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Nonlocal Active Contours∗
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Abstract. This article introduces a novel class of active contour models for image segmentation. It makes
use of nonlocal comparisons between pairs of patches within each region to be segmented. The
corresponding variational segmentation problem is implemented using a level set formulation that
can handle an arbitrary number of regions. The pairwise interaction of features constrains only the
local homogeneity of image features, which is crucial in capturing regions with smoothly spatially
varying features. This segmentation method is generic and can be adapted to various segmentation
problems by designing an appropriate metric between patches. We instantiate this framework using
several classes of features and metrics. Piecewise smooth grayscale and color images are handled
using L2 distance between image patches. We show examples of efficient segmentation of natural
color images. Locally oriented textures are segmented using the L2 distance between patches of
Gabor coefficients. We use a Wasserstein distance between local empirical distributions for locally
homogeneous random textures. A correlation metric between local motion signatures is able to
segment piecewise smooth optical flows.
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1. Introduction. Image segmentation is a fundamental imaging problem that requires an
efficient modeling of image and texture features. This article proposes a novel class of active
contour models that unifies patch processing and piecewise regular image models. It makes
use of nonlocal comparisons between pairs of patches within the segmented regions. We thus
refer to it as a “nonlocal” approach, following the terminology initiated in [7]. The model
provides a general framework since it can be adapted to various segmentation problems by
designing a metric between patches.

1.1. Edge-based versus region-based active contours. Many existing active contour
methods segment an image according to either edge or region information. The evolution
of the segmenting curve is driven by the minimization of some variational energy that takes
into account this information. A popular way to numerically implement such an active contour
evolution is though the level set framework of Osher and Sethian [39].

Edge-based active contours. Edge-based active contour models use some edge detector and
evolve the segmenting curve towards sharp gradients of pixel intensity. Starting from the
snakes model of Kass, Witkin, and Terzopoulos [28], many edge-based active contour models
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have been proposed, in particular geometric snakes based on geodesic energies [10, 14, 36, 11,
29].

Region-based active contours. These local edge-based models tend to be sensitive to the
noise that affects edge detectors. To avoid the difficult problem of edge localization, region-
based active contour models incorporate more global information to obtain segmented regions
with homogeneous features. One of the first region-based methods is the Mumford–Shah
model [37], where the image is approximated using a smooth function inside each region.
Many variants of this initial model have been proposed that allow simpler and more efficient
implementations [15]. Chan and Vese [13] proposed an active contour method which approxi-
mates an image with a constant function inside each region. This Chan–Vese (CV) model has
been extended to deal with vector-valued images [12] and textures [47].

Hybrid active contours. Several hybrid models have been proposed to make use of both
local (edge-based) and global (region-based) information. Kimmel [31] designed an energy
mixing both the geodesic and the CV energies. Sagiv, Sochen, and Zeevi [45] used a similar
energy (integrated active contours, or IAC) that is also extended to vector-valued images and
texture segmentation.

1.2. Piecewise smooth active contours. Natural images exhibit smooth variations of
feature values (e.g., color gradients or texture orientation variations) over both the objects
composing the scene and the background. It is thus important to design segmentation methods
that can handle piecewise smooth images.

The initial Mumford–Shah approach [37] takes into account piecewise smooth images and
has been implemented, for instance, in [3, 51, 52]. This model, however, remains difficult to
implement numerically. A simpler class of piecewise smooth models has been introduced more
recently [6, 43, 55]. These models estimate in parallel to the segmentation process a piecewise
smooth parameter field such as the local mean of the features. Of particular interest is the
locally binary fitting (LBF) model [34, 54, 53] that shares some similarity with our method.

Our nonlocal model also tackles the problem of designing piecewise smooth active contours,
but it uses a different approach that does not require the estimation of a spatially varying
parameter field. A chief advantage of our method is that it only requires the design of a metric
to compare patches extracted around each pixel. It is thus easy to apply the method to a
wide variety of features, and we show in the numerical results several instances of our method
for pixels, textures, local statistics, and video features.

1.3. Multiphase active contours. Several methods have been proposed to extend gen-
eral binary segmentation energies to the case of an arbitrary number of regions; see, for
instance, [57, 56, 41, 46, 52]. In this paper we focus on two particular level set methods. The
approach of Samson et al. [46] introduces a single level set function per region and makes
use of an additional repulsive energy to avoid the overlap of the regions. The approach of
Chan and Vese [52] requires only log2(N) level set functions to partition the image into N
nonoverlapping regions depending on all possible combinations of the level set signs.

We extend our nonlocal energy in a multiphase framework using two different approaches
borrowed from [52] and [46]. An important benefit of using these nonlocal multiphase energies
is that a smaller number of level set functions is required to perform complicated segmentations
into multiple regions. Each of these approaches has advantages and inconveniences, and we
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show in the numerical examples how our method fits perfectly into these two frameworks.

1.4. Nonlocal image processing. Nonlocal processing refers to the general methodology
of designing energies using nonlocal comparisons of patches extracted in the image. Starting
from the initial paper of Buades, Coll, and Morel [7], nonlocal energies have proved to be
efficient for many imaging problems, including denoising [7, 32], inverse problems [22, 42],
semisupervised classification [21, 19, 24], and unsupervised segmentation [4, 9].

In our work, we use a nonlocal energy that enforces the nonlocal similarity of patches
inside each region to be segmented. This patch comparison principle drives the active contour
to optimize the homogeneity of each region. Note that this approach differs significantly from
previous patch-based segmentation methods such as [21, 19, 24, 4, 9] where nonlocal energies
are used to regularize the contour.

1.5. Examples of image features. All of the previous methods have been implemented
using a wide variety of feature spaces, depending on the specificity of the images to be seg-
mented. Besides classical gray-values and color features (which are usually compared using
an L2 norm), we detail below some popular features that we consider in the applications and
numerical illustrations of our method.

Gabor features. For locally oriented texture segmentation, a popular class of features is
computed as the output of filter banks. Gabor filters [20] have been used to discriminate
the local orientation and frequency of the texture [33, 40, 47, 45]. The CV energy [12] has
been used by Sandberg, Chan, and Vese [47] to impose a global homogeneity of the texture
orientation in each region. The IAC of Sagiv, Sochen, and Zeevi [45] extends the hybrid
region/edge-based active contour of [31] to deal with vector-valued features.

Statistical features. To deal with more random textured images, it is possible to make
use of the empirical statistics within each region to be segmented. The resulting statistical
region-based active contours make use of pointwise similarity measures between distributions
(such as the Kullback–Leibler divergence) to compare the distributions in a parametric or
nonparametric (using Parzen windows) fashion; see, for instance, [30, 58, 41, 23]. Traditional
pointwise statistical distances are simple to compute but are unstable when using localized
distributions. To address these issues, Ni et al. [38] propose using the L1 Wasserstein distance
in order to extend the segmentation model of Chan and Vese [13]. This work is extended to
color image segmentation in [2] using a Wasserstein metric only on the brightness channel, thus
resulting in a one-dimensional (1-D) optimal transport metric. The Wasserstein metric fits
nicely into our nonlocal framework, and we propose using an approximate distance, initially
introduced in [44], to handle features in arbitrary dimensions (e.g., colors in three dimensions).

Motion features. Motion segmentation aims at grouping together pixels undergoing the
same motion. Most existing works jointly compute an optical flow and a segmentation [17, 5].
Shi and Malik [48] propose avoiding the difficult estimation of the optical flow. They perform
the segmentation using features representing a local probability distribution of motions. We
make use of the same local features that are integrated into our nonlocal energy. The resulting
method is able to detect moving objects with a smoothly varying motion.

1.6. Contributions. The main contribution of this paper is a novel class of segmentation
energies that impose a local homogeneity of patch features. It is thus a nonlocal method
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(because it compares patches that are not necessarily neighbors) but one that enables a fine
tuning of the scale at which these patches are compared (hence the local homogeneity).

Let us note that we use a mathematically rigorous derivation of the evolution PDEs using
shape gradient flows. To the best of our knowledge, it is the first time multiphase evolutions
are performed within such a shape gradient framework.

A second contribution of the paper is a systematic exploration of this approach on a
wide range of segmentation problems, which includes grayscale and color images, textures,
random vector fields, and videos. We show comparisons with several other popular edge-
based, region-based, and hybrid methods (extended to patches) to highlight the benefit of
patch comparisons.

1.7. Organization. Section 2 recalls the generic variational level set framework that we
use to implement the active contour evolutions and presents our computation of the gradient
of new energy terms we use in our models. Section 3 introduces our new model, first in a
simplified (unnormalized) case, and then in a more advanced (normalized) setting. Section 4
describes the competing methods that we have tested in the numerical sections and how we
extend them to use patches with arbitrary metrics. Sections 5–8 show numerical examples of
applications of our method to various settings (image, textures, videos). Section 9 details two
different extensions of our method to handle an arbitrary number of regions.

Note that some early results making use of this nonlocal segmentation method were pre-
sented in the conference papers [25, 26, 27].

2. Variational image segmentation. This section recalls some basic notions about image
segmentation as well as more advanced concepts using shape gradients. These will be used in
the remaining part of the paper.

2.1. Variational minimization. The goal is to segment an input image f0 using a feature
map f : [0, 1]2 → R

d computed from f0, where d is dimensionality of the feature space. Since
we aim at proposing a generic segmentation framework, we do not specify the exact nature of
the features in this section or how f is computed from f0. Several examples of features are
detailed in sections 5–8.

Let Ω ⊂ [0, 1]2 be some region that captures the objects of interest. We aim at finding a
contour that represents the boundary ∂Ω of the region. We consider a variational minimization
problem

(2.1) min
Ω

{

E(Ω) = E(Ω) + γL(Ω)
}

,

where E is a region energy that we will define in the following sections, and L is a smoothing
term that regularizes the boundary ∂Ω of the region. In the numerical experiments, L(Ω) =
|∂Ω| is simply the length of the boundary. The parameter γ > 0 should be adapted to the
expected regularity of the boundary of the region.

2.2. Parametric active contours with shape gradients. A mathematically sound way to
derive a minimizing PDE of the energy (2.1) makes use of the so-called shape gradients; see,
for instance, [1, 23, 18].

The shape gradient E ′(Ω) of an energy E evaluated at Ω is a scalar field E ′(Ω)(x) defined
on each point of the boundary x ∈ ∂Ω. It is characterized by introducing a family of smooth
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deformations Ωτ = T (τ,Ω) for τ � 0, where T : R+ × [0, 1]2 → [0, 1]2 and T (0, x) = x, so
that Ω0 = Ω. We denote by v(x) = ∂T

∂τ (0, x) the associated velocity field. The energy E has a
shape gradient E ′(Ω) at some Ω if it satisfies

(2.2) E(Ωτ ) = E(Ω) + τ〈v, E ′(Ω)nΩ〉∂Ω + o(τ)

(see [1]), where nΩ is the unit normal of ∂Ω pointing outward, and the inner product along
the boundary between two vector fields v(x), w(x) ∈ R

2 is

(2.3) 〈v, w〉∂Ω =

∫

∂Ω
〈v(x), w(x)〉dx.

A parametric active contour is represented for each time t � 0 of the evolution by an
explicit parameterization s �→ γ(s, t) of the boundary ∂Ω of Ω. The shape gradient defines an
evolution equation that minimizes the energy E :

(2.4)
∂γ

∂t
(s, t) = −E ′(Ω)(γ(s, t))nΩ(γ(s, t)),

where Ω is the shape associated to γ(·, t) at time t. The curve γ(·, t) converges as t → +∞ to
the boundary of some Ω which is a stationary point of E (it satisfies E ′(Ω) = 0).

2.3. Level set active contours. In order to compute numerically a contour evolution to
minimize (2.1), following [39, 13], the segmented region Ω is represented using a level set
function ϕ : [0, 1]2 → R so that Ω = {x \ ϕ(x) > 0}.

The descent direction −E ′(Ω)nΩ is extended to level sets by selecting a valid level set
gradient ∇E(ϕ) so that

(2.5) ∀x ∈ ∂Ω, ∇E(ϕ)(x) = ||∇ϕ(x)||E ′(Ω)(x).

The parametric evolution (2.4) is turned into a level set evolution (2.6) of ϕ(x, t) with an
artificial time t � 0:

(2.6)
∂ϕ

∂t
= −∇E(ϕ) = − (∇E(ϕ) + γ∇L(ϕ)) .

We detail in the following section the expressions of level set shape gradients in some
particular cases that will be used in the remainder of this paper.

2.4. Shape gradient examples. For a boundary energy written as

(2.7) Lg(Ω) =

∫

∂Ω
g(x)dx,

where dx refers to 1-D integration along the boundary of Ω, a valid shape gradient extended
to a level set function reads [1]

(2.8) ∇Lg(ϕ) = −||∇ϕ||div
(

g
∇ϕ

||∇ϕ||

)

.
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For instance, in the original minimization (2.1), using the length of the boundary, one has
L = Lg with g = 1.

The following proposition gives a level set gradient for the simplest region-based energy
written as

(2.9) Eg(Ω) =
∫

Ω
g(x)dx

(note that g does not depend on Ω).
Proposition 1. A level set gradient of Eg reads as

(2.10) ∇Eg(ϕ) = ||∇ϕ||g.

Proof. The usual balloon force corresponds to g = 1 [16]; see, for instance, [1] for the
general case.

In the following propositions, we derive the level set gradients of two types of region-based
energies. We first consider a region-based energy defined using pairwise interactions terms:

(2.11) Fg(Ω) =

∫

Ω×Ω
g(x, y)dxdy.

Proposition 2. A level set shape gradient of Fg is

(2.12) ∇Fg(ϕ)(x) = ||∇ϕ(x)||
∫

Ω

(

g(x, y) + g(y, x)
)

dy.

Proof. One has Fg(Ω) =
∫

ΩGx(Ω)dx, where Gx(Ω) =
∫

Ω g(x, y)dy. Note that for a fixed
x, Gx(Ω) is of the form (2.9), and following (2.10), its shape gradient is G′

x(Ω) = g(x, ·). Thus,
if τ is a smooth deformation of Ω and v is its velocity field, then

(2.13) Gx(Ωτ ) = Gx(Ω) + τ〈v, g(x, ·)nΩ〉∂Ω + o(τ),

following from (2.2). Integrating with respect to x, the previous expression on Ωτ gives

Fg(Ωτ ) =

∫

Ωτ

Gx(Ω)dx+ τ
〈

∫

Ωτ

g(x, ·)dx nΩ, v
〉

∂Ω
+ o(τ)

=

∫

Ω

∫

Ωτ

g(y, x)dydx+ τ
〈

∫

Ωτ

g(x, ·)dx nΩ, v
〉

∂Ω
+ o(τ).(2.14)

Once again the inner term
∫

Ωτ
g(y, x)dy in (2.14) can be expressed, similarly to (2.13), as

(2.15)

∫

Ωτ

g(y, x)dy =

∫

Ω
g(y, x)dy + τ〈v, g(·, x)nΩ〉∂Ω + o(τ).

This derives the equation for the shape gradient of the energy Fg(Ωτ ):

(2.16) Fg(Ωτ ) = Fg(Ω) + τ
〈

∫

Ω

(

g(x, ·) + g(·, x)
)

dx nΩ, v
〉

∂Ω
+ o(τ).
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Last, we will consider more complicated pairwise interactions of the form

(2.17) Ff,g,h(Ω) =

∫

Ω
f(x)

Gx(Ω)

Hx(Ω)
dx, where

{

Gx(Ω) =
∫

Ω g(x, y)dy,

Hx(Ω) =
∫

Ω h(x, y)dy.

The following proposition derives the expression of a level set gradient.
Proposition 3. A level set gradient of Ff,g,h is

(2.18) ∇Ff,g,h(ϕ)(x) = ||∇ϕ(x)||
(

f(x)
Gx(Ω)

Hx(Ω)
+

∫

Ω
f(y)

g(y, x)Hy(Ω)− h(y, x)Gy(Ω)

Hy(Ω)2
dy

)

.

Proof. For a fixed x, let Ax(Ω) = Gx(Ω)/Hx(Ω). One has

Ax(Ωτ ) =
Gx(Ω) + τ〈g(x, ·)nΩ, v〉∂Ω + o(τ)

Hx(Ω) + τ〈h(x, ·)nΩ, v〉∂Ω + o(τ)

= Ax(Ω) + τ〈A′
x(Ω)nΩ, v〉∂Ω + o(τ),(2.19)

where the shape gradient of Ax reads as

(2.20) A′
x(Ω) =

g(x, ·)Hx(Ω)− h(x, ·)Gx(Ω)

Hx(Ω)2
.

Integrating (2.19) multiplied by f(x) on Ωτ gives

(2.21) Ff,g,h(Ωτ ) =

∫

Ωτ

α(x)dx+ o(τ),

where

(2.22) α(x) = f(x)
(

Ax(Ω) + τ〈A′
x(Ω)nΩ, v〉∂Ω

)

,

and hence the result (2.18) is obtained by expanding

(2.23)

∫

Ωτ

α(x)dx =

∫

Ω
α(x)dx+ τ〈αnΩ, v〉∂Ω + o(τ).

Let us mention that the shape gradient of an energy Ẽ(Ω) = E(Ωc), associated to the
complementary domain Ωc = [0, 1]2\Ω, is easily derived as

(2.24) Ẽ′(Ω) = −E′(Ωc) =⇒ ∇Ẽ(ϕ) = −∇E(−ϕ)

since −ϕ is a level set function associated to Ωc.
In the following, we will make use of the identities (2.8), (2.10), (2.12), and (2.18) to derive

the expression of ∇E(ϕ) for the different energies E considered.
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Figure 1. Schematic display of the patch comparison principle using a large value of σ (left) and a smaller
value of σ (right). Only patches px and py located jointly inside or outside Ω are compared. The dotted box in
the right figure shows the set of locations y around x where Gσ(x, y) is nonzero. Only pairs of patches located
inside this area are compared.

2.5. Numerical implementation. The segmentation is applied to a discretized image f
of n×n pixels. The gradient and divergence operators appearing in (2.8) are computed using
first order finite difference approximations. Integrals such as

∫

Ω f(x)dx are approximated by
1
n2

∑

i f(i/n), where i ∈ {0, . . . , n− 1}2.
The gradient flow (2.6) is then discretized using a gradient descent

(2.25) ϕ(ℓ+1) = ϕ(ℓ) − ξℓ

(

∇E(ϕ(ℓ)) + γ∇L(ϕ(ℓ))
)

,

where ξℓ > 0 is a suitable time step size.
To ensure the stability of the level set evolution (2.6), one needs to reinitialize it from

time to time. This corresponds to replacing ϕ by the signed distance function to the level set
{x \ ϕ(x) = 0}.

3. Nonlocal active contours. This section introduces two region-based energies that in-
tegrate pairwise interactions between pairs of patches inside and outside the region Ω. These
energies constrain the local homogeneity of image features.

3.1. Unnormalized nonlocal active contours.

3.1.1. Pairwise patch interaction. A patch in some image f around a pixel x ∈ [0, 1]2 is
defined as

(3.1) px(t) = f(x+ t) ∀ t ∈ [−τ/2, τ/2]2.

The nonlocal interaction between two patches is measured using a metric d(·, ·) � 0 that
accounts for the similarity between patches. Typically d(px, py) should be small for patches
that are “similar,” where the similarity is typically problem-dependent.

3.1.2. Pairwise interaction energy. The local homogeneity of the region (and of its com-
plementary region) is measured by considering all possible pairwise patch interactions at a
given scale σ > 0, as seen in Figure 1. This gives rise to the following nonlocal unnormalized
(NL-U) energy of a region:

(3.2) EU
NL(Ω) = ĒU

NL(Ω) + ĒU
NL(Ω

c) with ĒU
NL(Ω) =

∫

Ω×Ω
K(x, y)dxdy,
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where Ωc = [0, 1]2\Ω is the complementary one of the region Ω, and K is the pairwise inter-
action kernel as

(3.3) K(x, y) = Gσ(x, y)d(px, py).

The kernel Gσ(x, y) is a decaying function of ||x − y||. For the numerical examples, we
use a truncated Gaussian function so that Gσ(·, y) has a bounded support inside a square of
width ξ:

(3.4) Gσ(x, y) =

{

e−
||x−y||2

2σ2 if ||x− y||∞ � ξ,
0 otherwise.

Thus, the kernel Gσ depends on the values of σ and ξ. The parameter σ > 0 is important
since it controls the scale of the local homogeneity one requires for the segmented object. If
the region is made of a nearly constant pattern, one should use a large σ. In contrast, if the
region exhibits fast feature variations, σ should be chosen smaller. For simplicity, we use the
same scale for both inside and outside the region, but one could, of course, use two distinct
parameters. This scale should also be adapted to the initial curve at time t = 0. If this initial
curve is far away from the object boundary, a large windowing function might be required.

The level set gradient of this NL-U energy is computed as

(3.5) ∇EU
NL(ϕ) = ∇ĒU

NL(ϕ)−∇ĒU
NL(−ϕ) with ∇ĒU

NL(ϕ) = ∇FK(ϕ),

where ∇FK is defined in Proposition 2. Note that we have used the rule (2.24) to derive the
gradient of the complementary region Ωc.

3.1.3. Limitations. The nonlocal active contours model works well when the size of
patches is small. Section 5.2 reports several examples of segmentation using pixel features
(intensity or color values) and a weighted L2 distance between patches. The local homogene-
ity property of the energy (3.2) enables this model to correctly detect objects which are only
locally homogeneous, and can deal with separated objects with different features.

Section 5.3, however, shows that this unnormalized model suffers from a segmentation
bias when the patch width τ is large. The segmented region is shifted away from the object
boundary with an amount proportional to the patch width τ . This becomes problematic when
used with large patches because of the lack of precision of the resulting segmentation. Large
patches are, however, desirable as the noise level increases, since robustness requires more
pixels to evaluate the local homogeneity.

3.2. Normalized nonlocal active contours. To reduce the segmentation bias introduced
by the nonlocal active contour energy (3.2), we define a novel normalized nonlocal (NL-N)
energy

(3.6) EN
NL(Ω) = ĒN

NL(Ω) + ĒN
NL(Ω

c),

where

(3.7) ĒN
NL(Ω) =

∫

Ω

∫

Ω K(x, y)dy
∫

ΩGσ(x, y)dy
dx
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with K(x, y) defined in (3.3). Note that the unnormalized energy NL-U defined in (3.2) is
recovered by setting the denominator

∫

Ω Gσ(x, y)dy to 1.
In practice, the correction factor

∫

ΩGσ(x, y)dy is far from being constant, in particular
when the size of patches is large. This normalization is thus crucial in reducing the disparities
that increase as a pixel approaches the boundary of the segmented region.

The level set gradient of this energy is computed as

(3.8) ∇EN
NL(ϕ) = ∇ĒN

NL(ϕ) −∇ĒN
NL(−ϕ),

where we use the shape gradient derivative (2.18) as follows:

(3.9) ∇ĒN
NL(ϕ) = ∇F1,K,Gσ(ϕ).

3.3. Summary of the algorithm. Figure 2 summarizes the main steps of our algorithm.
The main computational load is the precomputation of the kernel K(x, y). This complexity
is somehow alleviated by restricting the computation to ||x− y||∞ � ξ.

Initialization:

1. Input data f0 : [0, 1]2 → [0, 1]d (d = 1 or 3) and initial level set function ϕ(0).

2. Metric d(·, ·), for instance, L2 distance (5.1), Wasserstein distances (7.3), (7.5), motion distance
(8.1).

3. Parameters γ, τ, σ, ξ (see section 4.5).

Preprocessing:

1. Compute the feature map f : [0, 1]2 �→ R
d from the input f0, for instance, f = f0 for pixels (section

5), Gabor coefficients (6.1), or local distributions (7.1).

2. Compute the kernels Gσ(x, y) (3.4) and K(x, y) (3.3) for all ||x− y||∞ � ξ.

Minimization: Set ℓ = 0.

1. Compute the gradient ∇E(ϕ(ℓ)) using (3.5) for E = EU
NL or (3.8) for E = EN

NL.

2. Compute ∇L(ϕ(ℓ)) using (2.8) with g = 1.

3. Compute ϕ(ℓ+1) using the gradient descent (2.25).

4. Set ℓ ← ℓ+ 1 and go back to 1 until convergence.

Figure 2. Nonlocal active contour algorithm.

4. Other methods. In the following sections, we compare our nonlocal active contour
model with some previously proposed segmentation methods. To perform a fair comparison
with our method, we extend these techniques (when this is possible) to handle patches with
a comparison function d(·, ·).

4.1. Chan–Vese active contours. The Chan–Vese (CV) model [13] assumes that the
inside Ω and outside Ωc of the region to be segmented are globally homogeneous by measuring
the average variation with respect to template patches p1, p2:

(4.1) ECV(Ω, p1, p2) = ĒCV(Ω, p1) + ĒCV(Ω
c, p2), where ĒCV(Ω, p) =

∫

Ω
d(px, p)dx.
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Here we incorporated the CV model with a general distance for the fair comparison with our
models.

The level set gradient of this energy reads as

∇ECV(ϕ, p1, p2) = ∇Eg1(ϕ)−∇Eg2(−ϕ), where gi(x) = d(px, pi),

and∇Eg is defined in (2.10) (here p1 and p2 are assumed to be fixed). Following [13], the active
contour evolution is obtained by performing a gradient descent step (2.25) with ∇E(ϕ(ℓ)) =
∇ECV(ϕ

(ℓ), p1, p2). After each gradient step, the value of the templates p1, p2 is updated as

(4.2)

{

p1 = Γ1(Ω),
p2 = Γ1(Ω

c),
where ΓU (Ω) = argmin

p

∫

Ω
U(x)d(px, p)dx,

with U(x) = 1 and Ω =
{

x \ ϕ(ℓ)(x) > 0
}

. We detail in the following section (see (5.2) and
(7.6)) how to compute Γ1 for the special case of the L2 and 1-D Wasserstein metrics d(·, ·).

4.2. Geodesic active contours (GAC). The geodesic active contour [11] looks for a curve
that has a minimum length according to a metric g(x) � 0:

(4.3) EGAC(Ω) =

∫

∂Ω
g(x)dx.

The metric g is usually defined using an edge detector. In the numerical experiments, it is
computed by rescaling a gradient-based detector g̃ to [0, 1] using an affine transform. We used
a modified version of the original edge function of the form (6.2) as in [11], which provides
better (clearer) edges than using (6.2),

(4.4) g̃(x) =
1

δ +Gb ⋆ ||∇f(x)||q ,

where ⋆ is the spatial convolution with Gaussian filters Gb(x) =
1

2πb2 e
−||x||2/2b2 . We fix in the

numerical examples δ = 0.1, q = 1, and adapt b > 0 for each tested image.
The active contour evolution is derived by performing a gradient descent of EGAC, with

an additional balloon force [14]

(4.5)
∂ϕ

∂t
= −∇EGAC(ϕ) + ηg||∇ϕ||,

where ∇EGAC = ∇Lg as defined in (2.8) and ηg||∇ϕ|| helps to avoid poor local minima by
forcing the curve to move forward/outward (depending on the sign of η).

4.3. Integrated active contours (IAC). The IAC, introduced by [45], is a weighted av-
erage of the GAC (4.3) and CV (4.1) energies incorporated with patches:

(4.6) EIAC(ϕ, p1, p2) = ECV(ϕ, p1, p2) + µEGAC(ϕ).

The active contour evolution is computed as described in section 4.1 for the CV model.
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4.4. Locally binary fitting (LBF). The CV region-based model (4.1) imposes a global
homogeneity of the regions to be segmented. To cope with spatially varying regions, the LBF
model [34] makes the templates p1(x) and p2(x) of the energy vary spatially:

ELBF(Ω, p1, p2) =

∫

Ω

∫

[0,1]2
Gσ(x, y)d(px, p1(y))dydx

+

∫

Ωc

∫

[0,1]2
Gσ(x, y)d(px, p2(y))dydx.(4.7)

Here we also incorporated the LBF model with a general distance, for the same reason as we
did for the CV model.

The active contour evolution is computed as described in section 4.1 for the CV model,
where the level set of the LBF energy (assuming p1 and p2 fixed) reads as

(4.8) ∇ELBF(ϕ, p1, p2) = ∇Eg1(ϕ)−∇Eg2(−ϕ),

where

(4.9) gi(x) =

∫

[0,1]2
Gσ(x, y)d(px, pi(y))dy

and ∇Eg is defined in (2.10). The values of p1, p2 are updated at iterations ℓ defined in (2.25),

(4.10)

{

p1(y) = ΓGσ(Ω),
p2(y) = ΓGσ(Ω

c),
where ΓGσ(Ω) = argmin

p

∫

Ω
Gσ(x, y)d(px, p)dx,

as defined in (4.2), and Ω =
{

x \ ϕ(ℓ)(x) > 0
}

.

4.5. Parameters of the methods. Our nonlocal method as well as the competing methods
require setting up several parameters that can have a significant impact on the segmentation
results. To ensure the reproducibility of the comparisons reported in the following numeri-
cal section, we provide the list of parameters for each experiment in each figure’s captions.
Furthermore, the implementation of the methods can be retrieved online.1

Here are the parameters of the different methods:
• n: width of the image.
• γ: weight of the curve regularization (see (2.1)).
• τ : patch width (see (3.1)).
• (σ, ξ): scale of the patch comparison function (see (3.3) and (4.7)), only for NL-U,

NL-N, and LBF.
• b: smoothing bandwidth of the edge detector (see (4.4), (6.2)), only for GAC and IAC.
• η: amplitude of the balloon force (see (4.5)), only for GAC.
• µ: weight between edge and region terms (see (4.6)), only for IAC.
• λ: weight for the energy preventing the domains from overlapping (see (9.5)), only for

the multiphase repulsive (MR) method.
In the next four sections, we apply all of the formalism introduced so far to different

segmentation problems using different kinds of features and metrics.

1See https://sites.google.com/site/miyounjungr/publications.

https://sites.google.com/site/miyounjungr/publications
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5. Pixel-based segmentation.

5.1. Weighted L
2 patch distance. The simplest features are simply the pixel values

f(x) ∈ R
d of the input image, where d = 1 for grayscale images, and d = 3 for color images.

In this section we use a weighted L2 distance (5.1), similar to the patch distance used for
nonlocal denoising,

(5.1) d(px, py) =

∫

t
Ga(t)||px(t)− py(t)||2dt.

The Gaussian weight Ga(t) = e−
||t||2

2a2 is used to give more influence to the central pixel.
To implement the CV and LBF models described in sections 4.1 and 4.4, the update

operator defined in (4.2) and (4.10) reduces to a linear averaging

(5.2) ΓU(y) =

∫

Ω U(x)pxdx
∫

Ω U(x)dx
.

5.2. Examples with unnormalized model (NL-U). This section presents results of the
L2 distance (5.1) with intensity and color features. In all the examples, we use the small size
of patches of width τ = 3/n for a discretized image of size n× n and a = 0.5/n.

In Figures 3 and 4, we test our method on several synthetic images with spatially varying
background and/or object, or with several separated objects with different intensities. In all
the examples, our model correctly detects the objects due to the local homogeneity property,
in contrast to the two-phase CV model [13] requiring a global homogeneity in each region.
The first example in Figure 3 demonstrates well the effect of this property, and the second
example shows, in addition, the detection of an interior contour. The bottom object in the
first example in Figure 4 has spatially varying intensities, and, moreover, the intensities of
its left side are close to those of the background. Thus, the CV model fails to segment this
piecewise smooth object, regarding its left side as background, as shown in Figure 5, while our
model captures the boundary with small gradients. Furthermore, Figure 4 shows detection of
multiple separated objects with different intensities.

Figure 5 shows segmentation results on the same image with the methods described in
section 4: CV, GAC, and IAC. For the IAC model, two final curves are shown with two
different but close parameters µ (µ1 > µ2). Because µ is a balancing term between the region-
based and edge-based energies, when µ > µ1 (or µ < µ2), the model tends to act like the
geodesic snake model (or CV model). Thus, with the given initial curves, all the models fail
to detect the correct object boundaries. Note that, with good initial curves surrounding all
the boundaries, the IAC model would be able to detect the boundaries with large values of
µ, but in our model one circle around the objects as an initial curve is enough to achieve a
correct segmentation. Also, with the same initial curves used in Figure 5, our NL-U model
gives the same resulting curves as in Figure 4. Thus, our model is less sensitive to the choice
of initial curves than edge-based active contour models.

Figure 6 presents segmentation results with our NL-U method on grayscale images. We
compare our model with the CV and IAC models. Our model detects objects in the image
with spatially varying background and multiple objects with different intensities, while both
the CV and IAC models fail to segment objects correctly.
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ℓ = 0 ℓ = 10 ℓ = 20 ℓ = 150 CV

Figure 3. Curve evolution for the segmentation of two images with spatially varying background and object
using NL-U and comparison with CV. ℓ is the iteration number. Parameters: n = 100, (τ, a) = (3/n, 0.5/n),
(σ, ξ) = (10/n, 31/n), γ = 15/(n5ξ2τ 2) (NL-U), γ = 0.02 (CV).

ℓ = 0 ℓ = 10 ℓ = 20 ℓ = 50 final curve

Figure 4. Curve evolution for the detection of objects with spatially varying object, or with several separated
objects with different intensities, using NL-U model. ℓ is the iteration number. Parameters: n = 100, (τ, a) =
(3/n, 0.5/n), (σ, ξ) = (10/n, 31/n), γ = 15/(n5ξ2τ 2).

Figure 7 shows segmentation results with our NL-U method on natural color images. We
compare our model with the vector-valued CV model [12] and the IAC model. By using an
initial curve near the boundary of the object(s) and a small windowing function, our model
detects the boundary of nonhomogeneous object(s). The segmentation result is fairly good
compared with CV and IAC models that capture only part of the object(s). On the other
hand, these examples also show a limitation of our model: in order to detect the boundary
of nonhomogeneous objects, the initial curve needs to be located near the object boundary so
that a small windowing function can be used.

5.3. Comparison of unnormalized and normalized models. The unnormalized energy
(3.2) works well with a small size of patches or pixel values, as seen in Figures 3–7. However,
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Initial curve GAC IAC with µ = µ1 IAC with µ = µ2 CV

Figure 5. Comparison of CV, GAC, and IAC (different µ values). Parameters: b = 0.5/n, η = −0.3/n
(GAC), (µ1, µ2) = (3.6/n, 3.5/n) (top), (1/n, 0.9/n) (bottom), γ = 0 (IAC), γ = 0.02/n (CV).

Initial curve NL-U CV IAC

Figure 6. Grayscale image segmentation. Final curves of our unnormalized model NL-U, CV, and IAC.
Parameters: n = 176, 121, (τ, a) = (3/n, 0.5/n); top: γ = 10/(n5ξ2τ 2), (σ, ξ) = (10/n, 31/n) (NL-U), γ =
0.2/n (CV), b = 0.5/n, µ = 0.3/n, γ = 0 (IAC); bottom: γ = 5/(n5ξ2τ 2), (σ, ξ) = (10/n, 21/n) (NL-U),
γ = 0.005/n (CV), b = 0.5/n, µ = 0.5/n, γ = 0 (IAC).

this energy has a segmentation bias near the object boundary when using a large size of
patches, even though contour is attracted to the boundary. Despite this limitation of the
energy (3.2), we keep it as our model due to its simplicity as well as the fact that there are
many cases where the use of a small size of patches or pixel values is enough to segment
regions.

Figure 8 presents examples that require a large size of patches and compares the results
of our unnormalized (3.2) and normalized (3.6) energies. Figure 8 makes use of the L2 dis-
tance (5.1) with intensity feature. In this example, the unnormalized model does not provide
satisfactory results with any kind of patches: patches of width τ = 1/n (1 pixel), τ = 3/n
(3 × 3 pixels) with a = ∞. By using patches of width τ = 1/n, the unnormalized model
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Initial curve NL-U CV IAC

Figure 7. Natural color image segmentation. Final curves of our unnormalized model NL-U, vector-
valued CV [12], and IAC. Parameters: n = 189, 225, (τ, a) = (3/n, 0.5/n), (σ, ξ) = (10/n, 41/n); top: γ =
100/(n5ξ2τ 2) (NL-U), γ = 0.5/n (CV), b = 0.5/n, µ = 5/n, γ = 0 (IAC); bottom: γ = 60/(n5ξ2τ 2), (NL-U),
γ = 0.3/n (CV), b = 0.5/n, µ = 1/n, γ = 0 (IAC).

NL-U (τ = 1/n) NL-U (τ = 3/n) NL-U (τ = 3/n)
γ = 200/(n5ξ2τ 2) γ = 3000/(n5ξ2τ 2) γ = 5000/(n5ξ2τ 2)

NL-N (τ = 3/n) NL-N (τ = 5/n)
γ = 0.5/(n3τ 2) γ = 0.5/(n3τ 2)

Figure 8. Comparison of our unnormalized (3.2) and normalized (3.6) models using the L2 distance (5.1).
Parameters: n = 100, τ variable, a = ∞, (σ, ξ) = (∞, 31/n), γ variable.

produces noisy final curves, and by using patches of width τ = 3/n, it results in smoother
final curves that are, however, not located on the object boundaries in spite of adjusting the
smoothness parameter γ. On the other hand, the normalized model with patches of width
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τ = 5/n provides a smooth final curve, located exactly on the boundary.
Section 7.4 shows other comparisons of NL-U and NL-N in the case of local statistical

features. The conclusion remains the same, namely that the normalized model helps to reduce
the segmentation bias.

6. Locally oriented texture segmentation. A popular set of features for discriminating
the local orientation of textures are computed from the responses to a set of Gabor filters;
see, for instance, [47, 45].

6.1. Gabor features. Given an input image f0 : [0, 1]2 → R, f(x) ∈ R
d is defined as the

absolute value of the filtering of f0 with d complex filters:

(6.1) fν(x) = |f0 ⋆ hν | ∀ ν ∈ {0, . . . , d− 1}

with x = (x1, x2) ∈ [0, 1]2 and

hν(x) = e
2iπ
n

ην(cos(θν)x1+sin(θν)x2)Gsν (x).

The parameter ην > 0 is the frequency of the filtering, θν ∈ [0, π) is the orientation, and
sν > 0 is the spatial width of the filter. In the numerical examples, the parameters ην , θν ,
sν are adapted to obtain the best texture segmentation, and fν are rescaled to [0, 1] using an
affine transform.

The resulting feature map f(x) is a multichannel image, and the patches px are compared
using the weighted L2 norm (5.1).

6.2. Examples. Figure 9 shows a comparison between the NL-U and the CV models
applied to Gabor coefficients [47]. In this case, we use d = 8 filters with ην ∈ {2, 2.5, 3, 3.5},
θν ∈ {0, π/2}, sν = 2. We have also tested the CV method with a larger number d = 64 of
features with ην ∈ {2, 3, 4, 5}, θν ∈ {0, π/4, π/2, 3π/4}, sν ∈ {2, 2

√
2, 4, 4

√
2}. The Gabor-

based CV method fails to detect the object on the top right side because the intensity values
of that object in the Gabor domain are small and comparable with the coefficients of the
background. Using a larger number of features helps but is not enough. In contrast, our
model correctly detects all the objects thanks to the local homogeneity criterion.

Figure 10 shows an example where both the object and the background are composed
of textures with smoothly varying orientations, simulating perspective. We use d = 4 filters
with ην ∈ {0.7, 1.6}, θν = 0, sν ∈ {4, 4

√
2} in the first example, and d = 8 filters with

ην ∈ {2, 3, 4, 5}, θν = 0, sν ∈ {4, 4
√
2} in the second one. Similarly to Figure 3, the Gabor

based CV model [47] fails to segment the object, while our model does a correct segmentation.
For the IAC model, we use another rescaled edge function g̃(x) as in [11],

(6.2) g̃(x) =
1

δ + ||∇(Gb ⋆ f)(x)||q
,

with fixed δ = 0.1 and q = 2. The IAC model detects the object in the first example but not
in the second, which shows the difficulty of designing a good edge detector g(x) for texture
features. In contrast, our model can segment the object in both cases without the need for
any edge detector.
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A feature fν NL-U CV with d = 8 (left) and 64 (right)

Figure 9. Texture segmentation with Gabor features. Parameters: n = 202, (τ, a) = (3/n, 0.5/n), (σ, ξ) =
(10/n, 31/n), γ = 40/(n5ξ2τ 2) (NL-U), γ = 0.5/n (CV).

A feature fν NL-U CV Edge g̃ (6.2) IAC

Figure 10. Texture segmentation of smoothly varying textures with Gabor features. Parameters: n =
200, 196, (τ, a) = (3/n, 0.5/n), (σ, ξ) = (10/n, 41/n), γ = 100/(n5ξ2τ 2) (NL-U), γ = 0.2/n (CV), b = 3.75/n
(top), b = 0.5/n (bottom), µ = 20/n, γ = 0 (IAC).

7. Statistical segmentation. While Gabor features described in section 6 are useful in
dealing with locally oriented geometrical textures, textures with more randomness require the
use of statistical features. We propose in this section a simple framework that estimates the
local first order statistics of the pixel distribution. A key idea is to use an optimal transport
distance to compare the local statistics, which is important in dealing with arbitrary pixel
statistics. Note that more advanced statistical features could be used (e.g., distribution of
pairs of pixels), but this is outside the scope of this paper.

7.1. Local statistical features. Our statistical features are discrete densities in R
d made

of P Dirac distributions:

(7.1) µX =
1

P

P−1
∑

i=0

δXi
, where Xi ∈ R

d.

Here d = 1 for a grayscale image, and d = 3 for a color image. We simply estimate the pixel
value density around a pixel x as the empirical distribution µpx where px is a patch of P = τ2
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pixels extracted around x.
Note that it is possible to use a more advanced estimation procedure such as a Parzen

window method. The estimation µpx using a sum of Dirac has the advantage of simplicity
and leads to statistical distances that can be computed very quickly.

The L2 Wasserstein distance between two distributions µX , µY in R
d is defined as

(7.2) W (µX , µY )
2 = min

σ∈ΣP

P−1
∑

i=0

‖Xi − Yσ(i)‖2,

where ΣP is the set of all the permutations of P elements. For simplicity we have restricted
our attention to distributions having the same number P of points, which is the case for our
application to segmentation. Note also that our method can handle arbitrary Lq Wasserstein
metrics for q � 1, but we use only the L2 in the numerical examples.

The permutation σ minimizing (7.2) is the optimal assignment between the two point
clouds. This optimal assignment problem can be solved using combinatorial optimization
schemes in O(P 5/2 log(P )) operations when d > 1; see [8].

In the 1-D case, the optimal assignment σ that solves (7.2) can be computed inO(P log(P ))
operations by ordering the point clouds X and Y as

XσX (i) � XσX (i+1) and YσY (i) � YσY (i+1)

with two permutations σX , σY ∈ ΣN . The Wasserstein distance is then the L2 norm of the
sorted vectors:

(7.3) W (µX , µY )
2 =

N−1
∑

i=0

|XσX (i) − YσY (i)|2.

Note the major computational difference between the assignment problem (7.2) in dimension
d = 1 and in higher dimensions d > 1, where no O(P log(P )) algorithm is available.

7.2. Sliced Wasserstein distance. The numerical complexity of solving (7.2) in dimen-
sion d > 1 is prohibitive for imaging applications such as our segmentation problem. To
obtain a fast numerical scheme, we follow the work of Rabin et al. [44] that introduces a
sliced Wasserstein distance. It is defined as a sum of 1-D Wasserstein distances of projected
distributions:

(7.4) SW (µX , µY )
2 =

∑

θ∈Θ

W (µXθ
, µYθ

)2, where Xθ = {〈Xi, θ〉}P−1
i=1 .

Here Xθ, Yθ ⊂ R are projected 1-D distributions, and Θ ⊂ R
d is a discrete set of directions,

sampled on the unit sphere (i.e., θ ∈ R
d with ||θ|| = 1).

Evaluating this sliced distance (7.4) has a complexity of O(|Θ|P log(P )) operations which
is advantageous over the original Wasserstein distance (7.2) if Θ is not too large. Although
there is no mathematical proof of the quality of the approximation of W using SW , numerical
observations suggest that SW is a good approximation for solving minimization problems
involving the Wasserstein metric; see [44]. Note that other approximations of the Wasserstein
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distance have been proposed, in particular [50], but we found that the sliced approximation
(7.4) was precise enough for color image segmentation.

The sliced approximation (7.4) is used to measure the similarity between patches to per-
form statistical region-based segmentation. We thus define a new similarity measure between
patches as

(7.5) d(px, py) = SW (µpx, µpy)
2.

7.3. Wasserstein barycenter. It is possible to compute in close form the CV and the
LBF update operators (4.2) and (4.10) in the case of 1-D features (d = 1). In this case, it
corresponds to an averaging of the sorted values:

(7.6) ΓU (Ω) = p, p(i) =

∫

Ω U(x)px(σx(i))dx
∫

Ω U(x)dx
,

where σx ∈ ΣP is a permutation such that the values (px(σx(i)))i are sorted in increasing
order.

There is no closed form expression for ΓU (Ω) in the general case d > 1, although an
approximation algorithm has been introduced in [44]. It is, however, beyond the scope of this
paper to extend LBF and CV to the case of multidimensional distributions.

7.4. Examples. In the numerical examples, we use a L2 sliced Wasserstein distance (which
corresponds to q = 2).

Figure 11 presents simple examples where the L2 patch distance (5.1) cannot be applied
because the black and white stripe pattern is a texture that is not homogeneous in the pixel
domain. Furthermore, these examples require a large patch size to capture the texture statis-
tics. This figure presents comparisons of the unnormalized model (3.2), the normalized model
(3.6), and the CV (4.1) and LBF models (4.7), using the 1-D Wasserstein distance (7.3), and
also presents the mismatching rate (R%) between a resulting curve and the ideal curve exactly
located on the object boundary.

As we already mentioned in section 5.3, the unnormalized model introduces a segmentation
bias near the object boundary when using a large size of patches. This bias cannot be reduced
completely by adjusting the parameter γ. The normalized model (3.6), in column 3, reduces
the bias to some extent, independently of the value of γ. The LBF model seems to provide
results similar to those of our normalized model, but it results in a more biased curve than
our model in the first example using a large size of patches (τ = 15/n). Column 4 shows that
the CV model also suffers from a segmentation bias: the curves are located a few pixels away
from the boundaries. Although our models and the CV/LBF models have similar behaviors on
globally homogeneous textures, this example highlights the importance of our normalization.

Figure 12 shows more complicated examples of grayscale (d = 1) synthetic texture seg-
mentation. This shows that our normalized model (3.6) with the Wasserstein distance (7.3)
detects objects with smoothly varying distributions of intensities and separated multiple ob-
jects with different distributions of intensities. It also shows the curve evolution of our model,
starting from given initial curves, and displays the convergence of the energy E(ϕ(ℓ)) as a
function of the iteration index ℓ.
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R(%): 2.74 (left), 1.5 (right) 2.73 3.84 3.95

R(%): 1.89 (left), 2.44 (right) 1.91 10.1 1.97

NL-U (top: γ′ = 104, ·105) NL-N CV LBF
(bottom: γ′ = 2 · 104, 105) (γ = 5/(n3τ 2)) (γ = 5/(n3τ 2)) (γ′ = 2000)

Figure 11. Comparison of models with the Wasserstein distance function (7.3). R(%) indicates the mis-
matching rate between a resulting curve and the ideal curve exactly located on the object boundary. Parameters:
n = 100, τ = 15/n (top), τ = 11/n (bottom), (σ, ξ) = (∞, 31/n), γ variable (NL-U, LBF: γ = γ′/(n5ξ2τ 2)).
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Figure 12. Segmentation results with Wasserstein distance (7.3). Left: curve evolution using our NL-N
model (3.6). Right: plot of energy E(ϕ(ℓ)) vs iteration ℓ. Parameters: n = 100, τ = 3/n, (σ, ξ) = (∞, 31/n),
γ = 0.5/(n3τ 2).

Figure 13 presents texture segmentation results of our model (3.6) and a comparison
with the CV model (4.1). Again due to the local homogeneity, our model discriminates
different textures having different distributions of intensities, while CV fails for the correct
discrimination.

Figure 14 shows examples of color texture segmentation using the sliced Wasserstein dis-
tance (7.4). We considered only |Θ| = 3 projection directions, i.e., Θ = {(1, 0, 0), (0, 1, 0),
(0, 0, 1)}, which was enough to obtain satisfactory segmentations in all the given examples.
We also compare our model with the vector-valued CV model [12] and with the color exten-
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τ = 11/n, γ′ = 0.5 τ = 7/n, γ′ = 0.5 τ = 11/n, γ′ = 0.5 τ = 11/n, γ′ = 0.5

τ = 11/n, γ′ = 5 τ = 7/n, γ′ = 1 τ = 11/n, γ′ = 5 τ = 11/n, γ′ = 5

Figure 13. Segmentation results with Wasserstein distance (7.3). Top row: initial curves. Middle: results
of our NL-N model (3.6). Bottom: results of the CV model extended with Wasserstein distance. Parameters:
n = 148, 147, 202, 186 (left to right), τ variable, (σ, ξ) = (∞, 31/n), γ = γ′/(n3τ 2) variable.

sion [2] of the original method proposed in [38]. In all the examples, our model correctly
detects the boundary of objects and segments separated multiple objects with different distri-
butions of color values, in contrast to the other models, which do not locate the curve on the
exact boundaries, detect only part of objects, or fail to detect objects. Note that the second
example was degraded by the random-valued impulsive noise (noise with any intensity value
is randomly distributed over the entire image) of density 0.3 (probability of the corrupted
image pixels).

8. Motion segmentation. To perform motion segmentation, we use the motion profile
features introduced by Shi and Malik in [48, 49] within our nonlocal active contour framework.

8.1. Motion features. The goal is to segment moving objects between two consecutive
frames f0, f1 of a video sequence. The local movement at a pixel x is represented by a motion
profile f(x) ∈ R

d. In the following we use a patch of size τ × τ so that f(x) = px is a motion
profile.

The profile px ∈ R
d is a local signature, where (px)i is an estimation of the probability

that pixel x in frame f0 moves toward pixel x + δi, where (δi)
d−1
i=0 ⊂ R

2 is a discrete grid of
two-dimensional relative movements, as seen in Figure 15. For the numerical examples, we
use δi that ranges on a uniform square grid of step 1/n and of width 11/n (which means that
the expected displacement amplitude is 5 pixels).



1044 MIYOUN JUNG, GABRIEL PEYRÉ AND LAURENT D. COHEN

Initialization NL-N CV CV-Wass

Figure 14. Texture segmentation of our NL-N model (3.6) with the sliced Wasserstein distance (7.4)
with |Θ| = 3 fixed directions, and comparison with the vector-valued CV model [12] and the extended work
(CV-Wass) [2] of [38]. Row 1 parameters: n = 185, τ = 11/n, (σ, ξ) = (∞, 31/n), γ = 1.5/(n3τ 2). Row 2
parameters: n = 176, τ = 5/n, (σ, ξ) = (∞, 31/n), γ = 0.1/(n3τ 2). Row 3 parameters: n = 192, τ = 9/n,
(σ, ξ) = (∞, 31/n), γ = 0.5/(n3τ 2). Row 4 parameters: n = 192, τ = 7/n, (σ, ξ) = (∞, 31/n), γ = 1/(n3τ 2).
Row 5 parameters: n = 193, τ = 7/n, (σ, ξ) = (∞, 31/n), γ = 0.5/(n3τ 2).
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Frame f0 Frame f1 Motion profile px

Figure 15. Schematic display of the computation of a motion profile px for a translating disk. The blue
patches πy, where y = x + δi for some i in frame f1, show the most probable patches that match πx in frame
f0, thus resulting in a large value of (px)i (blue colors on the image in the last figure).

To evaluate the movement, the patch π0
x of size τm×τm extracted from f0 around pixel x is

compared to the patches π1
x+δi

extracted from frame f1 around pixels x+δi. Following [48, 49]

the value of the profile is a decaying function of the L2 distance between the patches:

(px)i =
1

Zx
e

−||π0
x−π1

x+δi
||2

2σ2
m ,

where the constant Zx ensures that
∑

i(px)i = 1 so that px resembles a density distribution
of movements.

The nonlocal segmentation method is then applied to the segmentation of the profiles px
using a correlation distance between the square root of the profiles:

(8.1) d(px, py) = 1−
∑

i

√

(px)i(py)i.

Note that we compute the square root of the motion profile, instead of using the motion profile
itself as in [48, 49], in order to ensure that d(px, px) = 0.

8.2. Examples. Figures 16 and 17 present some motion segmentation results with the
motion distance (8.1). The first two columns (a) and (b) show the two input images f0 and
f1. In the first example, both objects translate with opposite directions and also exhibit a
change of size (scaling). The second example shows a simpler movement (uniform translation),
but the object has a uniform texture. The third example shows two three-dimensional objects
which are both translating and rotating in space. The fourth example shows a single object
which is rotating. These examples show different types of movements that are not uniform
translation and result in a smoothly varying motion profile, thus being well suited for our
nonlocal segmentation method. To better show the movement in these sequences, column
(c) shows the optical flow computed using the Lucas–Kanade method [35]. Note that this
flow is given for illustration purposes only and is not used to compute the segmentation. It
is important because optical flow computation is a difficult task that would often lead to
poor segmentation results. The last column (d) shows the segmentation results using our
normalized energy with the motion distance.
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(a) f0 (b) f1 (c) Optical flow (d) NL-N

Figure 16. Segmentation of moving objects with our NL-N model (3.6) and the motion distance (8.1).
Parameters: n = 120, 100, 150, 200 (top to bottom), τ = 11/n, (σ, ξ) = (∞, 31/n), γ = 0.005/n, 0.005/n,
0.03/n, 0.008/n (top to bottom).

Figure 17. Segmentation of a moving car with our NL-N model (3.6) and the motion distance (8.1). Initial
curve (first column) on the first frame and final curves (second–fourth columns) on the first, 13th, and 31st
frames of the sequence are shown. Parameters: n = 191, τ = 11/n, (σ, ξ) = (∞, 41/n), γ = 0.005/n.
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Figure 17 shows that our model is able to segment a moving car of a video sequence. The
initial curve is given only in the first frame (it needs to be quite close to the car), and the
resulting curve is used as the initial curve for the next frame. The segmentation results are
shown when f0 is the first, 13th, and 31st frame of a movie sequence.

For these numerical examples, we use motion patches of width τm = 3/n, except for the
taxi sequence where τm = 7/n. The motion profiles are computed using a variance that is
adapted manually for each case. We use σm = 0.2/nτm for the first and second examples,
σm = 0.06/nτm for the third, σm = 0.08/nτm for the fourth, and σm = 0.25/nτm for the taxi
sequence.

We note that we try to initially locate curves outside moving objects, especially when
objects have little texture where the motion profiles are almost flat; see, for instance, the
first and third examples. In this way, our model can detect the object boundary where the
variation of motion profile is largest.

9. Multiphase segmentation. This section generalizes the models proposed in the previ-
ous sections to handle an arbitrary number N � 2 of regions. This is performed by extending
the energy E(Ω) associated to a single domain Ω to an energy EM(Ω1, . . . ,Ωm) on m domains
and then replacing the original problem (2.1) by a joint minimization on the m domains

(9.1) min
Ω1,...,Ωm

EM(Ω1, . . . ,Ωm) = EM(Ω1, . . . ,Ωm) + γ

m
∑

j=1

L(Ωj).

Section 9.1 recalls the multiphase extension proposed in [57, 46], where the number of seg-
mented regions N is equal to the number of domains N = m. Section 9.2 details an alternative
extension where N = 2m, which follows closely [52].

The problem (9.1) can be solved using a level set function ϕj to represent each domain
Ωj = {x \ ϕj(x) > 0}. The active contour evolution is obtained by performing a gradient
descent of (9.1), which leads to a system of m coupled PDEs:

(9.2) ∀ i = 1, . . . ,m,
∂ϕi

∂t
= −∂EM

∂ϕi
(ϕ1, . . . , ϕm)− γ∇L(ϕi),

where ∂EM
∂ϕi

is a level set gradient direction associated to the mapping Ωi �→ EM(Ω1, . . . ,Ωm).

9.1. Multiphase repulsive (MR) method. Following the multiphase representation [57,
46], we introduce an energy to enforce that {Ω1, . . . ,Ωm} are disjoint:

(9.3) F (Ω1, . . . ,Ωm) =

∫

[0,1]2

⎛

⎝

m
∑

j=1

χΩj
(x)− 1

⎞

⎠

2

dx,

where we have used the indicator function

(9.4) χΩ(x) =

{

1 if x ∈ Ω,
0 otherwise.
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Any single region energy E(Ω) is extended into a multiphase energy as

(9.5) EM(Ω1, . . . ,Ωm) = λF (Ω1, . . . ,Ωm) +

m
∑

j=1

E(Ωj),

where λ > 0 is a parameter that should be large enough to prevent the domains from over-
lapping. The active contour evolution (9.2) is implemented using

(9.6)
∂EM

∂ϕi
(ϕ1, . . . , ϕm)(x) = λ

∂F

∂ϕi
(ϕ1, . . . , ϕm)(x) +∇E(ϕi),

where∇E is the level set gradient of the energy considered, and ∂F
∂ϕi

is detailed in the following
proposition.

Proposition 4. One has, for i = 1, . . . ,m,

(9.7)
∂F

∂ϕi
(ϕ1, . . . , ϕm)(x) = ||∇ϕi(x)||

⎛

⎝−1 + 2
∑

j �=i

χΩj
(x)

⎞

⎠,

where Ωj = {x \ ϕj(x) > 0}.
Proof. One can write

(9.8) F (Ω1, . . . ,Ωm) =

∫

Ωi

⎛

⎝

∑

j �=i

χΩj
(x)

⎞

⎠

2

dx+

∫

Ωc
i

⎛

⎝

∑

j �=i

χΩj
(x)− 1

⎞

⎠

2

dx.

Using Proposition 1, one has

(9.9)
∂F

∂ϕi
(ϕ1, . . . , ϕm)(x) = ||∇ϕi(x)||

⎛

⎝

∑

j �=i

χΩj
(x)

⎞

⎠

2

−

⎛

⎝

∑

j �=i

χΩj
(x)− 1

⎞

⎠

2

and hence the result.

9.2. Multiphase intersection (MI) method. Following the method introduced in [52], we
consider all possible intersections obtained using the sets {Ωj ,Ω

c
j}mj=1. This gives a segmen-

tation of the image using N = 2m nonoverlapping regions.
Any single-region energy E(Ω) is extended to a multiphase setting as

(9.10) EM(Ω1, . . . ,Ωm) =
∑

s∈{+1,−1}m

E(Ωs1
1 ∩ . . .Ωsm

m ),

where we have used the notation Ω+1
j = Ωj and Ω−1

j = Ωc
j. Note that the minimization (9.1)

is performed on m domains, but it produces a segmentation in 2m regions.
Computing the partial level set gradient ∂E

∂ϕj
can be quite involved since it is made of 2m

terms. To obtain simpler formula, the following proposition makes use of the special structure
of our nonlocal energies and introduces the indicator functions of a set (Ω× Ω) ∪ (Ωc × Ωc):

(9.11) χ̂Ω(x, y) =

{

1 if (x, y) ∈ (Ω× Ω) ∪ (Ωc × Ωc),
0 otherwise.
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Proposition 5. Let ϕ1, . . . , ϕm be fixed level set functions. For i = 1, . . . ,m, we denote, for

any function f(x, y),

(9.12) f [i](x, y) = f(x, y)
∏

j �=i

χ̂Ωj
(x, y).

For E = ĒU
NL

of (3.2), a level set gradient is given, for j = 1, . . . ,m, by

(9.13)
∂EM

∂ϕi
(ϕ1, . . . , ϕm) = ||∇ϕi(x)||

(

∫

Ωi

K [i](x, y)dy −
∫

Ωc
i

K [i](x, y)dy

)

,

where K is defined in (3.3). For E = ĒN
NL

of (3.6), a level set gradient is given, for j =
1, . . . ,m, by

(9.14)
∂EM

∂ϕi
(ϕ1, . . . , ϕm) = ∇F

1,K [i],G
[i]
σ
(ϕi)−∇F

1,K [i],G
[i]
σ
(−ϕi),

where ∇F is defined in (2.18).
Proof. The multiphase extension of the unnormalized energy (3.2) can be conveniently

written as follows:

(9.15) ENL-U
M (Ω1, . . . ,Ωm) =

m
∑

i=1

∫∫

K [i](x, y)χ̂Ωi
(x, y)dydx =

m
∑

i=1

{

FK [i](Ωi) + FK [i](Ωc
i )
}

,

where Fg is defined in (2.11). The result follows from Proposition 2, using the fact that K [i]

is a symmetric kernel.
The multiphase extension of the normalized energy (3.6) (NL-N) is written as follows:

ENL-N
M (Ω1, . . . ,Ωm) =

m
∑

i=1

∫

∫

K [i](x, y)χ̂Ωi
(x, y)dy

∫

G
[i]
σ (x, y)χ̂Ωi

(x, y)dy
dx

=

m
∑

i=1

{

F
1,K [i],G

[i]
σ
(Ωi) + F

1,K [i],G
[i]
σ
(Ωc

i )
}

,(9.16)

where Ff,g,h is defined in (2.17). The result follows from Proposition 3.

9.3. Examples. In the following numerical experiments, we consider the multiphase ex-
tensions of the CV energy ECV defined in (4.1), the NL-U energy defined in (3.2), and the
NL-N energy defined in (3.6).

Note that for the CV energy, there is an additional parameter for each of the N regions
to be segmented, which generalizes the pair (p1, p2) of parameters in the original energy (4.1).
Each parameter is updated during the active contour evolution in a way similar to (4.2).

Figure 18 presents segmentation results of the multiphase model MR with our unnormal-
ized energy NL-U using the L2 patch distance (5.1) and the CV energy. Since two foreground
objects are touching, the nonlocal energy requires multiphase extensions to perform a correct
segmentation. Due to the fact that our nonlocal energy can segment the region with spa-
tially smoothly varying features and separated regions with different features with one level
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Figure 18. Segmentation results of multiphase method MR with the NL-U energy and the CV energy.
Parameters: n = 100, τ = 1/n, (σ, ξ) = (∞, 31/n); NL-U: γ = 100/(n5ξ2τ 2), λ = 200/(n5ξ2τ 2) (top),
λ = 300/(n5ξ2τ 2) (bottom); CV: (γ, λ) = (0.1/(n3τ 2), 0.1/(n2τ 2)).
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Figure 19. Segmentation results of multiphase method MI with the NL-U energy and the CV energy.
Parameters: n = 100, τ = 1/n, (σ, ξ) = (∞, 31/n), γ = 100/(n5ξ2τ 2) (NL-U), γ = 0.1/(n3τ 2) (CV).

set function, the multiphase model MR with our NL-U energy also could segment the regions
with smoothly varying intensity values, and it could segment the regions with a small number
of level set functions (m = 3 for the first example, m = 2 for the second example). On the
other hand, the CV energy fails to segment the first example due to the spatially varying
intensity values, and it needs more level set functions for the second example. This figure also
displays the convergence of the energy EM using the MR method (9.5) with the NL-U energy
as a function of the iteration index ℓ.

Figure 19 presents segmentation results of the multiphase model MI with our unnormalized
energy NL-U using the L2 patch distance (5.1) and the CV energy. The multiphase model MI
with our NL-U energy could segment the regions with smoothly varying background with two
level set functions, while the CV energy fails in the segmentation due to the spatially varying
background. This figure also displays the convergence of the energy EM using the MI method
(9.15) with the NL-U energy as a function of the iteration index ℓ.

Figure 20 shows the result with our normalized energy (NL-N) using the sliced Wasserstein
distance between patches (7.5). The sliced distance for color distributions in R

3 is implemented
using Θ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The first two examples are grayscale and color textures that are handled efficiently using
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MR method MR method MI method

Figure 20. Segmentation results of MR and MI methods with NL-N energy and Wasserstein patch distance.
Parameters: n = 192, τ = 7/n, (σ, ξ) = (∞, 41/n), (γ, λ) = (0.7/(n3τ 2), 3/(n2τ 2)). Parameters: n = 176, τ =
7/n, (σ, ξ) = (∞, 41/n), (γ, λ) = (0.8/(n3τ 2), 4/(n2τ 2)). Parameters: n = 160, τ = 3/n, (σ, ξ) = (∞, 41/n),
γ = 0.1/(n3τ 2).

our statistical patch distance. Although there are five regions, the MR method gives a correct
segmentation with m = 3 level set functions. In these examples, the repulsive force plays an
important role in making the curves evolve to the boundaries, especially when a small value
of σ (locality parameter) is used.

The third example is contaminated by salt-and-pepper noise (noisy pixel takes either salt
value 1 or pepper value 0) with noise density 0.05 (salt noise and pepper noise have a noise
density of 0.05/2).This shows a complicated segmentation situation because four regions are
meeting at some locations. The MI method gives a correct segmentation with m = 3 functions
that can segment up to eight phases. Note that the MR method would have required at least
m = 4 functions. This is, however, much smaller than what would have been required (at
least m = 6) if the CV energy had been used instead of NL-N.

10. Conclusion. In this article, we have proposed a novel class of nonlocal energies for
image segmentation, which makes use of patches and allows us to constrain local homogeneity
of features. We have illustrated the superiority of our models over existing active contour
models. Due to the local homogeneity property, our segmentation model is able to detect
regions with smoothly spatially varying features and segment separated objects with different
features with a level set function. We have instantiated our models based on intensity, color,
texture, or motion information, by designing appropriate metrics between patches such as the
L2 norm for piecewise smooth features (intensity, color values, or Gabor features for locally
oriented textures), Wasserstein distance for locally homogeneous random fields, or motion
signature correlation. The Wasserstein distance and its sliced approximation allow us to
segment complicated textural features in arbitrary dimension, and the motion distance enables
us to detect moving objects with locally varying motion. We also extend our models to the
multiphase level set frameworks that enable us to segment an image with multiple junctions.
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Our multiphase models are also able to partition regions with smoothly varying features and
with a smaller number of level set functions, due to the local homogeneity property. All these
properties are significant extensions of existing region-based models crucial in solving difficult
image segmentation problems.
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[25] M. Jung, G. Peyré, and L. D. Cohen, Nonlocal active contours, in Scale Space and Variational Methods
in Computer Vision, Lecture Notes in Comput. Sci. 6667, Springer-Verlag, Berlin, Heidelberg, 2012.
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