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We introduce a new methodology to characterize the role that a given node plays inside the 

community structure of a complex network. Our method relies on the ability of the links to 

reduce the number of steps between two nodes in the network, which is measured by the number 

of shortest paths crossing each link, and its impact on the node proximity. In this way, we use 

node closeness to quantify the importance of a node inside its community. At the same time, 

we define a participation coefficient that depends on the shortest paths contained in the links 

that connect two communities. The combination of both parameters allows to identify the role 

played by the nodes in the network, following the same guidelines introduced by Guimera et al. 

[Guimera & Amaral, 2005] but, in this case, considering global information about the network. 

Finally, we give some examples of the hub characterization in real networks and compare our 

results with the parameters most used in the literature. 
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1. Introduction 

During the last years, complex network analysis has 

given fruitful information about complex systems 

from a new perspective [Newman, 2003; Boccaletti 

et al, 2006; Costa et al, 2011], where the structure 

of the network constrains the dynamical processes 

occurring in it and, at the same time, the dynam-

ics of the nodes can influence the evolution of 

the network structure [Gross & Blasius, 2008]. 

One of the advantages of this new perspective is 



that we are able to analyze not only the network as 

a global entity but the role that nodes play inside 

it. Moreover, we have to consider that real net-

works have certain modularity, which is related to 

the appearance of community structures that are 

crucial in the dynamical processes taking place on 

top of the network [Almendral et al., 2011]. There-

fore, the interplay between the individual nodes 

(microscale), the existing communities (mesoscale) 

and the behavior of the whole network (macroscale) 

can only be understood from a multilevel approach 

with different scales interacting with each other. 

Within this framework, Guimera et al. 

[Guimera & Amaral, 2005] introduced a two-

dimensional characterization regarding the impor-

tance of each node inside its own community and 

the connection with other communities of the net-

work. Specifically, they defined a within-module 

degree Zi and a participation coefficient pi, the for-

mer taking into account the importance of a node 

inside its own community and the latter measur-

ing how diverse are the links that are sent to other 

communities in the network. The methodology of 

Guimera et al. [2005] has been applied to a wide 

manifold systems such as social [Teitelbaum et al.. 

2008; Moon et al, 2010], technological [Guimera 

et al., 2005; Costa et al, 2007] and biological net-

works [Guimera & Amaral, 2005; Hagmann et al., 

2008; Buldii et al, 2011]. More recently, Arenas 

et al. [2010] have defined different indicators to eval-

uate the role of the nodes of a network. In this 

case, authors took advantage of the singular value 

decomposition of the participation matrix, which 

contained the information regarding how a node 

spreads its connections among the communities of 

the network. 

Despite being good approaches for evaluating 

the role of the nodes, both methods are local in 

scope, since they only take into account the ori-

gin and final community of the links, no matter 

what nodes are being attached to. In this way, links 

that connect different community hubs and those 

connecting collateral nodes end up with the same 

relevance, which may have important implications, 

specially in the computation of the participation 

coefficient. Looking back, it is not the first time 

that disregarding the importance of links has led to 

counterintuitive results. This is the case of the het-

erogeneity paradox [Nishikawa et al., 2003], where 

a small-world topology that reduces the number of 

steps between nodes, seemed to be inadequate to 

achieve synchronization between nodes. The hetero-

geneity paradox was solved in parallel by Motter 

et al. [2005] and Chavez et al. [2005] by assigning 

weights to the links according to their degree [Mot-

ter et al., 2005] or their betweenness [Chavez et al., 

2005]. Therefore, the introduction of weights in the 

links was reflected in differences between relevant 

and nonrelevant connections, leading to an increase 

of the network synchronizability. 

In the current work, we are concerned about 

how to assign weights to the links of a network in 

order to better identify the role that a node is play-

ing in the community structure. With this aim, we 

propose a new method to evaluate the participation 

of the nodes in their neighboring communities and 

redefine the importance of a node inside its com-

munity in terms of the community closeness. Fol-

lowing the ideas introduced by Chavez et al. [2005], 

we propose the use of the link betweenness (more 

precisely, the number of shortest paths) in order 

to weigh the relevance of the inter-community links 

and, therefore, the participation coefficient p\ of the 

nodes. Next, we define a z-score z\ based on the 

proximity of a node to its neighbors in the commu-

nity. Both parameters allow to identify the provin-

cial and connector hubs [Guimera & Amaral, 2005] 

using global information about the network struc-

ture, a fact that was disregarded in the methods 

previously reported. Finally, we check the appli-

cation of the proposed method by analyzing the 

structure of four real networks, with special atten-

tion to the discrepancies in the role assignment pro-

vided by the classical method [Guimera & Amaral, 

2005]. 

2. Analysis of Roles 

The role assignment introduced by Guimera et al. 

[Guimera & Amaral, 2005] departs from a par-

tition of a network into communities. Network's 

partition must be already known from experimen-

tal observations or obtained by applying one of 

the many existing community detection algorithms 

[Fortunato, 2010]. Once the community structure 

is known, we have to go down to the lowest scale 

(i.e. node level) in order to analyze the role of the 

nodes in their corresponding communities. The clas-

sical classification of nodes is based on the compu-

tation of the within-module degree Zi (also known 

as z-score) and the participation coefficient pi. The 

former parameter quantifies the importance of the 
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node % inside its community and it is defined as: 
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where ki and conij are, respectively, the degree and 

the community of the node i, (kcomi) is the mean 

degree of the community conij and <7fccom. is the 

standard deviation of k in conij. The z-score of a 

node is zero if it has a degree k equal to the aver-

age of the community. Positive (negative) values 

of Zi reveal that the node has more (less) connec-

tions than the average. On the other hand, the par-

ticipation coefficient pi indicates how connections 

of the node i are distributed among the existing 

communities: 

»
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where ki
 3 is the number of connections of node i 

that go into community com.,- and Ncom is the total 

number of communities. The participation coeffi-

cient is zero when all links of a node are inside 

its community and close to one when they are dis-

tributed among all modules of the network. 

Figure 1(a) shows an example with a test net-

work (Test Network A) where both parameters 

have been calculated. The network is divided into 

four communities and it has three kinds of nodes: 

(a) connector hubs (1, 17, 33 and 49), which are 

relevant nodes inside their communities, (b) non-

hub connectors (2, 3, 18, 19, 34, 50 and 51), which 

are nodes with low relevance in their communi-

ties, but with connections to other communities, 

and (c) peripheral nodes (the rest), which are not 

relevant inside and outside their communities. The 

upper inset of Fig. 1(b) shows the values of Zi and pi 

for each kind of node. Interestingly, we can observe 

how nonhub connectors have a higher participation 

coefficient than the connector hubs, despite hubs 

being connected to the hubs of other communities. 

This is a consequence of having a high number of 

connections with nodes of their own community and 

the fact that each link has the same weight in the 

participation coefficient. Nevertheless, if we com-

pute the number of shortest paths that cross each 

link of the network [see Fig. 1(b)], we observe that 

links connecting to hubs have a higher number of 

shortest paths passing through them, which should 

be reflected in a higher participation coefficient. 

To overcome this drawback we need to redefine 

the participation coefficient of a node and, in addi-

tion, its community z-score. With this aim, we fol-

low the guidelines given in [Chavez et al, 2005] and 

weigh each link according to the number of shortest 
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Fig. 1. (a) Structure of Test Network A, which is split into four communities. According to the number of links, there 

are three kinds of nodes: (1) connector hubs (1, 17, 33 and 49), (2) nonhub connectors (2, 3, 18, 19, 34, 35, 50 and 51) 

and (c) peripheral nodes (the rest). Colors have been assigned according to the different kind of links: (1) red and black, 

links between community hubs, (2) yellow and green, links between nonhub connectors and between nonhub connectors and 

peripheral nodes, respectively, and (3) blue, internal links, (b) Plots of the number of shortest paths crossing each kind of link 

and the (pj,Zj) and (j>i,z1) plots for the three kinds of nodes, calculated as in [Guimera & Amaral, 2005] (upper inset) and 

with our proposed metrics (bottom inset). 
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paths that go through it. Now, the importance of 

the node i inside its community is quantified with a 

z-score based on its community closeness c™, which 

is the inverse of the minimum number of steps that 

we have to make in order to go from node i to any 

other inside its community: 

C
" = ̂ £ ^ (3) 

where kf
1 is the degree of node i inside its commu-

nity, Vi is the set of community neighbors of node 

i, and ckj is the shortest distance between nodes i 

and j . Hence, we define the community relevance z\ 

as the z-score of the node closeness: 

Z; = 
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where (c™mi) is the average closeness of the com-

munity conii and <rcm is the standard deviation of 

c
m inside conij. Figure 2 shows an example (Test 

Network B) of how a community relevance mea-

sure based on closeness can better quantify the 

importance of a node inside its community. In this 

case, the network has a unique community of fifteen 

nodes, with two hubs (nodes I and 9) and one con-

nector node inside the community (node 8). Note 

that all nodes, apart from the hubs, have degree 

two, which is reflected in the same z-score Zi when 

it is based on the node degree. Nevertheless, we 

would disregard the importance of node 8 in the 

transmission of information inside the community, 

since all shortest paths between nodes 1-7 to nodes 

9-15 pass through it. Therefore, a z-score based on 

closeness enhances the relevance of connector nodes, 

such as node 8, as we can see in Fig. 2(b) where Zj 

and z\ are compared. With zf, the importance of 

node 8 increases when compared with other nodes 

of the same degree and, at the same time, it is still 

lower than the z\ of the network hubs. 

With regard to the relevance in the connection 

between communities, we define the betweenness 

participation coefficient p\, which quantifies how 

the shortest paths that pass through the links of 

a node i are distributed among the existing com-

munities: 

Pi = 1 

com / rj^O^j N, 

E B, 
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where Bi
 3 is the number of shortest paths that 

pass through those links of node i that fall into 
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Fig. 2. (a) Structure of Test Network B. In this example, we 

assume that all nodes belong to the same community. Nodes 

1 and 9 are the community hubs, with a degree fchub = 7, 

while the rest of the nodes have the same degree fcnonhub = 2. 

Note that node 8, despite having the same number of connec-

tions as the other nonhub nodes, is a relevant node, since it 

connects the left and right sides of the community, (b) Plot 

showing Zi versus z\. We can see that a measure of the z-score 

that is based on closeness (zf), allows to differentiate among 

nodes of the same degree, but with different relevance. 

community conij, Bi is the total number of short-

est paths that require a link that is attached to i 

and Ncom is the total number of communities. The 

betweenness participation coefficient p\ is zero when 

all links of a node i are inside the same community 

or in the absence of shortest paths crossing node i. 

On the contrary, it is close to one when links of node 

i contain shortest paths equally distributed among 

all modules of the network. The inset of Fig. 1(b) 

shows how the new participation coefficient pro-

motes the impact of nodes with higher betweenness, 

which are now the nodes with higher participation 

•p\ in the network. Due to the simplicity of the Test 

Network A, we do not observe differences in the 



community relevance z\, despite them appearing for 

more complex community structures. 

3. Results 

3.1. Characterizing community 

hubs 

In order to test the power of our method, we ana-

lyze four real networks of different nature and size 

[Almendral et al., 2010], namely, the Zachary karate 

club [Zachary, 1977], a dolphin network [Lusseau & 

Newman, 2004], a network of political books in 

USA [Krebs, 2011] and the network of domestic 

flights in the USA [Newman, 2004]. Table 1 sum-

marizes the basic topological parameters of these 

networks. 

As mentioned in the previous section, our 

method is of special interest when there exist differ-

ences in the ability of the links to transmit informa-

tion, which is measured, in our case, by the number 

of shortest paths nsp(j) crossing each connection j . 

Figure 3 shows the ranking of the links with regard 

to nsp(j). As we can observe in all four exam-

ples, there is a high heterogeneity in the number 

of shortest paths of each link. This difference in 

Table 1. Summary of the parameters of the networks under analysis. 

Description Test Network A Karate Club Dolphin Network Political Books USA Natl. Airports 

Nodes (N) 

Links (L) 

Communities (M) 

Shortest Path (L) 

Clustering (C) 

64 

70 

4 

2.63 

0.0012 

34 

78 

2 

2.41 

0.554 

62 

159 

4 

3.36 

0.255 

105 

441 

3 

3.08 

0.483 

332 

2126 

5 

2.74 

0.620 
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Fig. 3. Link ranking based on the number of shortest paths for four different real networks: (a) Zachary Karate Club. 

(b) Dolphin Network, (c) USA Political Books in Amazon's web page and (d) National Airport Network of the USA. Note 

that in all cases there is a clear difference in the number of shortest paths crossing each link, which leads to links with more/less 

importance. In (a) and (b) we observe a two-slope linear dependence. In (c), intermediate positions of the ranking follow an 

exponential decay (note the log-linear scale). Finally, the airport network in (d) follows a power law decay with an exponential 

cut-off for the last nodes of the ranking (in this case, note the log-log scale). Links inside and between communities are plotted 

in red and black, respectively. 



the link importance is particularly displayed in the 

ranking of the two largest networks, which have, 

respectively, an exponential decay [book network, 

Fig. 3(c)] and a power-law decay with exponential 

cut-off [airport network, Fig. 3(d)]. 

Once these differences have been observed, we 

have to check whether the inclusion of the link 

importance introduces changes in the role played 

by the nodes in the community structure. Notice 

that this is an important issue since the calcula-

tion of the shortest paths, which includes global 

information about the network, is much more CPU 

demanding than any other local measure of the net-

work. With this aim, we calculate (for all networks) 

the within-module degree Zi and participation coef-

ficient pi of each node [Eqs. (1) and (2)] and elab-

orate a ranking based on both parameters. Next, 

we compute the community relevance z\ and the 

betweenness participation coefficient p\ and recal-

culate the ranking of all nodes with the new param-

eters. Finally, we analyze the changes observed by 

comparing both rankings. Figure 4 shows a two-

dimensional plot of the increase/decrease of the 

node ranking, both in the relevance inside their 

communities Azi = rank(z^) — rank(zj) and in their 

participation in the overall community structure 

Api = rank(^) — rank(^j). Node sizes are propor-

tional to their number of connections. Figure 4 gives 

a snapshot on the information gained by the redef-

inition of the role assignment. The closer a node is 

to the value (0,0), the less information we gain from 

the new method. On the contrary, deviations from 

the origin of coordinates indicate that the num-

ber of shortest paths contained in the links of a 

given node are increasing/decreasing its relevance 

in the inter- (or intra-) community structure. We 

can see in Fig. 4 that, although some nodes remain 

close to the origin, others have strong deviations in 

one or both parameters. Interestingly, nodes with 

higher degrees (i.e. indicated by larger radius in 

the figure) show larger variations in the partici-

pation coefficient and not in the intra-community 

relevance. This is somehow expected and indicates 

that the importance of a node in their community 

is mainly dominated by its internal degree (despite 

there being some exceptions). 

In order to have a deeper insight about the 

information gained by our method, we elaborate 
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Fig. 4. Two-dimensional plot showing the changes in the ranking of nodes due to the use of role parameters based on shortest 

path analysis. Networks are the same as those described in Fig. 3: (a) Zachary Karate Club, (b) Dolphin Network, (c) Political 

books in the Amazon webpage and (d) National Airport Network of the USA. Specifically, we plot AZJ = rank(zf) — rank(zj) 

versus Apj = rank(p^) — rank(pj), which indicates the reordering in the community relevance and participation, respectively. 

Node sizes are proportional to their degrees. 



in detail the role variations in the network of air-

port connections [Newman, 2004; Almendral et al., 

2010]. The network is formed by 332 airports and 

2126 flight connections. The application of the fast 

algorithm developed by Newman [2004] provides an 

optimal partition consisting of a structure of five 

communities: the largest community CI compris-

ing the airports of the west and central parts, and 

the second largest C2 grouping the airports from 

the eastern part. The third community C3 includes 

airports from southern-east states Louisiana, Mis-

sissippi, Alabama and Florida and the fourth com-

munity C4 is for airports in the area of Montana. 

Finally, airports in Alaska are grouped in the small-

est community C5. 

Table 2 summarizes the modification of the 

role of the nodes induced by the new measures 

of the community relevance and network participa-

tion. We observe that the community relevance z\ 

does not change significantly, which indicates that 

the use of the node degree in order to evaluate the 

importance of a node inside its community is a good 

approach. Nevertheless, there are significant varia-

tions in the participation coefficient p\. In this case, 

there are six new airports that raise to the top-ten 

ranking when compared with the previous partic-

ipation measure. This fact reveals that the inclu-

sion of the shortest paths in the link weight gives 

additional information, increasing the importance 

of those nodes that are in the way of the connec-

tion between other two. This kind of analysis is spe-

cially recommended for transport or communication 

networks, such as the airport network, where the 

reduction of the number of steps between nodes is 

a crucial issue. In these kinds of networks, the posi-

tion of the node in the network, and its role in the 

connection with other nodes, can be more impor-

tant than the degree itself. 

Finally, we go one step further and analyze how 

a node distributes its connections among the com-

munities. This information is included in the value 

of p\, in the sense that, the more distributed the 

shortest paths are between the set of communities, 

the higher the value of p\. Nevertheless, p\ aver-

ages the contribution among all communities and 

does not allow to detect the communities where a 

given node i is participating the most. To overcome 

this drawback, we can plot the contributions that 

a node makes to each community in a plot simi-

lar to Fig. 5. In this figure, we show the (p%, zf) 

phase space of the fifteen nodes with the largest 

number of shortest paths. Nodes sizes are propor-

tional to the number of shortest paths and colors 

inside each node indicate the community that is 

receiving the shortest paths. With this figure, we 

can see the nodes with higher relevance inside its 

community, their participation coefficients and how 

they participate in each community. It is worth not-

ing that Anchorage Airport (Alaska) is the one with 

the highest number of shortest paths and, in addi-

tion, is one of the airports with higher relevance 

within its community and, at the same time, high 

participation coefficient. On the contrary, the short-

est path connections of the Bethel Airport are only 

distributed inside its community, as indicated by a 

high zl combined with a low p\. Finally, airports like 

Minneapolis-St. Paul have a complementary role, 

since they have a very high participation coefficient 

Table 2. Variations of the roles of the nodes of the Airport Network of the USA [Newman, 2004]. Airports are ordered by 

the ranking of the community relevance Zj (column 2) and betweenness participation coefficient p^ (column 4). Note that 

the increase/decrease in the participation coefficient is much higher than in the community relevance, which has only small 

variations. 

Rank 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Zj (Community) 

Anchorage Intl (C5) 

Dallas/Fort Worth Intl (CI) 

Chicago O'hare Intl (C2) 

Stapleton Intl (CI) 

Pittsburgh Intl (C2) 

Bethel (C5) 

San Francisco Intl (CI) 

Charlotte/Douglas Intl (C2) 

William B Hartsfield Atlan (C2) 

Lambert-St. Louis Intl (C2) 

zi Rank 

Improvement 

+1 
- 1 

= 
= 
= 

3 

- 1 

- 1 

- 1 

+1 

Pj (Community) 

Salt Lake City Intl (CI) 

Minneapolis-St. Paul Intl/Wold- (C2) 

Spokane Intl (CI) 

Seattle-Tacoma Intl (CI) 

Missoula Intl (C4) 

Billings Logan Intl (C4) 

Gallatin Field (C4) 

Anchorage Intl (C5) 

Los Angeles Intl (CI) 

Detroit Metrop. Wayne Cou (C2) 

pi Rank 

Improvement 

+16 

+9 

+1 

+9 

+4 

+4 

- 1 

+24 

+7 

+54 
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Fig. 5. Two-dimensional plot showing the {jpi, z?) phase space of the fifteen nodes with the largest number of shortest paths. 

Node sizes are proportional to the total number of shortest paths crossing the node. Colors inside nodes indicate the percentage 

of participation inside each community, specifically: CI (yellow), C2 (red), C3 (grey), C4 (green) and C5 (light blue). 

(connector with other communities) but a low local 

relevance, or at least, not too high when compared 

with other network hubs. 

4. Conclusions 

We have proposed a new methodology to evaluate 

the role that a node plays in the community struc-

ture of a network. We propose to evaluate the 

relevance of a node inside its community and the 

participation in other communities of the network 

by taking into account the number of shortest paths 

that pass through the node. In this way, we define 

a community z-score z\ based on the closeness of 

a node inside its community. Next, we redefine 

the participation coefficient proposed by Guimera 

et al. [Guimera & Amaral, 2005] and we weight 

the links with their number of shortest paths. 

Although both new parameters, z\ and p\, have 

a high computational cost [0(N(M + Nlog(N)))}. 

they include information about the global struc-

ture of the network, while the previously proposed 

measures were based on local properties (node 

degree). We give some examples of how the role of 

a node changes when the new parameters are used, 

showing that the participation coefficient is spe-

cially affected when taking into account the short-

est paths. Finally, we focus on the analysis of the 

American Airport Network [Newman, 2004], pro-

viding a new representation (see Fig. 5) of how 

the inter/intra community relevance of a node can 

be plotted. Despite previously proposed methods of 

role analysis being good approximations, we believe 

that this new methodology will give more accurate 

results, specially in the framework of communica-

tion and transportation networks. 
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