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Chimera states are complex spatio-temporal patterns in which domains of synchronous and asyn-

chronous dynamics coexist in coupled systems of oscillators. We examine how the character of

the individual elements influences chimera states by studying networks of nonlocally coupled

Van der Pol oscillators. Varying the bifurcation parameter of the Van der Pol system, we can

interpolate between regular sinusoidal and strongly nonlinear relaxation oscillations and demon-

strate that more pronounced nonlinearity induces multi-chimera states with multiple incoherent

domains. We show that the stability regimes for multi-chimera states and the mean phase velocity

profiles of the oscillators change significantly as the nonlinearity becomes stronger. Furthermore,

we reveal the influence of time delay on chimera patterns.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927829]

The investigation of coupled oscillatory systems is an im-
portant research field bridging between nonlinear dy-
namics, network science, and statistical physics, with a
variety of applications in physics, biology, and technol-
ogy.1,2 The analysis and numerical simulation of large
networks with complex coupling schemes continue to
open up new unexpected dynamical scenarios. Chimera
states are an example for such intriguing phenomena;
they exhibit a hybrid structure combining coexisting
domains of both coherent (synchronized) and incoherent
(desynchronized) dynamics and were first reported for
the well-known model of phase oscillators.3,4 In this pa-
per, we investigate the influence of the local dynamics of
the oscillators upon the resulting chimera patterns. Using
the Van der Pol oscillator, which is a model allowing for
a continuous transition between sinusoidal and strongly
nonlinear relaxation oscillations by tuning a single pa-
rameter, we show that multi-chimera patterns with mul-
tiple incoherent domains are promoted by increasing the
nonlinearity of the local oscillator dynamics.

I. INTRODUCTION

The last decade has seen an increasing interest in chi-

mera states in dynamical networks.5–13 It was shown that

they are not limited to phase oscillators but can be found in a

large variety of different systems including time-discrete

maps,14 time-continuous chaotic models,15 neural sys-

tems,16–18 and Boolean networks.19 Moreover, chimera

states were found in systems with higher spatial dimen-

sions.7,9,13,20–22 Together with the initially reported chimera

states, which consist of one coherent and one incoherent do-

main, new types of these peculiar states having multiple

incoherent regions,16,18,23–25 as well as amplitude-medi-

ated,26,27 and pure amplitude chimera and chimera death

states28 were discovered.

In many systems, the form of the coupling defines the

possibility to obtain chimera states. The nonlocal coupling

has generally been assumed to be a necessary condition for

chimera states to evolve in coupled systems. However,

recent studies have shown that even global all-to-all cou-

pling27,29–31 and more complex coupling topologies allow

for the existence of chimera states.32–37 Furthermore, time-

varying network structures can give rise to alternating chi-

mera states.38

The important question of the main features that give

rise to chimera states in coupled systems has been widely

discussed, but no conclusive answer has been given yet. In

systems of phase oscillators, the value of the phase lag pa-

rameter a, which occurs in the coupling function, is crucial.

In nonlocally coupled systems, the range of the coupling and

its strength play the key role. If the local dynamics of each

unit is described by a two- or higher dimensional system,

then the interaction scheme between the units plays an im-

portant role, i.e., which variable is coupled to which variable

of the other nodes. Chimera states have also been shown to

be robust against inhomogeneities of the local dynamics and

coupling topology.37,39

Possible applications of chimera states in natural and

technological systems include the phenomenon of unihemi-

spheric sleep,40 bump states in neural systems,41,42 power

grids,43 or social systems.44 Many works considering chi-

mera states have mostly been based on numerical results. A

deeper bifurcation analysis45 and even a possibility to control

chimera states46,47 were obtained only recently.

The experimental verification of chimera states was first

demonstrated in optical48 and chemical49,50 systems. Further
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experiments involved mechanical,51 electronic52,53 and elec-

trochemical54,55 oscillator systems, Boolean networks,19 the

optical comb generated by a passively mode-locked quantum

dot laser,56 and superconducting quantum interference

devices.57

In previous investigations of chimera states, usually the

character of the local node dynamics has been considered as

fixed. In the current study, we address the issue of the impact

of the local dynamics. We analyze the properties of chimera

states, when the dynamics of individual oscillators smoothly

changes from sinusoidal to nonlinear relaxation oscillations.

For this reason, we choose the Van der Pol oscillator to

describe the dynamics of each node. The Van der Pol oscilla-

tor58 has a long history of being used in both the physical

and biological sciences, as a generic model for electrical cir-

cuits59 and action potentials of neurons, respectively.

II. THE MODEL

In our study, we consider a system of nonlocally

coupled Van der Pol oscillators with ring topology, where

each element of the system interacts with a fixed range of its

neighbors in both directions

€u k ¼ e 1� u2k
� �

_uk � uk

þ
r

2R

X

kþR

j¼k�R

b1 uj � ukð Þ þ b2 _uj � _ukð Þ
� �

; (1)

with k ¼ 1; :::;N where all indices are taken modulo N, e is

the bifurcation parameter of the individual oscillator, r

denotes the strength of the coupling, R is the number of

coupled neighbors (in each direction), and b1, b2 are the

interaction parameters. For such a form of coupling, it is con-

venient to consider the ratio r ¼ R=N, which we denote as a

coupling range. The uncoupled Van der Pol oscillator has a

stable trivial steady state u¼ 0 for e < 0 and exhibits a

supercritical Hopf bifurcation at e ¼ 0. Here, we consider

e > 0.

Introducing a new variable vk ¼ _uk, Eq. (1) can be

rewritten in the form of a two-dimensional system

_uk ¼ vk

_vk ¼ e 1� u2k
� �

vk � uk

þ
r

2R

X

kþR

j¼k�R

b1 uj � ukð Þ þ b2 vj � vkð Þ
� �

: (2)

The form of the coupling in the system Eq. (1) or (2) is

inspired from biological systems, describing interaction of

the cells or pattern generation in locomotion.60,61 A similar

form of the coupling is also used in mechanics.62 The cross-

couplings between the u- and the v-variable play an impor-

tant role, and they were shown to be necessary for the

existence of chimera and multi-chimera states in systems of

nonlocally coupled FitzHugh-Nagumo oscillators.16

The dynamics of the system Eq. (2) is determined by

five parameters: e defines the dynamics of each individual

unit, and the parameters r, R, b1, and b2 specify the coupling.

In order to find suitable values for some of the system param-

eters in the regime where Eq. (2) can describe chimera states,

we will use the experience from simpler systems of coupled

Kuramoto phase oscillators. For this reason, we transform

our system using the phase averaging technique on a rotating

frame for slowly varying amplitude rk and phase hk: ukðtÞ ¼
rkðtÞ sinðtþ hkðtÞÞ and vkðtÞ ¼ rkðtÞ cosðtþ hkðtÞÞ. As a

result, we obtain the approximate system

_rk ¼
e

8
rk 4�

2r

eR
2Rþ 1ð Þb2

� �

� r2k

� 	

þ
r

4R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21 þ b22

q

X

kþR

j¼k�R

rj cos hk � hj þ a
� �

_hk ¼
r

4R
2Rþ 1ð Þb1

�
r

4R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b21 þ b22

q

X

kþR

j¼k�R

rj

rk
sin hk � hj þ a

� �

(3)

with a ¼ arctanðb1=b2Þ; b2 > 0 and k ¼ 1; :::;N:
The parameter a in the system (3) can be associated

with the phase lag parameter in the systems of coupled phase

oscillators.4 This parameter is crucial for the appearance of

chimera states in the phase oscillator network. In Ref. 8, it

was shown that a value of the phase lag parameter close to

but slightly less than p=2 allows for the existence of chimera

states.

In the following, using the experience from the phase

oscillator network, we fix the interaction parameters to be

b1 ¼ 1 and b2 ¼ 0:1, such that a � 1:47 is close to p=2.
With this parameter choice, we will focus further on the orig-

inal system Eq. (2) and vary the parameter e that defines the

type of local dynamics of each element, as well as the cou-

pling parameters r and r describing the strength and the

range of the coupling, respectively.

III. THE IMPACT OF LOCAL DYNAMICS

Varying the bifurcation parameter e results in a change

of the character of the local node dynamics. If e is small, the

uncoupled individual elements of the system perform har-

monic oscillations on a limit cycle, which is approximately a

circle. With increasing e, the individual limit cycle becomes

distorted and changes its form to relaxation oscillations.

Figure 1 demonstrates examples of chimera states for

the system of N¼ 1000 elements, e ¼ 0:2, and decreasing

coupling range. The upper panels depict snapshots of the var-

iables uk for fixed time T¼ 50 000. As initial conditions, we

use randomly distributed phases on the circle u2 þ v
2 ¼ 4,

i.e., around the limit cycle of the uncoupled system, which is

approximately a circle of radius 2. One can clearly distin-

guish coherent and incoherent domains, a characteristic sig-

nature of chimera states. Elements that belong to the

incoherent domain are scattered along the limit cycle, as

shown with red points in the bottom panels of Fig. 1, where

the black line denotes the limit cycle of the uncoupled unit

with corresponding value e ¼ 0:2. The individual nodes per-

form a nonuniform rotational motion, but neighboring oscil-

lators are not phase-locked. To illustrate this, the middle

083104-2 Omelchenko et al. Chaos 25, 083104 (2015)



panels of Fig. 1 show the mean phase velocities for each os-

cillator calculated as xk ¼ 2pMk=DT; k ¼ 1; :::;N, where

Mk is the number of complete rotations around the origin

performed by the k-th node during the time interval DT.

Throughout the paper, we use DT ¼ 50 000 for the calcula-

tion of the mean phase velocities xk, corresponding to sev-

eral thousand periods. The values of xk lie on a continuous

curve and the interval of constant xk corresponds to the

coherent domain, where neighboring elements are phase-

locked. This mean phase velocity profile is a clear indication

of chimera states and similar to the case of coupled

Kuramoto phase oscillators.3,4

In addition to chimera states with one incoherent domain

[Fig. 1(a)], we observe chimera states with multiple incoher-

ent domains shown in Figs. 1(b)–1(d), i.e., multi-chimera

states. In the following, we will use the notation n-chimera

for a chimera state with n coherent and n incoherent

domains. In analogy with networks of phase oscillators, here

we observe chimera states where the number of incoherent

domains is even. The number of incoherent domains

increases with decreasing coupling range.

Figure 2(a) shows the stability regimes for chimera

states with one and multiple incoherent domains in the plane

of coupling range r and coupling strength r for e ¼ 0:2.

Indeed, for large coupling range, we observe the stability re-

gime for chimera states with one incoherent domain, and

regimes for chimera states with two, four, and six incoherent

domains follow subsequently with decreasing coupling

range. The overlaps of these regimes are characterized by

multistability, when each of the chimera states can be

obtained in the system depending on the choice of the initial

conditions. The regimes shown in the diagram are obtained

by starting from the chimera states shown in Fig. 1, and

using this pattern as initial condition for the neighboring pa-

rameter set, and so forth with a step size of Dr ¼ 0:01 and

Dr ¼ 0:01. Black squares denoted by A-D show values of

the parameters ðr; rÞ that correspond to the examples pre-

sented in Figs. 1(a)–1(d), respectively.

For larger coupling strength r, we observe coherent

states in the system (2). They are characterized by the wave-

number K defining the number of maxima (minima) in the

spatial profile, and K¼ 0 corresponds to complete in-phase

synchronization. The wavenumber increases with decreasing

coupling range, and exemplary snapshots are shown in the

insets of Fig. 2(a). For large coupling strength r, the system

is characterized by high multistability, and depending upon

initial conditions, one can obtain coherent solutions with dif-

ferent wavenumbers. In our system, there exist two different

FIG. 1. Snapshots of the variables uk (upper panels), mean phase velocities xk (middle panels), and snapshots in the phase space (uk, vk) (bottom panels, limit

cycle of the uncoupled unit shown black). (a) r¼ 0.35, r ¼ 0:05, (b) r¼ 0.2, r ¼ 0:09, (c) r¼ 0.13, r ¼ 0:09, (d) r¼ 0.1, r ¼ 0:09. Other parameters:

N¼ 1000, b1 ¼ 1; b2 ¼ 0:1, and e ¼ 0:2.

FIG. 2. Stability regimes for multiple

chimera states. (a) e ¼ 0:2, black squares
marked by A-D show parameter values

corresponding to panels (a)–(d) in Fig. 1.

The insets show snapshots of coherent

spatial profiles for parameter values A�

(r¼ 0.35, r¼ 0.12; K¼ 0), B� (r¼ 0.2,

r¼ 0.28; K¼ 1), C� (r¼ 0.13, r¼ 0.34;

K¼ 2), D� (r¼ 0.1, r¼ 0.38; K¼ 3); (b)

e ¼ 0:4. Other parameters as in Fig. 1.
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types of chimeras, amplitude-mediated chimeras and pure

phase chimeras, and these are generated by different bifurca-

tion mechanisms. The amplitude-mediated 2-, 4-, 6-chimeras

(Fig. 2(a), snapshots in Figs. 1(b)–1(d), top panel) are gener-

ated from smooth, completely coherent spatial profiles of

wavenumbers K¼ 1, 2, 3, respectively, by a coherence-

incoherence bifurcation with decreasing coupling strength as

indicated by the insets in Fig. 2(a). At the onset of chimeras,

the smooth coherent profiles break up into spatially coherent

domains corresponding to the upper and the lower parts of

these profiles and incoherent domains in between. Therefore,

these incoherent domains occur in pairs (2-, 4-, 6-chimeras).

Such coherence-incoherence bifurcations have also been

observed for other local dynamics, e.g., logistic maps and

R€ossler systems,14 the cosine map,48 and Stuart-Landau

oscillators.28 In contrast, the pure phase chimeras (1-chimera

in Figs. 2(a) and 2(b)) arise from completely in-phase

synchronized (K¼ 0) profiles. The shift of the regimes for

(multiple) n-chimeras to smaller coupling range r with

increasing n is typical for various nonlocally coupled

systems.14–16,28,48

For small e, the limit cycle of each individual Van der

Pol oscillator is close to a circle, corresponding to sinusoidal

oscillations, and the similarities to the chimera states in a

system of phase oscillators are clearly revealed. However,

the hybrid solutions we observe in the system of coupled

Van der Pol oscillators demonstrate chimera behavior both

for phases and amplitudes. This can be seen in the bottom

panels of Fig. 1, where red dots denoting the snapshot of all

nodes deviate in their amplitudes slightly from the limit

cycle of the uncoupled unit (black line).

Figure 2(b) depicts the stability regimes for chimera

states in the system (2) with e ¼ 0:4. Compared to the case

of e ¼ 0:2, the regimes for the chimera states with multiple

incoherent domains become larger, and chimera states in this

case can be obtained for a wider range of coupling strength

r. The reason why the regions in Fig. 2(b) (e ¼ 0:4) are

larger than those in Fig. 2(a) (e ¼ 0:2) is related to the fol-

lowing qualitative argument: If the coefficient e of the non-

linear term in Eq. (1) is increased, the coefficient r of the

coupling term has to be scaled up accordingly to balance the

nonlinear term. Hence, as e is increased, the chimera regions

extend to larger values of r.

When the parameter e is increased, the limit cycle of the

individual uncoupled Van der Pol oscillators deforms, and

the dynamics on the cycle becomes slow-fast type. Further

increasing e leads to strongly nonlinear relaxation oscilla-

tions. This will be discussed in the following.

Figure 3(a) depicts the stability regimes for system (2)

with e ¼ 0:8. Compared to the cases of smaller e, there are

several qualitative differences in the stability regimes of chi-

mera states. First, chimera states can be observed for a much

larger range of coupling strength r. Second, chimera states

with one incoherent part cannot be observed in the system

any more: for large coupling range, we observe chimera

states with four incoherent parts, and furthermore with

decreasing coupling range, the multiplicity of the incoherent

domains of the chimera states increases. Black triangles

denoted by E, F, and G show values for the parameter pairs

ðr; rÞ that correspond to examples of chimera states depicted

in Figs. 4(a)–4(c), respectively.

The peculiarity of the diagram presented in Fig. 3(a) is

the presence of two separate regimes for chimera states with

four incoherent domains. Analyzing this diagram in more

detail, one can see that there are two qualitatively different

regions. The first region appears for large coupling strengths

and contains stability regimes for chimera states with two

and four incoherent domains (yellow region containing point

E and blue region). These states can be characterized by

strong amplitude dynamics, and the maximum values of the

mean phase velocity profile correspond to the coherent

domains of chimera states. The example presented in Fig.

4(a) [corresponding to point E in Fig. 3(a)] depicts these fea-

tures. Compared with Fig. 1 for small e, we notice that the

chimera states shown there also show distinct variations

along the limit cycle, and the coherent domains of the chi-

mera states correspond to the maximum in the mean phase

velocity profiles.

The second, qualitatively different part of the diagram in

Fig. 3(a), includes three regions for small coupling strengths

(yellow including point F, green, and gray). These regions

form a similar sequence with increasing multiplicity of the chi-

mera starting from four incoherent parts. However, they ex-

hibit a qualitative difference. Inspecting Figs. 4(b) and 4(c),

which show examples that correspond to the parameter pairs

ðr; rÞ denoted by F and G, one can notice that the amplitude

dynamics becomes weaker in these cases, and the network so-

lution is close to the limit cycle of the uncoupled node shown

as black line in the bottom panels. Moreover, the minimum of

the mean phase velocities profiles now corresponds to the

coherent domains of the chimera states.

The difference between Fig. 4(a) on one hand and Figs.

4(b) and 4(c) on the other hand is due to two different types

of chimeras. The 2-, 4-, 6-chimeras in Figs. 2(a), 2(b) and

Fig. 3(a) (point E), and the chimeras in Figs. 3(F,G,H,I,J)

belong to two different types of chimeras: Figs. 2(a), 2(b)

FIG. 3. Stability regimes for multiple

chimera states. (a) e ¼ 0:8, black trian-

gles marked by E-G show parameter

values corresponding to the panels (a)-

(c) in Fig. 4; (b) e ¼ 1:5, black circles

marked by H-J denote parameter val-

ues corresponding to the panels (a)-(c)

in Fig. 5. Other parameters as in Fig. 1.
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and Fig. 3(a), point E (corresponding to phase portraits

shown in Figs. 1(b)–1(d) and Fig. 4(a)) correspond to

amplitude-mediated chimeras with strong amplitude-phase

coupling, whereas Fig. 3(a), points F, G and Fig. 3(b) (corre-

sponding to phase portraits shown in Figs. 4(b), 4(c) and

Figs. 5(a)–5(c)) correspond to pure phase chimeras similar to

the ones found for Kuramoto phase oscillators, and since the

phase oscillator model can generally be obtained from

amplitude-phase models in the weak coupling limit, they

occur in the stability diagram (Fig. 3(a)) only for small cou-

pling strength (points F,G), as opposed to the amplitude-

mediated chimeras (point E). This difference is visible in the

phase portraits of Figs. 1, 4, 5 (bottom panels), where the

spread of the various oscillators around the cycle of the

uncoupled oscillator (black cycle) is large for amplitude-

mediated chimeras and very small for pure phase chimeras

where the phase of the cycle is the only dynamical degree of

freedom. The difference also shows up in the smaller ampli-

tude variation of the mean phase velocity in the middle pan-

els of Figs. 4(b) and 4(c) (pure phase chimeras) as compared

to Fig. 4(a) and in the inverted xk profiles: the coherent

regions correspond to the minima (Figs. 4(b) and 4(c)) and

maxima (Fig. 4(a)), respectively.

Further increase of the parameter e of individual Van

der Pol oscillators leads to an even stronger deformation of

the limit cycle. In the ðr; rÞ parameter plane, the stability

regimes for chimera states with four and more incoherent

domains can be observed as shown in Fig. 3(b) for e ¼ 1:5.
The effect of the coexistence of two qualitatively different

types of chimera states is not present there any more, in con-

trast to the case of e ¼ 0:8. Only the second type of the chi-

mera states is observed in the systems now, and the stability

regimes are enlarged towards larger coupling strengths.

Figure 5 depicts examples of multi-chimera states that

correspond to the parameter pairs ðr; rÞ denoted by H, I, and

J in Fig. 3(b). The coherent domains of the chimera states

correspond to the minimum of the mean phase velocity pro-

file, and all oscillators stay very close to the limit cycle of

the single uncoupled unit, thus the amplitude dynamics of

the chimera states in the systems with large e is not as pro-

nounced as in the networks with small e.

We conclude that the nonlinearity of the local dynamics

indeed strongly influences chimera states in system (2). The

character of the amplitude dynamics, the frequencies of the

oscillators belonging to the coherent and incoherent domains

of the chimera states, i.e., the mean phase velocity profiles,

and the stability regimes in the coupling parameter plane

undergo a qualitative change with variation of the parameter

e. Stronger nonlinearity (larger e) results in the dominance of

multi-chimera states with weak amplitude dynamics.

IV. TIME-DELAYED COUPLING

Together with the character of the local dynamics, the

coupling between the individual units plays an important

role for the properties of the chimera states. Time-delayed

coupling if compared to the instantaneous one represents a

more realistic way to model the interaction between the

FIG. 4. Snapshots of the variables uk (upper panels), mean phase velocities xk (middle panels), and snapshots in the phase space (uk, vk) (bottom panels, limit

cycle of the uncoupled unit shown black). (a) r¼ 0.17, r ¼ 0:8, (b) r¼ 0.35, r ¼ 0:3, (c) r¼ 0.25, r ¼ 0:2. Other parameters as in Fig. 3(a).
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coupled units. Usually, the coupling range and strength influ-

ence the multiplicity of coherent domains in chimera states.

However, it has been shown for phase oscillator networks

that time delay can also induce multi-chimeras.23 The exis-

tence of chimera states in systems with time-delayed cou-

plings has been also reported in Refs. 50, 63–66. In

particular, for coupled phase oscillator systems, it has been

found that chimeras are robust to small time delays and delay

distributions64 and can become unstable depending on the

value of delay.65 Here, we consider a model that includes not

only phase but also amplitude dynamics and show how time

delay in the coupling affects chimera states that exist in the

undelayed system. We demonstrate that by varying the delay

value, one can both conserve and eliminate chimera patterns.

Let us consider Eq. (2) modified by time-delayed coupling

_ukðtÞ ¼ vkðtÞ

_vkðtÞ ¼ e½1� u2kðtÞ�vkðtÞ � ukðtÞ

þ
r

2R

X

kþR

j¼k�R

fb1½ujðt� sÞ � ukðtÞ�

þ b2½vjðt� sÞ � vkðtÞ�g (4)

wth k ¼ 1; :::;N modulo N, where s is the delay time.

FIG. 5. Snapshots of the variables uk (upper panels), mean phase velocities xk (middle panels), and snapshots in the phase space (uk, vk) (bottom panels, limit

cycle of the uncoupled unit shown black). (a) r¼ 0.4, r ¼ 0:1, (b) r¼ 0.22, r ¼ 0:1, (c) r¼ 0.17, r ¼ 0:1. Other parameters as in Fig. 3(b).

FIG. 6. Space-time plots of uk for different values of time delay: (a) s¼ 1, (b) s¼ 3, (c) s¼ 6. Other parameters: N¼ 1000, b1 ¼ 1; b2 ¼ 0:1, r¼ 0.4,

r ¼ 0:1; e ¼ 1:5. Initial conditions as shown in Fig. 5(a). Transients of 2000 time units are skipped.

083104-6 Omelchenko et al. Chaos 25, 083104 (2015)



Using the chimera state with four incoherent domains,

shown in Fig. 5(a), as initial condition, i.e., as the history in

the interval ½�s; 0�, we fix all system parameters correspond-

ing to this solution and show exemplary space-time patterns

of Eq. (4) for different time delays. The period of a single

uncoupled oscillator is close to 2p, and we neglect the transi-

ents of 2000 time units. For small time delay (s¼ 1), we

observe a coherent traveling wave solution shown in Fig.

6(a). When the time delay is close to half the oscillation pe-

riod (s¼ 3), the chimera pattern is stable and we continue to

observe a chimera state with four incoherent domains as

shown in Fig. 6(b). A larger time delay (s¼ 6), which is

close to the period of a single oscillator, leads to complete

synchronization of all oscillators, see Fig. 6(c). Figure 7

depicts snapshots of the variable uk (upper panels), the same

snapshots in the phase plane (uk, vk) together with the limit

cycle of uncoupled oscillator, and the corresponding mean

phase velocity profiles (middle panels), for the solutions

shown in Fig. 6. The explanation for the effect of delay is

that the delay time interacts with the intrinsic timescale (os-

cillation period) giving rise to resonance phenomena as

found generally for delayed feedback control of steady

states, deterministic limit cycles, and noise-induced oscilla-

tions, if the delay is an integer multiple or a half-integer mul-

tiple of the intrinsic timescale.67 Delay has a favorable effect

on chimeras if s is a half-integer multiple, and a favorable

(stabilizing) effect on the synchronized oscillations if it is an

integer multiple, and may induce traveling waves if it fits

with neither condition. In case of the chimera (Fig. 7(b)), the

delay leads to much longer transients, so that with the same

length of time interval used for the calculation of the mean

phase velocity as without delay, the profiles are more

smeared out, but qualitatively similar.

Our numerical evidence shows similar results for other

values of the bifurcation parameter e. For chimera states with

one or two incoherent domains and sinusoidal character of

the oscillations, small delay can lead not only to traveling

wave solutions but also to chimera states with higher number

of incoherent domains.

These examples demonstrate that time delay introduced

in the coupling can either suppress or preserve the chimera

patterns depending upon the value of the delay time relative

to the intrinsic oscillation period.

V. CONCLUSION

In the current study, we have demonstrated how the

character of the local oscillator dynamics influences chimera

states in networks of nonlocally coupled Van der Pol oscilla-

tors. Changing the bifurcation parameter of the single oscil-

lators allows us to interpolate continuously between

sinusoidal and strongly nonlinear relaxation oscillations. We

have shown that nonlinearity facilitates multi-chimera states.

For small values of the bifurcation parameter e (sinusoi-

dal oscillations), chimera states are characterized by lower

multiplicity and more pronounced amplitude dynamics, and

the maxima in the mean phase velocity profiles correspond

to the coherent domains. Moving towards the relaxation

FIG. 7. Snapshots of the variables uk (upper panels), mean phase velocities xk (middle panels), and snapshots in the phase space (uk, vk) (bottom panels, limit

cycle of the uncoupled unit shown black). (a) s¼ 1, (b) s¼ 3, (c) s¼ 6. Other parameters: N¼ 1000, b1 ¼ 1; b2 ¼ 0:1, r¼ 0.4, r ¼ 0:1, e ¼ 1:5.
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oscillation regime, with increasing e, leads to a higher multi-

plicity of chimera states, but weaker amplitude dynamics. In

contrast to the previous case, the coherent domains corre-

spond to the minima of the mean phase velocity profiles, i.e.,

the profiles are flipped. We have also found that time delay

in the coupling strongly affects the chimera patterns in the

system and can lead to chimera suppression and the forma-

tion of traveling waves and complete synchronization.

We have presented (multi-) chimera states of different

types: (i) pure phase chimeras, which are similar to those

found for Kuramoto phase oscillators or weakly coupled

amplitude-phase models and (ii) amplitude-mediated chime-

ras with strong amplitude-phase coupling.

Our findings give new insight into the intriguing phe-

nomena of chimera states and demonstrate that the character

of the local dynamics has a strong influence on the chimera

patterns in the whole network. These results could be useful

from the point of view of applications dealing with different

kinds of oscillators, as they can be realized, e.g., in electronic

circuits.
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