing over alllayers, and observing that L: qi;§m*, we obtain
1=1

b-t

( n )N1;§
l?i

ql+7)-l ;§ m*+n.

For the estimation of N2 we need the following lemma, which establishes an
important property of compression schemes.

Lemma 5.2. Let F be a compression scheme on a tree T, and let u and v be two nodes
in some fE F. Let w be a node such that u< w< v in the given postorder (thus, in par-
ticular, w waS initially a descendant of v). Then at the time f is executed, w is still a
descendant ofv.

Proof. Suppose the contrary, and assume thatfis the first GPC in F for which this
property fails to hold for some u, vEf. Then, arguing as in the proof of Proposition
4.3, there had to exist another G PC g preceding fin F which has separated wand v;
i.e. g contains a vertex z such that, just before executing g, w has been a (possibly
improper) descendant of z, z has been a proper descendant of v, and v has been a prop-

er descendant of the last node r ofg. Then l1(g)<I1(1);§u<w;§z. Since l1(g) has
been originally a descendant of z, by postorder so waS 11(1). Let a, b be the two
consecutive nodes of g satisfying l1(g);§a<I1(1);§b;§z (they exist because 11(g),
zEg). Since the assertion of the lemma is assumed to hold for all GPC's in F preced-
ing f, the node 11(1) must still be a descendant of b just before executing g. But at
that time b is a (possibly improper) descendant of z (because b, zEg). Hence, imme-
diately after g is executed, b, and hence l1(f) too, are disconnected from v (b becomes
a son of r). But this makes f un executable, a contradiction which completes the
proof. I

The estimation of N2 now proceeds as follows. We fix a layer Li, for i=2, ..., b,
and bound the contribution to N2 due to internal edges within Li. Let P, be the set
of inner nodes of Li lying on the path from the first inner node w of L, to the root of

(2)
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T. Initially IPi!=n/b, and Pi always contains at least one node, namely w. Consider
a GPCfwith a crossing edge (u, v) entering Liand with I=.I,?!=I internal edges in Li.
Let v=,vo, VI' ..., V, denote the nodes offin

L" It follows from Lemma 5.2 that, just
before f is executed, w i&still a descendant of vo, so that Pi currently contains all the
nodes vo, ..., v,, After execution offall the nodes VI' ..., V,-l will be deleted from
Pi; iff terminates in another layer (succeeding L,), then v, will also be deleted from Pi,
Hence IPi! is decreased after executingfby I} nodes, where I; is 1,-1 if fterminates
in L" and is I, otherwise. Therefore

f 1;~ ; -I,

where the summation is over allf's of this sort. Let Pi denote the number of such
G PC's which terminate in Li, Then the total contribution to N2 within Li is

Z I, = Pi+ Z I} ~ Pi+
b

n
- 1., ,

Hence, adding these bounds for i= 2, ..., b we obtain

(3) N2~
i~ (Pi+; -I) ~ m*+n,

"

b.
"'-<*SInce ~ p,=m .

i=2
Finally, for Na we use the following construction:
Let T* be a canonical tree of the following form. It has b -1 inner nodes

Y2-<"'<Yb, each Yi representing the layer Li; in addition, each Yi has Ii leaves
attached to it, where Ii is the number of GPC's of type II in F whose starting layer
is Li-l' To simplify notation, we will identify the Ii leaves of Y, with the starting
leaves of these GPC's. For each jj of type II, let gj be the sequence oflayers through
which jj passes, without repetitions (i.e. each such layer appears in gj just once):
gj=(il, i2, ..., i,) (where 1~i1"<i2< ...<i,~b). We transform gj into a GPC jj*
on T*: f/=(Zj'Yiz""'YIJ where Zj=u(jj) (which is a leaf of Lil in T). Note
that Yil does not appear in It, whose length Ifll =r-l precisely equals the number
of crossing edges offj.

Lemma 5.3. The resulting sequence F* =(ff) is a compression scheme on T*.

Proof. First observe that F* is postordered relative to the postorder on T* in which
all auxiliary leaves of any Yi succeed Yi-l' Second, suppose to the contrary that F* is
not executable, and letf* be the first nonexecutable GPC in F*: f*=(z, liz' ..., Yi,),
with Z a leaf of Lil in T.We must have one of the following two situations.

(i) YI. is not a descendant OfYisH for some 2:§is~r-1.

Then there had to exist a GPC h* preceding 1*, which contained two inner
nodes Yp and Yq of T*, where is~p<is+1<q. Thus the original GPC f contains some
nodes aELis' bELIsH' and h contained some nodes cELp, dELq. If a~c, then
u(h)<u(f)=.z<a;§c<b<d; by Lemma 5.2, a and b are still descendants of c and

I
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d, respectively, when h is executed, after which they certainly become disconnected.
But this makesfunexecutable, so we must have c<a, and thus p=i.. Moreover,
c<z<a, otherwise z and a would be disconnected by h (by the same argument as
above). Thusfstarts in Li., hence s= 1, again a contradiction.

(ii) z is not a descendant OfYi;'

Since no other G PC starts at z, it follows that Yil +1, to which z is attached, is
not a descendant of Yiz' Therefore there had to exist a previous h* which contained
two inner nodes Yp and Yq of T*, where i1+1 "2.p<i2<q. Hence h contained some
cELp, dELq. But then u(h)<z<c and h would have disconnected z from Liz' so
thatfwould not be executable, a contradiction which completes the proof. I

Corollary 5.4.

(4) Ns:§ 1{I(b-l, m*).

Proof. Immediate from the preceding lemma. I

Combining the estimates (1)-(4), we finally obtain the desired recurrence
relation (*), and thus complete the proof of Proposition 5.1. I

Proposition 5.5. Let m, s~l, k~2, and suppose that n divides Ak(S). Then

(**) 1{I(n,m) "2.(2k-2)ns+(2k-l)m.

Proof. We will use (*) repeatedly to obtain the series of upper bounds on 1{1,stated in
(**) for k =2,3, ... . At each step we choose b in an appropriate manner, and estimate
1{1(b -1, m*) using the bound obtained in the preceding step. This yields a recurrence
relation on 1{1which we solve to obtain a better upper bound on 1{1.

Specifically, we proceed by double induction on k and s..To start this iterative
process with k=2, suppose first that n=A2(s)=2'. Choose b=2 in (*); it is easily
checked that 1{I(b-l, m*)=1{I(1, m*)=m* for all m*, so that (*) yields

1{I(Il,m)"2.2n+3m*+1{I(~, ml)+1{I(~, m2)'

The solution to this recurrence relation, for n a power of 2 and m=m*+ml +m2
arbitrary, is

1{I(n,m):§ 2nlogn+3m.

(This is obvious for n=l because 1{I(1,m)=m. Assuming it holds for n/2, we
obtain

n n
1{I(n, m)"2. 2n+3m*+42"log2"+3ml +3m2 = 2nlog n+3(m*+ml +m2)

= 2nlogn+3m,

thus the claim follows by induction.)
To complete the argument for k=2, note that if n divides A2(s)=2' then

nis a power of2 and log n"2.s, thus 1{I(n,m)"2.2nlog n+3m~2ns+3m.

~
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In particular, we have for n= 1,2

1jJ(n,m) ;§ 2n+3m ;§ (2k-2)n+(2k-l)m

for all k?:2. Since Ak(1)=2 it follows that (**) holds for each k?:2 and s=1.
Suppose next that k>-2 and s>-l, and that the induction hypothesis is true

for all k'<k and s'?:I, andfork'=k and all s'<s. Observe that Ak(s-I) is a
divisor of Ak(S) because they are both powers of 2. Assume first that n=Ak(s); let
t=Ak(s-l) and choose b=n/t, which is an integer dividing n=Ak(s)=Ak-l(t).
Hence by the induction hypothesis (for k -I and t) we have

1jJ(b-l, m*) ;§ 1jJ(b, m*) ;§ (2k-4)bt+(2k-3)m* = (2k-4)n+(2k-3)m*.

Then (*) becomes

"1jJ(n, m);§ (2k-4)n+(2k-3)m*+2n+2m*+ 1:1jJ{t, mi)'
j=1

Using the induction hypothesis once more (for k and s-I), we obtain

"1jJ(n,m) ;§ (2k-2)n+(2k-l)m*+ 1: (2k-2)t(s-I)+(2k-l)mj)
i=1

"= (2k-2)ns+(2k-I)(m*+ 1:mE) = (2k-2)ns+(2k-l)m,
i=1

"because m*+ 1: mj=m.
1=1

Finally, assume n divides Ak(s), say Ak(s)=pn. Let Tbe a canonical (11,m)-
tree and F a compression scheme on T of length 1jJ(n,m). Take p copies of T, and
construct a canonical (pn,pm)-tree T* by concatenating them in sequence. Let F*
be the concatenation of the correspondingp copies of F. Since IF*I=p IF! =p1jJ(n, m),
we obtain

p1jJ(n, m) ;§ 1jJ(pn,pm) = 1jJ(Ak(S),pm);§ (2k-2)sAk(s)+(2k-l)pm,

which, divided by p, yields the required inequality. This completes the proof. I

Corollary 5.6. For all n, m?:1 and k?:2,

1jJ(n,m);§ (4k-4)ncxk(n)+(2k-l)m,

where CXkis the functional inverse of Ak as defined in Section 3.

Proof. Put S=CXk(n), so that Ak(s-I)<n;§Ak(s). Let p=lAk(s)/nJ?:I, then
Ak(s)«p+ l)n;§2pn. As in the preceding proofwe have

p1jJ(n, m) ;§ 1jJ(pn,pm) ;§ 1jJ(Ak(s),pm) ;§ (2k-2)sAk(s)+(2k-l)pm

;§ (4k-4)pns+(2k-l)pm.

Dividing by p we obtain the desired inequality. I

Proof of Theorem B. We claim that
"

(B) 1jJ(n, m) ;§ (24n+4m)cx(n)

l
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for all n,m~1. Indeed, assume first n>4 so that cx(n)~3. Let k=2cx(n)-3, then
n~Aa(n)(cx(n»)~Ak(3) by a repeated application of Lemma 3.2, hence cxk(n)~3.
Corollary 5.6 yields

t/J(n, m) ~ (4k-4). 3n+(2k-1)m ~ 24ncx(n)+4mcx(n),

as required. For n~4 the desired inequality can be verified directly from Corollary
5.6. I

Remark. Inequality (B) and Theorem A (i) imply

Aa(n) ~ t/J(2n, n) ~ (48n+4n)cx(2n) ~ 52n(cx(n) + 1).

6. The lower bounds

In this section we will establish nonlinear lower bounds for t/J(and, afortiori,
also for As for all s~3) which match closely the upper bounds just obtained. This is
achieved using a construction similar to that of [16]. In this derivation we use a se-
quence of functions Bk which are similar to the functions Ak, but which are easier to
use in our construction.

6.1. The functions Bk and their properties

Define inductively a sequence {Bdk=l of functions from the set No=NU{O}
into itself as follows.

Bl (s) = 0, s ~ 0,

Bk(O)= 1, k ~ 2,

Bk(S) = Bk(s-1)+Bk-l(2Bk(s-I», k ~ 2, S ~ 1.

Here are some properties of the functions Bk'

B2(S) = 1, for S ~ o.
Ba(s)=s+l, for s~o.

(Bl)

(B2)
..

(B3) B4(s)~22" , with s 2's in the exponential tower,for s~O; i.e. B4(s)~A3(s).

Indeed, B4(O)=1, and B4(s)=B4(s-1)+2B.(s-I)+1~2B.(.-I), for s~1.

(B4) Each function Bk(S) is strictly increasing in s,for all k~3, and each sequence

{Bk(s)h;?;l is strictly increasing,for all s~1.

To see this note first that Bk(s)~l for all k~2 and s~O. This implies, for
k~3 and s~O, that

Bk(S+ 1) = Bk(S) + Bk-l(2Bk(S» ~ Bk(S) + 1,

hence also Bk(s)~s+1. Finally, we obtain

Bk+l(S) ~ Bk(S) + 1, k ~ 1, S ~ 1.

..

. I
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(This is clear for k=1. For k>1 we have 2Bk+l(s-I)~2S~s, hence

Bk+l(S) = Bk+l(S-I)+Bk(2Bk+1(s-I» ~ I+Bk(s),)

Bk(S) ~ Ak-l(S), for k ~ 4, S ~ 1.

This is proven by double induction on k and s. (B5) holds for
and holds for s= 1 since

Bk(1) = 1+Bk-l(2) ~ 2 = Ak-l(I).

For k>4 and s> 1, assume (B5) to hold for all 4:§k' <k and s'~ 1, and for

k'=k and all 1;§.s'<so Then we have

(BS)

k=4 by (B3),

2Bkls-l) ~ Bk(s-l) ~ Ak-l(s-I),

hence

Bk(S) ~ Bk-l (2Bk(S-1) ~ Bk-l(Ak-l(S-I») ~ Ak-2(Ak-l (s-I») = Ak-l(S),

(B6) 2Bk(S)+2:§ Ak(s+3), for k ~ 1, s ~ O.

This is again proven by double induction on k and s. For k= 1 we have
2B,(s)+2=4 and A1(s+3)=2(s+3)~4.

For k=2, 2B.(s)+2=8 and A2(s+3)=2S+3~8.
For k~3 and s=O, we have 2Bk(O)+2=8and

Ak(3) = Ak-l(Ak(2») = Ak-l(4) ~ A1(4) = 8.

Finally, for k~3 and s~l, put t=Bk(s-I); then

Thus

Bk(S) = t+Bk-l(2t) ;§. 3. (2'-I)+Bk-l(2')

;§.Bk-l(2' +3. (2' -1») = Bk-l (2t+2_3).
which, by (B4), is

2Bk(S)+2 ;§. 2Bk-l(2t+'-3)+2 ;§. Ak-l(2t+2)

= Ak-l(2Bk(S-I)+2) ;§. Ak-l(Ak(s+2») = Ak(s+3),

using the induction hypothesis twice.
Note, as a corollary, that

(B7) Ak-l(S) ;§. Bk(S);§. Ak(s+3), for k ~ 4, s ~ 1,

so that the sequences of functions Bk and Ak are indeed of the same order of magni-
tude.

6.2. The derivation of the lower bonnds

Although the proof of the upper bounds in the preceding section has dealt
exclusively with canonical (n, m)-trees, we will find it more convenient in this section
to work with (essentially) symmetric binary trees rather than with single-path ones
(of course, as noted in Section 5, any compression scheme on an arbitrary (n, m)-tree
Can be translated to the corresponding canonical tree).

L
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Let Tbe an arbitrary (n, m)-tree. Define a sequence oftreesT(i), for i~O, as
follows: T(O) = T; to construct T(i + 1), take two disjoint copies of T(i), introduce

a new node r as the root of T(i + 1), and make The roots of the two copies of T( i)

sons of r (see figure 6.1). Note that T(i) is an (nj, mj)-tree, where

nj = (n+ 1)2j-l,

mj=m.2j.

Moreover, for any given postorder on T, we obtain inductively an induced postorder
on T(i + 1) by taking in each of the two copies of T(i) the same (induced) postorder.

In the sequel, we always consider only such induced postorders on the trees T(i).

~
,

r

Fig. 6.1. T(i+l)

Theorem 6.1. LetTbea(l,m)-treewith m~l, and let k~1. Then for each i~Bk(m)
there exists a compression scheme F on T(i) such that each of the mj GPC's in F is of
length k.

Proof. We use an argument similar to that in [16, Theorem 15], based on double
induction on k and m. Note that if the assertion of the theorem holds for some i, it
also holds for all j>i; it thus suffices to prove it for i=Bk(m). Moreover, we remark
that the theorem holds for (n, m)-trees with arbitrary n~l as well; to reduce it to
the Case n = 1, ignore the inner structure of the tree, and assume that each leaf is

connected directly to the root.

Suppose first that k = 1. Since Bl (m) =0, it suffices to prove the assertion
for Titself. Indeed, take Fto be the sequence of GPC's {(II' f), ..., (1m'f»), where

11>..., 1mare the leaves of Tarranged in postorder, and r is the root of T.
Next suppose that k=2 (this step is not essential to our inductive proof, but

is given anyway to prepare for the following more complex steps). Consider T(1) =
= T{B2(m»), and let rodenote its root. For each leaf / of T(l) take the GPC (I, r, ro) of
length 2, where r is the root of the copy of T containing I, and let F be the postordered
sequence of these GPC's.

Now suppose that k~3. Assume that the assertion holds for all k' <k and
all m' ~ 1, and consider first the case m = 1. T consists of just one leaf / and a root r
(note that /rf:r). Let T* be the subtree of T(1) obtained by removing its (two) leaves;
T* is a (1, 2)-tree. Let io=Bk-l(2) and i=Bk(1); then, by definition, i= 1+io. By the
induction hypothesis, there exists a compression scheme F* on T*(io), all of whose
GPC's are oflength k-1. Now T*(io) maybe regarded as a subtree of (T(1))(io) =
=T(i), and we will extend each GPCf*=(x1> ..., xk)EF* to a GPC f=

=(xo, Xl' ..., Xk) in T(i), by adding tof* the leaf Xo which is the unique son of Xl'

The resulting sequence F is clearly postordered and executable in T(i), and each of its
G PC's has length k, thus F is the required compression scheme. '

Il
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. Finally, let k?:3 and m::>l; and assume that the assertion holds for all

k' <k and m'~l, and for k'=k and all m' <m. Let T be a (1, m)-tree, and let
It, ..., 1m be its leaves arranged in postorder. Let T* be the (1, m-l)-tree obtained
from T by removing its last leaf 1m. Put io=Bk(m-I), il=Bk-l(2Io), and i=
=Bk(m); thus i=io+il' .

Consider T(io) and its subtree T* (io). By the induction hypothesis, there exists a
compression scheme on T*(io), all of whose GPC's have length k. Thus, starting at
each leaf 11>..., Im-l in each copy of Tin T(io), we have a GPC of length k. Now
T(i) =(T(io)) (il) contains 21,copies of T(in), and in each of these copies we have a
corresponding compression scheme of the above form. Refer to the GPC's in all
these schemes as GPC's of type I. .

Next consider the subtree T** of T(io), obtained by removing all its m .210
leaves. Since T is a (1, m)-tree, the leaves of T** are precisely the p=210 copies
(in T(io)) of the root of T. Regard T** as a (1, p )-tree by ignoring its inner structure,
and apply to it the induction hypothesis (recall the note at the beginning of this
proof). We obtain a compression scheme F** on T**(il)' consisting ofGPC's of length

k -1 each, such that only the root and the leaves of each copy of T** (but none of its
intermediate nodes) participate in F**. Now T**(il) is a subtree of (T(io)) (il)=T(i);
we extend each GPC f**=(Xl' ..., xk)EF** to a GPC f=(xo, Xl' ..., Xk) in T(i) as
follows: Xl is the root of some copy of T, and we take Xo to be the last leaf there (i.e.
the copy of 1m).We will refer to these GPC's as being of type II.

We can now obtain a compression scheme on T(i) by merging the GPC's of
types I and II; namely, we proceed through the leaves of T(i) in their induced postor-
der; for each leaf which is a copy of 11>..., Im-l (resp. of 1m),we take the correspond-
ing GPC of type I (resp. type II) starting at that leaf.

The sequence F of GPC's obtained in this way is the required compression
scheme on T(i). It is clearly postordered, and its executability can be established by
proceeding inductively through the sequence, and using the following arguments:

(a) All the postorders considered here (on T(i), T*Uo), and T**(il)) are

consistent with one another, since they are all induced by the original postorder on T.
This implies the separate executability of the sequence of G PC's of type II, and also
of those of type I (in each copy of TUo) separately, and also all together).

(b) Let f=(l', ..., z) be a GPC of type I, where l' is a non-last leaf, and let

r' be the father of l' (i.e. r' is the root of the copy of T containing l'). All the nodes of
fare included in the same copy of TUo); therefore, if g is any GPC of type II which
contains a node on the path from l' to z (excluding z), then this node must be r', and
g is thus executed only after f(since a(g) is the last leaf of r'). By (a), the other G PC's

of type I also do not affect the executability off
(c) Let f=(l', r', u, ..., z) be a GPC of type II, where l' is a last leaf and r'

is its father; let q' be the root of the copy of TUo) which contains l' and r', then q'
is a (possibly improper) descendant of u. The GPCfis executable at its turn, because:

(i) l' belongs to no other GPC, thus it still is a son of r'.

(ii) For any GPC g of type I, if it contains a node on the path from l' to z,

then all its nodes lie in the copy of TUo) with root q', thus g does not disconnect r'
from q' and u, and of course does not affect the other nodes off

(m) Finally, the other GPC's of type II do not affect the executability of f
(by (a)).
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This establishes the assertion of the theorem for k and m too, and thus com-
pletes the proof. I

Corollary 6.2. For all n, m~1

1
t/J(n,m) ?: *4

pm,

where

p ==pen, m) = maX{k?: I: Ak(f 2;; ]+3) ~ 2n},

and p= 1 if there is no such k.

Proof. Since t/J(n,m)?:m always, we can assume P>1. Consider first the Case
2m?:n. Let s=L2m/nJ?:I, and apply Theorem 6.1 to a (I, s)-tree, to obtain for all
i?:BfJ(s)

t/J(2i+l_l, S. 2i) ~ ps2i.

1
Put b="2AfJ(S+3):§n and i=log b-l; then 2b~2B/I(.)+2 by (B6), hence i~

~BfJ(s) and we have

( sb) sb
t/J b-l,

T
?: PT'

Now let p=ln/bJ~l, then pb~n and psb/2~ns/2~m. Using the same argument
as in the proof of Proposition 5,5 we obtain

( PSb ) ( sb ) ( sb )t/J(n,m)~t/J pb'2 ~Pt/J b'T
?:pt/J b-I'T

sb I
~ PPT ~ *4Pm,

since In/bJ .b?:n/2 and l2m/nJ 'n~m,
Note that the compression scheme we have obtained has all its GPC's of

length p. Thus, for any m'~m, we can remove m-m' leaves together with their
associated GPC's obtaining a compression scheme consisting of m' GPC's of length
p each, on the modified tree. Thus

1
t/J(n,m')~*4P(n,m).m'

for all m':§m. In particular, for m'~m=n/2, we obtain

t/J(n,m')?: ~P(n, ~).m';

but by definition of P, in this case we have p (n, m') = P(n, n/2), and this completes
the proof. I

L
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Proof of Theorem C. Apply Corollary 6.2 to obtain

9 If k=lX(n)~4, then

1
"'(2n, n) ~

"4
pn,

p = max {k ~ 1: Ak(4) ::§4n}.

where

thus p~lX(n), and
Ak(4) ::§Ak(k) = A (k) ::§n ::§4n,

(C)
1

"'(2n, n)
~"4 nIX(n).

If lX(n)::§3, then, since we trivially always have "'(n, m)~m, (C) holds in this case

too. I

Remark. Equation (C) together with Theorem A (ii) imply

1
A3(n) ~ "'(2n, n)-3n ~"4 nlX(n)-3n.

Remark. The construction in Theorem 6.1 and Proposition 4.4 can be combined to
provide an explicit construction of DS(n, 3) sequences of nonlinear size. Thus the
tree duplication operation T(i) corresponds to a similar sequence duplication opera-
tion, and the inductive construction of compression schemes on the trees T(i) can be
translated to an inductive construction of DS(n, 3) sequences. However, it seems that
this explicit construction becomes much less intuitive than the implicit one through
G PC's on trees.

7. Concluding remarks

7.1. Applications

Besides the numerous applications noted in [2], whose complexity bounds can
now be given more concrete forms (using our estimate for s=3, or Szemeredi's
upper bound for s>3), we note here some additional applications.

(1) Pointwise minima/maxima of line segments. Let
11>"" In be n line segments in

the plane, none of which is vertical. For each real Xo let J(xo) be the line segment Ik
whose intersection with the vertical line X=Xo is lowest. Then the smallest number m
of intervals on the x-axis, over each ofwhichJ is constant, is 0 (nIX(n)).

Proof. Let K be a real number greater than the absolute value of the slope of each of
the line segments Ik' Extend each line segment Ik to a continuous piecewise linear
function over the whole x-axis, by making it linear with slope + K on the right of Ik
and linear with slope - K on its left. It is easily checked that each pair of these extend-
ed functions intersect in at most 3 points, so that the required number m of x-inter-
vals is at most A3(n), thus 0 (nIX(n)).

Remark. It is an open problem whether A3(n) can actually be obtained in this set-up.
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(2) Pointwise minima/maxima of piecewise linear functions. Let fl, ...,J; be I con-

tinuous piecewise linear functions defined over a common interval I, and let n be the
total number of line segments constituting the graphs of h, ...,J;. Then the maxi-
mal number of line segments constituting the graph of the lower envelope of these
functions is O(ncx(n»),andthis envelope can be computed in time 0 (ncx(n) log n).

Proof. Take each of the n line segments appearing in the graphs ofthef/s, and extend
it to a continuous piecewise linear function as in (1) above. It is plain that the lower
envelope of the f/s is identical to the lower envelope of these extended functions,
from which the first part of our assertion follows. Calculation of this lower envelope
within the stated time bound can be accomplished using a straightforward "divide
and conquer" algorithm, which partitions the collection of the n extended functions
into two equal subsets, computes recursively the lower envelope of the functions in
each of these subsets, and finally merges the two lower envelopes into the lower enve-

lope of all the n functions, in time that is linear in the number of line segments form-
.ng these two envelopes.
1
(3) Dynamic sorting. Consider the following "dynamic" sorting problem, in which we

want to sort a sequence S of n numbers by repeated swaps of unsorted adjacent pairs
of elements, but with the added difficulty that elements are being added and removed
from S during our sorting process. More precisely, suppose that the elements to be
sorted are the integers 1, ..., n. Initially S is empty. The sorting process consists of a
sequence of operations on S, where each operation is one of the following:

(i) Insert a new element as the first element of S (each integer is inserted into

S just once).
(ii) Delete the first element of S.
(iii) Swap any two adjacent elements Si, Si+l of S for which Si>Si+l'

The problem at hand is to estimate the maximal number C(n) of changes in
theftrst place of S. Clearly, ifnoinsertions or deletions from S are applied (or rather,
if we first insert all n elements into S, then swap them, and finally delete them all)
then plainly C(n) =e (n). In the dynamic case however we have

Proposition. C(n)=A3(n); thus C(n)=e(ncx(n»).

Proof. Let U be the sequence of elements as they appear in the first place of S. It is
easy to see that U is a DS(n, 3) sequence: Plainly no two adjacent elements of U are
equal. Suppose that there exist five indices i<j<k<l<m such that ui=uk=o:um=a,

uj=uj=b and a-:pb. Then the (middle) appearance of a as Ukmust have been pre-
ceded by a swap of a and b, and must later be followed by a similar swap. This how-
ever is impossible, because two elements can be swapped at most once. Therefore
C(n)~A3(n).

For the Converse statement, let U=(Ul, ..., um) be any DS(n,3) sequence.
We obtain from U a dynamic sorting process (with U its corresponding sequence of
first elements), as follows. As in Section 4.1, assume without loss of generality that
for any two symbols a and b appearing in U, we have a<b if and only if the index

Jlaof the first occurrence of a in U is less than the index Jlbof the first occurrence of b.
We start with an empty sequence S, and for each k= 1, ..., m we do one of the fol-
lowing (sequences of) operations on S, where a=uk'
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(i) If Ukis the first occurrence of a in U, we insert a as the first element of S.
(ii) Otherwise, a presently appears somewhere in S (but not as its first ele-

ment). We then move a to the first place of S by repeated swapping of a with all
elements lying in S before it.

(iii) If Ukis the last occurrence of a in U, we then (after (ii») delete a from the
first place of S.

We claim that we can always perform the swaps in (ii). For suppose the con-
trary, and let k be the first place in U where one of the corresponding swaps in (ii)
cannot be executed. Let a=uk, and let b<a be an element appearing in S before
a (so that the required swap of a with b cannot be done). Since b<a we have /lb</la,
and moreover /la<k<vb' where Vb is the index of the last occurrence of b in U
(since b has not yet been deleted). We claim that b must have appeared in U also at
some place 1between /la and k. Indeed, just after /la' b lies in S after a, whereas just
before k they have changed their order in S. Since b<a that must have occured by
swapping b towards the first place in S, and by definition that could have happened
only due to an intermediate appearance of b in U. This however implies that U con-
tains the illegal subsequence babab at the five indices /lb</la<l<k<vb' contrary
to assumption. This shows that }'3(n):;§C(n), and hence these two functions are
equal. I

7.2. Open Problems

(1) For s>3, we do not know if there is any simple connection between DS(n, s)

sequences and tree operations like GPC's. An obvious open problem is whether the
upper bound of [15] on A.(n) can be improved for s>3. This problem was settled
recently, after the original submission of this paper, in [13], where Szemeredi's bound
is improved for s>3 to bounds which are roughly of the form

A.(n) =
O(mx(n)O(a(n)"-")).

However, no lower bounds, better than the D(na(n») bound obtained in this paper,
are known as yet for s>3.

(2) We have already raised the question whether A3(n) can be attained for the point-

wise minimum of n line segments. A related open problem is whether A3(n) Can be
attained for the minimum of n cubic polynomials (it is easy to check that both Al(n)
and A2(n) are attained for the minimum of n linear and quadratic functions, respec-
tively).

(3) We have obtained the bounds on A.3(n)by transforming DS (n, 3) sequences into

compression schemes of GPC's. However, generalized path compressions on trees
may be interesting to study for their own sake. Various open problems arise in con-
nection with GPC's such as that of finding other restricted classes of sequences of
GPC's for which linear or almost linear upper bounds can be established. For exam-
ple, suppose we allow only standard path compressions (i.e. path compressions whose
nodes are adjacent to one another along their current path), and still require them
to be executed in postorder. Is the maximal total length of such a sequence linear in
the number of nodes of the corresponding tree?
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(4) There is a similarity between the two problems studied here and in [16], in that
they both involve path compressions on trees and they both attain similar upper and
lower bounds. Is there some general problem of this kind, of which both our problem
and that of [16] are special instances?

(5) Consider the following two-dimensional generalization of our problem: Let

11(x, y), ,.. ,f,,(x, y) be a collection of n continuous real valued functions defined

over some two-dimensional rectangular region R. Suppose that for each triple of
distinct indices i,j, k the surfaces of z=fi(x, y), z=jj(x, y), z=h(x, y) intersect in
at most s points. What is the maximal number of connected portions of the surfaces
ofthefi's which appear in their lower envelope? More precisely, since we are inter-
ested in the overall complexity of the lower envelope, what is the maximal number
A~2)(n) of "corners" of this lower envelope (i.e. points where the minimum of

the functionsfi is attained simultaneously by at least three of these functions)? An
obvious estimate is A~2)(n)-;§sn3/6. On the other hand, A~2)(n)= Q(n2). Indeed, such

a lower bound is obtained for the following collection of 2n functions

fi(x, y) = (x- ~ r

( ' )
2

gi(X, y) = 2 y-~

for i= 1, ..., n. We leave details to the reader.
Some recent progress on this generalized 2-D problem was made by Livne

and Sharir [9] (after the original submission of this paper), who have shown that
A~2)(n)=e(n2), and that A~2)(n)=Q(n21X(n»). Another recent result [14] yields an
upper bound of the form O(nA,(n») on the number of cornerS on the minimum of n

bivariate continuous functions, under some additional assumptions concerning these
functions, the most constraining of which is that, in each cross section x=const,
each pair of the graphs of these functions intersect in at most two points.

An interesting special Case of this two-dimensional problem is where the func-
tions in question fi(x, y) are all polynomials of some maximal degree d (so that in
particular, assuming non-degeneracy, each triple of them intersect in at most S=d3
points). In this special case, every cross-section of the graphs of these polynomials
at x=const or y=const yields a sequence of univariate functions each pair of
which intersecting in at most d2 points, so that the lower envelope of every such cross
section behaves as a standard Davenport-Schinzel sequence.

7.3. On the role of Ackermann's functions in combinatorial problems

Although Ackermann's function A is very fast-growing, one can obtain func-
tions which grow much faster than A by extending the recursive definitions from
Section 3 as follows. For each countable ordinal')' we define a generalized Ackermann's
function Ay from the set N of positive integers into itself in the following transfinite
inductive manner: .
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(1) A1(n)=2n, nEN.
(2) Ify is not a limit ordinal, say y=p+I, then Ay(n)=A~n)(1), nEN.
(3) If y is a limit ordinal, we associate with y some fixed increasing sequence {yen)}

of ordinals less than y whose limit is y. Then Ay(n)=Ay(n)(n), nEN.
Thus, A=Aw(ifwe put OJ(n)=n, for nEN).
The rate of growth of the functions Ay increases with y. For example, Aw is not

primitive recursive, and in fact grows faster than any primitive recursive function
(see [11]). The function A.o' where eois the first inaccessible ordinal (it is the limit of
the sequence OJ, OJ">,OJw"',...), has the following remarkable property (cf. [7]):
Consider statements Q of the form 'in jm Pen, m), where pen, m) is a provably re-

cursive first-order statement in Peano arithmetic with two free variables m, n (i.e.
there is an algorithm for deciding if pen, m) is true for given n, m, and a proof - in
Peano arithmetic - that the algorithm always terminates). Suppose that Q is a true
statement, and associate with it a function qJQ: N-N, defined as follows: for each
nEN, qJQ(n)is the smallestmsatisfying pen, m). Then Q is provable from the Peano
axioms (i.e. is a theorem of first order formal number theory) if and only if there
exists an ordinal y<eo suchthat qJQ(n)<Ay(n)for all sufficientlylarge n. A recent
result of Paris and Harrington [10] yields a variant of Ramsey's Theorem which can
be expressed in the above form Q, but for which the associated function qJQgrows as
fast as A.o' so that Q is not provable from the Peano's axioms (see [8] for details).

As a matter of fact, even for the first infinite ordinal OJ,there exist very few

"natural" statements Q of the form 'in jm pen, m) whose associated function qJQ

grows like Aw or faster. Our results on Davenport-Schinzel sequences may well be
one of the most natural statements yet known that can be expressed in this form.. In-
deed, let

Q =='ik jm A3(m) ~ km.

Our lower bound on A3implies that Q is a true statement; moreover, both lower and
upper bounds imply that qJQgrows as Aw (note that for fixed k and m the statement
A3(m)~km is a provably recursive statement in Peano arithmetic: simply enumerate
all sequences of length kmcomposed of m symbols, and check each of them for being
a DS(m, 3) sequence~

Tarjan's bounds [16] on the complexity of the union-find algorithm can also
be translated intb such a statement Q with qJQgrowing as fast as Aw. Another example
of this sort arises in the proof of Van der Waerden's theorem on the existence of
arbitrarily long monochromatic arithmetic progressions in any finite coloring of the
integers (cf. [6]); however, in this case Aw only serves as an upper bound for the asso-
ciated function qJQ'and its actual rate of growth is not known.

It is also interesting to note that our inductive solution of the recurrence equa-
tion (*) for JjJas given in Section 5 can be extended in a transfinite inductive manner to
obtain upper bounds for JjJwhich involve the inverse functions rJ.yof Ay for ordinals
y>OJ. Indeed, recall that formula (B) there yields

JjJ(n,m) ~ C1nrJ.w(n)+CzmrJ.w(n)

for some constants C1, Cz>O. Now choose b=njrJ.w(n) in (*)(we finesse here details
which handle the Case in which rJ.w(n)does not divide n; the methods used in Section
5 can be applied here too). Then

JjJ(b-l, m*) ~ C1brLw(b)+Czm*rJ.w(b) ~ C1n+CZm*rJ.w(n),

7
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so that
b

tjJ(n, m) ;§ (C1 +2)n+(C2oc",(n)+2)m*+ L: tjJ(oc",(n), ml)'
1=1

from which we readily obtain

tjJ(n, m);§ (C1+2)noc"'+1(n)+(C2oc",(n)+2)m.

This process can be carried still further to yield, for each k ~ 1,

tjJ(n, m);§ (C1+2k)noc"'+k(n) + (C2oc",(n) +2k)m,

and by appropriate choice of k we can also obtain

tjJ(n, m) ;§ Dlnoc2",(n) + (C2oc", (n)
+D2oc2'"

(n)) m.

We can further extend this transfinite process to obtain upper bounds of this sort in-
volving still larger ordinals; However, for general values of nand m, these new bounds
do not improve the bounds obtained in Section 5, because thecoeflicients of m keep
increasing. Nevertheless, if one assumes, say,

then the above bound gives

m = 0 (nIX2",(n)

)
oc",(n)

.

tjJ(n, m) = O(noc2~(n)),

which obviously improves upon O(noc",(n)). Further restrictions on m will yield still
better upper bounds for tjJ.
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