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Abstract The free and forced vibration of a graded geometrically nonlinear Timoshenko nanobeam supported
by on a nonlinear foundation is considered in this paper. The main contribution of this study is to propose
a new formulation for the dynamic response of this beam by combining nonlocal and surface elasticity in
addition to employing the physical neutral axis method which eliminates the quadratic nonlinearity from the
equation of motion. Using the principle of virtual work, a fourth-order nonlinear partial differential equation
is formulated and Galerkin technique is employed to yield a fourth-order ordinary differential equation with
cubic nonlinearity in the temporal domain. The method of multiple scales is employed to obtain the analytical
expression of the nonlinear frequency of the beam and its frequency response curve from a primary resonance
analysis. To assess the accuracy of this analytical solution, it is compared with a numerical solution obtained
using the differential quadraturemethod. The obtained analytical results are successfully validated for particular
cases of the considered problem with results published by other authors. The effects of surface elasticity,
nonlocality, the physical neutral axis, the beam aspect ratio, the power-law index and the elastic foundation
coefficients on the free and forced vibration response of the graded Timoshenko nanobeam are thoroughly
investigated for different types of boundary conditions .

Keywords Functionally graded Timoshenko nanobeam · Nonlocal theory · Surface effects · Nonlinear
vibration · Physical neutral axis · Method of multiple scales · Differential quadrature method

1 Introduction

Miniature beams have been used inmany electromechanical systems such as biosensors, ultra-thin films,micro-
switches, micro-actuators, nanowires, micro-electromechanical systems (MEMS) and nanoelectromechanical
system (NEMS) as the primary structural elements [1–4]. It is well known that a classical continuum model
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does not have the capability to handle length scale effects. As a result, manymodels have been proposed during
the last few decades that incorporated the size-dependency effects, namely nonlocal theory [5–7], modified
coupled stress theory [8,9], strain gradient theory [10,11] or a combination of these theories such as the
nonlocal strain gradient theory [12].

Functionally graded material (FGM) is a kind of composite material in which the volume fraction of the
constituent materials changes from one surface to the other. Thus, FGM provides a smooth transition change
in properties in a specified direction that leads to less stress concentration and consequently to fracture [13].
FGMs have been used in several engineering applications such as marine risers [14], biomedical applications
[15], energy applications [16] and aerospace applications [17], and a detailed review can be found in [18]. In
addition, FGMs have been recently employed in several micro/nanoapplications [19–22].

Using Eringen’s nonlocal model, several investigators have focused on the linear dynamic response of
functionally graded (FG) nanobeams. Eltaher et al. [23] performed a free vibration analysis of a nonlocal
nanobeam using the finite element method (FEM). Navier’s method was used by Uymaz [24] to investigate
the dynamic response of a FG Euler–Bernoulli nanobeam. The same method was employed by Rahmani
and Pedram [25] to examine the vibration behavior of a Timoshenko graded beam. A free vibration study
was conducted by Nejad and Hadi [26] on a nanobeam graded in two directions in which they employed
the generalized differential quadrature method (GDQM) to solve the equations of motion. Yao et al. [27]
investigated the free vibration and wave propagation of an axially moving functionally graded Timoshenko
microbeam. Generally, the nonlocal model induces a softening type of behavior; however, Li et al. [28]
demonstrated that a cantilever Euler–Bernoulli beam can exhibit either a softening or a hardening type of
behavior depending on the applied loading. Recently, Arefi et al. [29] conducted a free vibration analysis of
graded polymer composite curved nanobeams reinforced with graphene nanoplatelets to predict their dynamic
characteristics. Very recently, Luo et al. [30] conducted transverse vibration of an axisymmetric graded circular
nanoplate with radial uniform loads. Esen et al. [31] investigated the vibrational characteristics of functionally
graded (FG) cracked microbeam rested on elastic foundation and subjected to thermal and magnetic fields. On
the other hand, the literature is abundant with studies using the strain gradient theory such as, for instance, the
works among others of Arefi and Zenkour who performed dynamic and bending analyses for the sandwiched
microbeams [32–34] and FG Timoshenko’s sandwiched microbeams [35]. There are also several published
papers which used the modified couple stress theory in studying the dynamic behavior of Timoshenko beams
such as the recent work of Abdelrahman et al. [36] who investigated the dynamic behavior of perforated
Timoshenko microbeams in a thermal environment and that of Abo-bakr et al. [37] who studied the static and
dynamic behavior of axially gradedmicrobeamswith nonuniform cross section. The recent literature witnessed
additional papers related to the nonlocal strain gradient theory. For instance, Daikh et al. [38] studied the static
stability, free vibration and bending response of multilayer functionally graded carbon nanotubes reinforced
using composite nanoplates.

Many authors studied the nonlinear dynamic response of graded nanobeams by considering the vonKármán
geometric nonlinearity.He’s variationalmethodwas employed bySimsek [39] to predict the nonlinear vibration
response of a Euler–Bernoulli graded nanobeam. A similar method was used by Niknam and Aghdam [40]
to determine the nonlinear response of a free vibration and buckling load of a Euler–Bernoulli graded beam
supported by nonlinear elastic springs. Using the method of multiple scales (MMS), the nonlinear nonlocal
free vibration response of a Euler–Bernoulli FG nanobeam was investigated by Nazemnezhad and Hosseini-
Hashemi [41].MMSwas also used by El-Borgi et al. [42] who examined the nonlinear nonlocal free and forced
vibration of a Euler–Bernoulli FG nanobeam supported by elastic foundation effects. A similar problem was
solved by Trabelssi et al. [43,44] by employing both the locally adaptive differential quadrature method
(LaDQM) and the regular differential quadrature method (DQM). These studies were extended by the same
main authors to investigate the free and forced vibration response of a Timoshenko graded beam based on the
weak quadrature element method [45].

In the last few years, several authors have been investigating the incorporation of surface effects on the
behavior of nanostructures. These effects can become quite important due to abrupt changes in the surface
area-to-volume ratio at the nanoscale dimensions. Overall, it was observed that the surface elasticity properties
can influence the properties of the size-dependent materials at nanoscale [46–50]. The nonlinear response of
the nonlinear free vibration of FG nanobeams while considering only surface effects was studied by [51].
The nonlinear vibration frequencies of a Timoshenko nanobeam were investigated by [52,53] in which the
combined effects of nonlocal parameter, surface elasticity and residual surface stress were taken into account.
The nonlinear vibration response of graded nanobeams was examined by Hosseini-Hashemi et al. [54] by
emphasizing on the coupling between nonlocal and surface effects. In the above literature, it was assumed that
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the geometrical neutral axis coincides with the physical neutral axis for the undeformed plane of the beam.
However, this assumption is valid only for uniform material properties along a given direction of a beam.
This assumption was shown to result in an error up to 10% in the natural frequencies of a FG beam [55].
Recently, few researchers have recently adopted in their models the physical neutral axis in FG beams instead
of using the geometrical central axis [55–61]. Lately, Arefi et al. [62,63] employed the concept of the physical
neutral axis to study, respectively, the static behavior of graded piezoelectric plates and the vibration response
of graded piezoelectric face-sheets. More recently, Shen et al. [64] investigated the vibration and stability
response of graded nanoplates by considering physical neutral plane. The use of such technique can eliminate
stretching–bending coupling effect due to nonuniform material distribution along the given direction in the
beam.

From the above review and to the best of the authors’ knowledge, it can be summarized that very few
researchers have investigated the nonlinear free and forced vibration response of FG Timoshenko nanobeams
by considering both nonlocal and surface effects [48] or surface effects only [49,51]. However, combining
the aforementioned effects along with the physical neutral axis location for predicting the nonlinear dynamic
behavior of FG beams has not been investigated thus far for deep beams. It was, however, investigated by the
authors [65] for slender Euler–Bernoulli beams where shear effects were neglected. The effect of the neutral
axis is expected to be more pronounced for a deep beam especially when shear effects are considered. For low
aspect ratio, the effect of the neutral axis may cause further deviation from the standard model. To bridge these
gaps, this study aims to introduce the physical neutral axis concept while considering both surface elasticity
and nonlocality to study the nonlinear dynamic response of a deep Timoshenko beam by employing themethod
of multiple scales (MMS). Such a solution is based on the linear classical modeshape Galerkin technique. A
DQM-based numerical solution proposed by Trabelssi et al. [44] is employed based on the actual nonclassical
modeshape for the purpose of assessing the accuracy of the MMS solution. Therefore, the novelty of this study
can be summarized as follows: (a) propose a new formulation for the dynamic response of a geometrically
nonlinear TBT beam with a nonlinear foundation combining nonlocal and surface elasticity in addition to
physical neutral axis, (b) develop an MMS-based analytical solution for the current problem and validate it
usingDQM, (c) explore low aspect ratios of the beamwhile remainingwithin the assumptions of the TBT beam
theory, (d) study the effect of surface stress on the neutral axis position, (e) conduct a thorough and detailed
parametric study covering all the nondimensional parameters governing the physics of the investigated problem.
The proposed formulation can be potentially applied to several applications such asMEMS and NEMS devices
[66] in addition to carbon nanotubes (CNTs) such as sensors, actuators, electromagnetics, electroacoustic and
hydrogen storage [67] as well as protein microtubules surrounded by an elastic matrix [68].

This paper is structured as follows. Sects. 2 and 3 provide, respectively, the derivation of the motion
equations for both the classical and the nonlocal Timoshenko beam theory by considering surface elasticity
and the physical neutral axis location. Section 4 summarizes the solution formulation of vibration response
of the nanobeam using MMS. Section 5 outlines the DQM formulation used to assess the accuracy of the
MMS solution. In Sect. 6, the obtained analytical results are validated with published data for specific cases of
the considered problem and then a detailed parametric study is presented to examine the effect of the various
parameters on the free and forced vibration nonlinear response of the nanobeam. Finally, a summary of this
investigation and main conclusions is provided in Sect. 7.

2 Classical Timoshenko beam with surface effects

A graded nanobeam is considered in this study whose length, width and height are denoted L , b and h,
respectively. The nanobeam is resting on a nonlinear elastic foundation as shown in Fig. 1. The considered
boundary condition is either simply supported (S-S) or clamped–clamped (C-C). Due to the characteristics of
the graded material, the beam’s mid-plane does not match with the neutral axis of the beam, and hence, two
separate frames of reference need to be considered in this study:

• (xm ,ym ,zm) is a reference coordinate system with the axis xm running through the geometrical mid-plane
axis of the beam and ym and zm are two axes of symmetry defining the cross-sectional area of the beam,
as depicted in Fig. 1.

• (x ,y,z) is a secondary reference coordinate system with the axis x = xm running through the neutral axis
of the beam and y = ym and z = zm − h0 are two axes of symmetry as shown in Fig. 1. Here, h0 is the
distance separating the neutral axis to the mid-plane of the nanobeam.
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Fig. 1 Schematic of simply supported FG beam on nonlinear elastic foundation

For a Timoshenko beam with varying mechanical properties varying along z, it is assumed that the elastic
and shear moduli, E and G, the surface elastic modulus Es and the density ρ follow a power-law function as
given below

E(zm) = (EU − EL)

(
zm
h

+ 1

2

)n

+ EL G(zm) = E(zm)

2(1 + ν)
(1a)

Es(zm) = (Es
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(
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h
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)n
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+ 1

2

)n

+ ρL (1b)

where L andU denote, respectively, the lower and upper layers of the nanobeam. ν is the Poisson’s coefficient
assumed to be a constant [69]. The parameter n denotes the material gradation index.

According to the Timoshenko beam theory (TBT), the displacement field can be expressed as follows:

u(x, t) = [u(x, t) + zφ(x, t)] êx + w(x, t)êz (2)

where u and w are, respectively, the displacements along x and z coordinates, φ is the shear angle, and êx
and êz are, respectively, unit vectors along the x- and z-axes. Here, t designates the time variable. Within the
assumptions of the small deformation and displacement theory, the strain tensor can be expressed as follows:

E ≈ ε = (εxx ) êx êx + (γxz) êx êz (3)

where

εxx = ε(0)
xx + zε(1)

xx , ε(0)
xx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

, ε(1)
xx = ∂φ

∂x
, γxz = φ + ∂w

∂x
(4)

In a Hookean solid, the stress–strain law for a Timoshenko beam can be written as

σxx = E (z) εxx

σxz = G (z) Ksγxz (5)

where Ks is the shear correction factor with a value of 5/6 for a rectangular section. The beam surface elasticity
along the longitudinal direction is represented by [48]

σ s = Es (z) εxx (6)

It is worth emphasizing that the beam is assumed to be geometrically nonlinear (i.e., with van Karman strain
nonlinearity appearing in Eq. (4)) but with a linear stress–strain behavior (i.e., Eq. (5)) and a nonlinear foun-
dation.

Applying the principle of virtual work for the Timoshenko beam and integrating its expression by parts
and separating the different components of the displacement field yield the following equations of motion:

∂M (0)
xx

∂x
= m0

∂2u

∂t2
(7a)
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∂M (0)
xz

∂x
+ ∂

∂x

[
M (0)

xx
∂w

∂x

]
+ fz = m0

∂2w

∂t2
+ c

∂w

∂t
(7b)

∂M (1)
xx

∂x
− M (0)

xz = m2
∂2φ

∂t2
(7c)

where M (0)
xx , M

(1)
xx and M (0)

xz are stress resultants and m0 and m2 are mass inertia which can be expressed as

M (i)
xx =

∫
A
(z)iσxxd A +

∮
	

(z)iσ sds, (i = 0, 1), M (0)
xz =

∫
A

σxzd A (8a)

m0 =
∫
A

ρ d A = ρ A, m2 =
∫
A

ρz2 d A (8b)

in which A = bh denotes the area of the beam’s cross section. By employing the expressions from (2) to (6),
the resultants of the stress components can be formulated as a function of the displacements

M (0)
xx = Ã
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2
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(
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M (1)
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)2
]
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(
∂φ
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M (0)
xz = G̃

(
φ + ∂w

∂x

)
(9c)

where

Ã =
∫
A
E(z) d A +

∮
	

Es(z)ds, B̃ =
∫
A
E(z)z d A +

∮
	

Es(z)zds,

D̃ =
∫
A
E(z)z2 d A +

∮
	

Es(z)z2ds, G̃ =
∫
A
G(z)Ks d A (10)

The neutral axis location is derived by setting that the total axial force is equal to zero along the longitudinal
axis. Therefore, Eq. (9a) can be rewritten as

M (0)
xx = Ã

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

+ B̃

(
∂φ

∂x

)
= 0 (11)

To determine the neutral axis location, the axial displacement is ignored and higher-order terms are neglected
(i.e., first term of the above equation is neglected). Thus, Eq. (11) can be reduced to a closed-form expression
for the position of the neutral axis

h0 = − h
[(
b
(
n2+3n+2

)+2hn
)
(Es

L−Es
U )+bhn(EL−EU )

]
2(n+2)(bnEs

L+bEs
L+bnEs

U+bEs
U+2hnEs

L+2hEs
U+bhnEL+bhEU )

(12)

Details about the calculation of h0 can be found in Appendix A, and the expressions of Ã, D̃ and G̃ appearing
in (10) are written in a simpler form in Appendix B.
To combine the motion equations (8a) and (8b), a relation between the axial and transverse displacements is
developed using the von Kármán nonlinearity. Based on a method proposed by [70], the displacement along
the axial direction u is eliminated from the motion equations resulting in a constant von Kármán nonlinear
term. To this end, the following assumptions are made in the study: (1) The inertia term (mü) is very small
and can be ignored; (2) the beam is supported at x = 0 and x = L , and hence, the displacements along the
longitudinal direction at the boundaries are zero, i.e., u(0, t) = 0 and u(L , t) = 0. The first assumption along
with (8a) results in M (0)

xx being a constant. In light of that, the following equations of motion can be obtained
after further mathematical manipulations:

G̃
(
φ′ + w′′) + Ãc1w

′′ + fz = m0ẅ + cẇ (13a)



156 S. El-Borgi et al.

D̃φ′′ − G̃
(
φ + w′) = m2φ̈ (13b)

Here, dot (.) represents differentiation with respect to t and prime (′) denotes differentiation with respect to x .
Details of this simplification are provided in Appendix C. The force fz in Eq. (13a) comprises both the applied
force and the elastic foundation reaction force, and its expression can be written as [71]

fz = −kLw − kNLw3 + ksw
′′ + F cos(θ t) (14)

where kL , kNL and ks represent, respectively, the linear, nonlinear and shear coefficients of the elastic foundation
and F is the magnitude of the harmonic force.
Finally, the following normalization is adopted:

x̂ = x

L
, t̂ = t

τ
, ŵ = w

r
φ̂ = L

r
φ (15)

where r=
√

I
A is the radius of gyration of the cross section and I = bh3

12 is the second moment of inertia. The
equation of motion in dimensionless form in terms of the nondimensional parameters is given by

1

s2

(
φ̂′ + ŵ′′) − k̂Lŵ − k̂N Lŵ3 + k̂sŵ

′′ + F̂ cos(θ̂ t̂) + ŵ′′
∫ 1

0

[
κ0

(
ŵ′)2] dx̂ = ¨̂w + ĉ ˙̂w (16a)

φ̂′′ − 1

s2

(
φ̂ + ŵ′) = α̂

¨̂
φ (16b)

where

α̂ = m2
m0L2 ; τ = L2

√
m0

D̃
; ĉ = cτ

m0
; k̂s = ksτ 2

m0L2 ; k̂L = kLτ 2

m0
;

k̂N L = kNLr2τ 2

m0
; F̂ = Fτ 2

m0r
; θ̂ = θτ ; s2 = D̃

L2G̃
; κ0 = Ã r2τ 2

2m0L4 (17)

3 Nonlocal Timoshenko beam theory with surface effects

Eringen [5,6] introduced the nonlocal theory which states that the stress σ at a given point x in an elastic
domain is not only a function of the local strain at that point ε but is a function of the strains at all points in
the domain. Based on this theory, the nonlocal stress can be expressed as follows:

σ̄ =
∫

�

K (|x′ − x|, τ ) σ (x′) dx′ (18)

where σ (x′) is the local stress at point x′ and K (|x′ − x|, τ ) is the nonlocal modulus, |x′ − x| denotes the
distance between x and x’, and τ is a material constant. Eringen [6] also introduced an equivalent form of the
differential model which can be written as

(
1 − μ2

0∇2)σ̄ = C : ε, μ0 = τ 2�2 = e20a
2 (19)

where e0 is a material constant, a is an internal characteristic length, � is an external characteristic length and
μ0 is the nonlocal parameter, and ∇2 is the Laplacian operator. In addition, for a beam-type structure, it is
reasonable to assume that the size-dependent effect is dominant along the axial direction. Thus, Eq. (19) can
be simplified to the following:

σ̄xx − μ0
d2σ̄xx
∂x2

=E(z)εxx (20a)

σ̄xz − μ0
d2σ̄xz
∂x2

=G(z)γ (0)
xz (20b)
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where the operator ∇2 is substituted with ∂2/∂x2 and Ã, D̃ and G̃ are given by (B.1) and the expressions of
Ã and D̃ incorporate surface effects. Integration of the above relations over the section of the beam yields the
nonlocal stress resultants as a function of the strain components which can be written as

M̄ (0)
xx = μ0

∂2M̄ (0)
xx

∂x2
+ Ã ε(0)

xx (21a)

M̄ (1)
xx = μ0

∂2M̄ (1)
xx

∂x2
+ D̃ ε(1)

xx (21b)

M̄ (0)
xz = μ0

∂2M̄ (0)
xz

∂x2
+ G̃γ (0)

xz (21c)

Substituting (2) and (4) into the above equations yields the nonlocal stress resultants as a function of displace-
ments

M̄ (0)
xx = μ0

∂2M̄ (0)
xx

∂x2
+ Ã

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

(22a)

M̄ (1)
xx = μ0

∂2M̄ (1)
xx

∂x2
+ D̃

∂φ

∂x
(22b)

M̄ (0)
xz = μ0

∂2M̄ (0)
xz

∂x2
+ G̃

(
φ + ∂w

∂x

)
(22c)

By employing the principle of virtual displacement, the following nonlocal equations of motion are obtained
[44]:

∂ M̄ (0)
xx

∂x
= m0

∂2u

∂t2
(23a)

∂ M̄ (0)
xz

∂x
+ ∂

∂x

[
M̄ (0)

xx
∂w

∂x

]
+ fz = m0

∂2w

∂t2
+ c

∂w

∂t
(23b)

∂M (1)
xx

∂x
− M (0)

xz = m2
∂2φ

∂t2
(23c)

Taking the derivative of the above equations with respect to x and substituting the expressions of ∂2 M̄(0)
xx

∂x2
, ∂2 M̄(1)

xx
∂x2

and ∂2 M̄(0)
xz

∂x2
into (22a), (22b) and (22c) give
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The assumptions listed in Sect. 2 are used to remove the axial displacement u from (24a) and yield the stress
resultants as a function of the vertical deflection w and the shear angle φ. The above equations reduce to the
following:

M̄ (0)
xx = Ã c1(t) (25a)

M̄ (1)
xx = D̃

∂φ
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(
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∂x∂t2
+ m0
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where the expression of c1(t) is provided in (C.3). Substituting the above equations into (23b) and (23c) yields
the nonlocal equations of motion of the nanobeam

G̃
(
φ′ + w′′) + Ãc1(t)

(
w′′ − μ0w

′′′′) + (
fz − μ0 f

′′
z

) = m0
(
ẅ − μ0ẅ

′′) + c
(
ẇ − μ0ẇ

′′) (26a)

D̃φ′′ − G̃
(
φ + w′) = m2

(
φ̈ − μ0φ̈

′′) (26b)

The dimensionless parameters introduced in equation (15) are substituted in the above equations to yield the
following nondimensional equations of motion:

1

s2

(
φ̂′ + ŵ′′) +

(
f̂z − μ̂0 f̂

′′
z

)
+ (

ŵ′′ − μ̂0w
′′′′) ∫ 1

0

[
κ0

(
ŵ′′)2] dx̂ =

( ¨̂w − μ̂0
¨̂w′′) + ĉ

( ˙̂w − μ̂0
˙̂w′′)
(27a)

φ̂′′ − 1

s2

(
φ̂ + ŵ′) = α̂

( ¨̂
φ − μ̂0

¨̂
φ′′) (27b)

where f̂z = k̂Lŵ + k̂N Lŵ3 − k̂sw′′ + F̂ cos(θ̂ t̂) and μ̂0 = μ0
L2 is the dimensionless nonlocal parameter and

the remaining quantities have been defined in (17). When μ̂0 = 0, then the nonlocal equations of motion of
the nanobeam reduce to the equations of motion given by (16).

4 Analytical solution using MMS

4.1 Galerkin discretization

It is possible to combine the above equations of motion system into a single partial differential equation in
terms of only ŵ. To this end, the expression of φ̂′ is extracted from (27a) and then injected into the x̂ derivative
of Eq. (27b). The resulting equation can be written as

Ẅ ∗
L − mẄ

′′
L + ĉẆ ∗

L + ŵ
′′′′ −

(
f κ + k̂s

)
W ∗′′

L + k̂LW
∗
L + k̂N LW

∗
NL

− 2ms2 ˙f κ
(
Ẇ

′′
L − μ̂0Ẇ

′′′′
L

)
− ms2 ¨f κ

(
W

′′
L − μ̂0W

′′′′
L

)

=
[
FL

(
1 − ms2ω̂2) − s2F

′′
L

(
1 − mω̂2μ̂0

)]
cos(θ̂ t̂) (28)

where

f ′ = ∂

∂ x̂
f (x̂, t̂) ḟ = ∂

∂τ
f (x̂, t̂) ∀ f (x̂, t̂)

f κ ≡ f κ(t̂) =
∫ 1

0
κ0ŵ

′′2dx̂

WL = ŵ − μ̂0ŵ
′′

WNL = ŵ3 − 3μ̂0

(
ŵ

′′
ŵ2 + 2ŵ

′2ŵ
)

W ∗
L = WL − s2W

′′
L + ms2

(
ẄL − μ̂0Ẅ

′′
L

)

W ∗
NL = WNL − s2W

′′
NL + ms2

(
ẄNL − μ̂0Ẅ

′′
NL

)

FL = F̂ − μ̂0 F̂
′′

By employing Galerkin technique, the transverse displacement is assumed to be written as ŵ(x̂, t̂) = ψ(x̂)q(t̂)
and the resulting equation (28) can be transformed into an ordinary differential equation with time being
the independent variable. The term ψ(x̂) is expressed as a classical linear beam modeshape. Table 1 lists
these linear modeshapes corresponding to the either simply supported (S-S) or clamped–clamped (C-C). The
aforementioned assumption is substituted into (28), and the resulting equation is integrated over the beam
domain
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Table 1 Linear classical modeshape functions of a uniform beam for different boundary conditions

B.C. Modeshape, φ(x̂)

S-S sin(π x̂)
C-C cosh(qx̂) − cos(qx̂) − cosh(q)−cos(q)

sinh(q)−sin(q)
(sinh(qx̂) − sin(qx̂)); q = 4.7300

d4q

dt̂4
+ μ1

d3q

dt̂3
+ β1

d2q

dt̂2
+ μ2

dq

dt̂
+ β2q + β3q

3 + β4
d2q

dt̂2
q2 + β5

(
dq

dt̂

)2

q = (
μ3 + μ4ω̂

2) F̄1 cos(θ̂ t̂)
(29)

where the coefficients βi (i = 1, 5) and μi (i = 1, 4) are defined in Appendix D and μ1 and μ2 contain the

damping coefficient ĉ. In the above equation, F̄1 = F̂
ψF (x̂) is the amplitude of F̂(x̂), and ψF (x̂) is a function

used to describe the applied force distribution along the x-axis. However, in general, this distribution is set as
ψF (x̂) = 1.

4.2 Free vibration solution

To study the free vibration response of the nanobeam, the damping term and the external force are removed
from (29). Adding the initial conditions gives

d4q

dt̂4
+ β1

d2q

dt̂2
+ β2q + β3q

3 + β4
d2q

dt̂2
q2 + β5

(
dq

dt̂

)2

q = 0 (30a)

q(0) = A, q̇(0) = 0, q̈(0) = 0,
...
q (0) = 0 (30b)

where A represents the amplitude of vibration. An approximate analytical solution for equation (30a) is
achieved using the method of multiple scales [70]. The solution is obtained through an expansion of both the
time variable t̂ and the dependent variable q(t̂). This expansion requires that the system response is expressed
as a function of several independent variables called time scales. The solution is expressed in terms of this
expansion as follows:

q(t̂) = εq0(T0, T1, T2) + ε2q1(T0, T1, T2) + ε3q2(T0, T1, T2) + .... (31)

where ε is a small scaling term. The fast time scale T0 = t̂ is defined as the time scale of the primary oscillation,
and the slow time scales Tn = εn t̂, n ≥ 1, are the times used to account for amplitude and phase modulation.
Substituting (31) into (30a) and then gathering the powers of ε result in a system of three differential equations

ε1 : D4
0q0 + β1D

2
0q0 + β2q0 =0 (32a)

ε2 : D4
0q1 + β1D

2
0q1 + β2q1 = − 4D1D

3
0q0 − 2β1D0D1q0 (32b)

ε3 : D4
0q2 + β1D

2
0q2 + β2q2 = − (

4D2D
3
0 + 6D2

1D
2
0

)
q0 − β1

(
D2
1 + 2D2D0

)
q0

− β4ζ
2
0 D

2
0q0 − 4D1D

3
0q1 − 2β1D1D0q1

− β3q
3
0 − β5 (D0q0)

2 q0 (32c)

where Di (i = 0, 1, 2) indicates a differentiation with respect to time and the subscript i denotes the scale of
time. The solution of Eq. (32a) may be written as

q0(T0, T1, T2) = A1(T1, T2)e
iω1T0 + A2(T1, T2)e

iω2T0 + cc (33)

where cc designates the complex conjugate of the first two terms and ω1 and ω2 are linear frequencies which
are given by

ω2
1 = β1

2
−

√
β2
1

4
− β2 (34a)
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ω2
2 = β1

2
+

√
β2
1

4
− β2 (34b)

Substituting the solution given by (33) into (32b) and then setting the secular terms
(
eiω1T0 , eiω2T0

)
to zero

lead to the following conditions:

D1A1(T1, T2) = 0, D1A2(T1, T2) = 0 (35)

which simplify to

A1 (T1, T2) = A1(T2), A2 (T1, T2) = A2(T2) (36)

Substituting (35) into (32b) gives q1(T0, T1, T2) = 0. Then, substituting the solutions of (32a) and (32b) and
applying the above conditions given by (35) into the differential equation (32c) then dropping the secular terms(
eiω1T0 , eiω2T0

)
, the following equations are obtained:

2iω1
(
2ω2

1 − β1
)
D2A1 + 3

(
β4ω

2
1 − β3 − 1

3
β5ω

2
1

)
A2
1 Ā1

+ 2
[
β4

(
ω2
1 + 2ω2

2

) − 3β3 − β5ω
2
2

]
A1A2 Ā2 = 0 (37a)

2iω2
(
2ω2

2 − β1
)
D2A2 + 3

(
β4ω

2
2 − β3 − 1

3
β5ω

2
2

)
A2
2 Ā2

+ 2
[
β4

(
ω2
2 + 2ω2

1

) − 3β3 − β5ω
2
1

]
A1 Ā1A2 = 0 (37b)

Here, A1 and A2 are given in polar forms as

A1 (T2) = 1

2
a1 (T2) e

iθ1(T2), A2 (T2) = 1

2
a2 (T2) e

iθ2(T2) (38)

where a j and θ j ( j = 1, 2) are reals. Substituting A1 and A2 into (37a) and (37b) and then separating into real
and imaginary parts, it can be concluded that a1 and a2 are constants and θ1 and θ2 are given by

θ1 (T2) = δ1T2 + θ10, θ2 (T2) = δ2T2 + θ20 (39)

In the above equations, θ10 and θ20 are constants and δ1 and δ2 are given by

δ1 = 1

8

(
3β4ω

2
1 − β5ω

2
1 − 3β3

)
a21 + 2

[
β4

(
ω2
1 + 2ω2

2

) − β5ω
2
2 − 3β3

]
a22

ω1(2ω2
1 − β1)

(40a)

δ2 = 1

8

2
[
β4

(
ω2
2 + 2ω2

1

) − β5ω
2
1 − 3β3

]
a21 + (

3β4ω
2
2 − β5ω

2
2 − 3β3

)
a22

ω2(2ω2
2 − β1)

(40b)

Substituting (39) into (38) yields the following expressions of A1 and A2:

A1 = 1

2
a1e

(
iε2δ1 t̂+iθ10

)
, A2 = 1

2
a2e

(
iε2δ2 t̂+iθ20

)
(41)

Here, T2 = ε2 t̂ . Substituting A1 and A2 into (33), the overall solution given by Eq. (31) becomes

q
(
t̂
) = ε

(
a1 cos(�1 t̂ + θ10) + a2 cos(�2 t̂ + θ20)

) + O(ε3) (42)

where the nonlinear frequencies � j ( j = 1, 2) are given by

� j = ω j + ε2δ j (43)

To obtain the unknown constants a1, a2, θ10 and θ20, solvingEq. (42) by applying the initial conditions provided
in (30b) and gathering like powers of ε

ε (a1 cos (θ1) + a2 cos (θ2)) + O(ε3) = A (44a)

ε (a1ω1 sin (θ1) + a2ω2 sin (θ2)) + O(ε3) = 0 (44b)
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ε
(
a1ω

2
1 cos (θ1) + a2ω

2
2 cos (θ2)

) + O(ε3) = 0 (44c)

ε
(
a1ω

3
1 sin (θ1) + a2ω

3
2 sin (θ2)

) + O(ε3) = 0 (44d)

The solution of the above system of equations can be written as

a1 = ω2
2A

ε
(
ω2
2 − ω2

1

) , a2 = ω2
1A

ε
(
ω2
1 − ω2

2

) , θ10 = θ20 = 0 (45)

Finally, the nonlinear frequencies � j ( j = 1, 2) can be expressed as

�1 = ω1 − A2
((

β5ω
2
2

(
2ω2

1 + ω2
2

) − β4
(
2ω4

1 + 4ω2
2ω

2
1 + 3ω4

2

))
ω2
1 + 3β3

(
2ω4

1 + ω4
2

))
8

(
2ω3

1 − β1ω1
) (

ω2
1 − ω2

2

)
2

(46a)

�2 = ω2 − A2
((

β5ω
2
1

(
ω2
1 + 2ω2

2

) − β4
(
3ω4

1 + 4ω2
2ω

2
1 + 2ω4

2

))
ω2
2 + 3β3

(
ω4
1 + 2ω4

2

))
8

(
ω2
1 − ω2

2

)
2
(
2ω3

2 − β1ω2
) (46b)

Both eigenvalues�1 and�2 exist to be relative to one single modeshape, and this was also observed byMajkut
[72].

4.3 Forced vibration solution

To study the forced vibration response of the nanobeam, the equation of motion (28) is considered with both
external harmonic forcing function and damping coefficient and its solution is sought using the MMS. For the
primary resonance, i.e., θ̂ ≈ ω1, assume that the excitation frequency θ̂ and the system linear frequency ωl are
approximately the same. The following equation can be expressed as

θ̂ = ωl + ε2σ (47)

where σ represents the detuning parameter. An approximate solution is obtained for the ordinary differential
equation (ODE) given by (29) using Eq. (31) to derive the nth-order differential equations. The only difference
with free vibration analysis is that the damping terms μ1 and μ2 and the dimensionless amplitude of the force
F̄1 are scaled to the third order. Substituting (31) into (29) and gathering like powers of ε yield the a system
of three differential equations

ε1 : D4
0q0 + β1D

2
0q0 + β2q0 =0 (48a)

ε2 : D4
0q1 + β1D

2
0q1 + β2q1 = − 4D1D

3
0q0 − 2β1D0D1q0 (48b)

ε3 : D4
0q2 + β1D

2
0q2 + β2q2 = − (

4D2D
3
0 + 6D2

1D
2
0

)
q0 − β1

(
D2
1 + 2D2D0

)
q0

− β4q
2
0D

2
0q0 − 4D1D

3
0q1 − 2β1D1D0q1 − β3q

3
0

− β5 (D0q0)
2 ζ0 − μ1D

3
0q0 − μ2D0q0

+ 1

2

(
μ3 + μ4ω̂

2) F̄1
(
ei θ̂T0 + e−i θ̂T0

)
(48c)

Evidently, Eqs. (48a) and (48b) are, respectively, analogous to the case of free vibration equations (32a) and
(32b) and hence have identical solutions. Substituting the solutions of equations (48a) and (48b) into the
third-order equation (48c) results in the following secular terms:

2iω1
(
2ω2

1 − β1
)
D2A1 + iω1

(
μ1ω

2
1 − μ2

)
A1 + 3

(
β4ω

2
1 − β3 − 1

3
β5ω

2
1

)
A2
1 Ā1

+ 2
[
β4

(
ω2
1 + 2ω2

2

) − 3β3 − β5ω
2
2

]
A1A2 Ā2 + 1

2

(
μ3 + μ4ω

2
1

)
F̄eiσT2 = 0 (49a)

2iω2
(
2ω2

2 − β1
)
D2A2 + iω2

(
μ1ω

2
2 − μ2

)
A2 + 3

(
β4ω

2
2 − β3 − 1

3
β5ω

2
2

)
A2
2 Ā2

+ 2
[
β4

(
ω2
2 + 2ω2

1

) − 3β3 − β5ω
2
1

]
A1 Ā1A2 = 0 (49b)
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Using the expression of A1 and A2 provided by Eq. (38) and splitting into imaginary and real components
yield a set of equations in which the unknowns are a1 and θ1

ω1
(
2ω2

1 − β1
) da1
dT2

= − 1

2

(
μ3 + μ4ω

2
1

)
F̄ sin (−θ1 + σT2) + 1

2
ω1a1

(
μ2 − ω2

1μ1
)

(50a)

ω1a1
(
2ω2

1 − β1
) dθ1

dT2
= − 1

2

(
μ3 + μ4ω

2
1

)
F̄ cos (−θ1 + σT2) + 3

4
a1

(
a21
2

+ a22

)
β3

− a1
2

(
3

4
a21ω

2
1 + 1

2
a22ω

2
1 + a22ω

2
2

)
β4 + a1

4

(
1

2
a21ω

2
1 + a22ω

2
2

)
β5 (50b)

A similar system of differential equations can be obtained for a2 and θ2 which can be written as

(
2ω2

2 − β1
) da2
dT2

=1

2
a2

(
μ2 − ω2

2μ1
)

(51a)

ω2a2
(
2ω2

2 − β1
) dθ2

dT2
=3

4
a2

(
a22
2

+ a21

)
β3 − a2

2

(
3

4
a22ω

2
2 + 1

2
a21ω

2
2 + a21ω

2
1

)
β4

+ a2
4

(
1

2
a22ω

2
2 + a21ω

2
1

)
β5 (51b)

Let

γ1 = σT2 − θ1 (52)

,
a steady-state condition is sought. Hence, the frequency response equations can be expressed by setting all
derivative terms, in Eqs. (50a), (50b), (51a) and (51b), to zero. The resulting equations can be written as

0 = − 1

2

(
μ3 + μ4ω

2
1

)
F̄1 sin (γ1) + 1

2
ω1a1

(
μ2 − ω2

1μ1
)

(53a)

0 = − 1

2

(
μ3 + μ4ω

2
1

)
F̄1 cos (γ1) + ω1a1

(
2ω2

1 − β1
)
σ + 3

4
a1

(
a21
2

+ a22

)
β3

− a1
2

(
3

4
a21ω

2
1 + 1

2
a22ω

2
1 + a22ω

2
2

)
β4 + a1

4

(
1

2
a21ω

2
1 + a22ω

2
2

)
β5 (53b)

0 =1

2
a2

(
μ2 − ω2

2μ1
)

(53c)

0 =3

4
a2

(
a22
2

+ a21

)
β3 − a2

2

(
3

4
a22ω

2
2 + 1

2
a21ω

2
2 + a21ω

2
1

)
β4

+ a2
4

(
1

2
a22ω

2
2 + a21ω

2
1

)
β5 (53d)

From Eq. (53c), it can be concluded that a2 = 0. In light of this, Eqs. (53a) and (53b) can be further simplified

1

2

(
μ3 + μ4ω

2
1

)
F̄1 sin (γ1) =1

2
ω1a1

(
μ2 − ω2

1μ1
)

(54a)

1

2

(
μ3 + μ4ω

2
1

)
F̄1 cos (γ1) =ω1a1

(
2ω2

1 − β1
)
σ + 3

8
a31β3 − 3

8
a31ω

2
1β4 + 1

8
a31ω

2
1β5 (54b)

By taking the square and summation of Eqs. (54a) and (54b), the following frequency response equation is
obtained: (

F̄1
2

(
μ3 + μ4ω

2
1

))2

=
(
1

2
ω1a1

(
μ2 − ω2

1μ1
))2

+
(

ω1a1
(
2ω2

1 − β1
)
σ + 1

8
a31(3β3 − 3ω2

1β4 + ω2
1β5)

)2

(55)
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5 Numerical solution using DQM

The MMS solution was developed based on linear classical modeshapes defined in Table 1. To assess the
accuracyof such assumption, a numerical differential quadraturemethod (DQM) solutionproposedbyTrabelssi
et al. [44] based on the actual nonclassical modeshapes is employed. The DQM formulation is briefly reviewed
in this section. The dynamic response of the nanobeam is governed by two nonlinear partial differential
equations (PDEs) (27a) and (27b), each subjected to two boundary conditions. DQM is a high-order method
which leverages all the mesh points in the system to interpolate and calculate the derivatives involved in the
PDE system. DQM and its related methods have been used several times to analyze the nonlinear response of
structures at the nanoscale [43,44,73–76]. Because of its efficiency, DQM was used to discretize the equation
of motion in a weight optimization of axially functionally graded nonlinear microbeams [76]. Differential–
integral quadrature method (DIQM), another variant of DQM, was exploited to investigate the buckling and
post–buckling behaviors of nonlinear carbon nanotubes [75]. Lately, Trabelsi at al. developed a high-order
finite element for a nanobeam using DQM matrices to study the dynamic response of a nonlinear nanobeam
[45].

In this section, these PDEs are discretized using DQM based on the shifted Chebyshev–Gauss–Lobatto
grid points [77]

ξi = 1

2

{
1 − cos

(
π

i − 1

nx − 1

)}
, (i = 1, . . . , nx ) (56)

where nx is the number of nodes. Let Y1 and Y2 be the nodal displacement vectors where the element of
each vector is [Y1]i = ŵi (t) and [Y2]i = φ̂i (t). The velocity and acceleration vectors are denoted Ÿ and Ẏ ,
respectively. The discretized equations of motion (27a) and (27b) is given by following system of ODEs:

(
M0 − μ̂0M2

)
.Ÿ1 + μ̂ f

(
M0 − μ̂0M2

)
.Ẏ1 − 1

s2
(M1.Y2 + M2.Y1)

−κ
(
iW(ξ). (M1.Y1)

2) (
M2.Y1 − μ̂0M4.Y1

)
−k̂s

(
M2.Y1 − μ̂0M4.Y1

) + k̂L
(
Y1 − μ̂0M2.Y1

)
+k̂N L

(
Y 3
1 − 3μ̂0

(
2Y1 (M1.Y1)

2 + Y 2
1 M2.Y1

)) −
(
F̂ − μ̂0 F̂

′′) cos(θ̂ t̂) = 0 (57a)

m
(
Ÿ2 − μ̂0M2.Ÿ2

) − M2.Y2 + 1

s2
(M1.Y1 + Y2) = 0 (57b)

where the mth DQM derivative matrices Mm are given by [77]. Note that M0 is the identity matrix. iW is
a vector integral operator, and its expression can be given in [44]. Here, the matrix product of M2 and Y is
denoted M2.Y and the scalar product of two vectors is iW.Y . M2M1 or M2

1 is the Hadamard product. Only
S-S and C-C boundary conditions are considered in this study. Their discretized forms are, respectively, given
by

[M0.Y1]kb = 0[
μ̂0

(
Ÿ1 + mM1.Ÿ2 + cẎ

) + M1.Y2
−μ̂0

(
κiW (ξ). (M1.Y1) 2M2.Y1 − k̂sM2.Y1 + Y1k̂L + Y 3

1 k̂N L − F̂ cos(θ̂ t̂)
)

]

kb

= 0

(58)

− − −
[M0.Y1]kb = 0

[M0.Y2]kb = 0

(59)

where [M1]i, j and [Y1]i designate the (i, j) and (i)element of the matrix M1 and [Y1], respectively. Here, kb
is either 1 or nx . Further details about the solution procedure can be found in [44].
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Table 2 Comparison of the nonlocal nonlinear frequency ratio for the S-S case with those published by Refs. [78] and [79];
(μ0 = 2nm, k̂L = 0, k̂N L = 0, k̂s = 0)

A n L(nm) μ̂0 Present Work Ref. [78] Ref. [79]

0 3 10 0.020 0.9139 0.9139 0.9139
20 0.005 0.9762 0.9762 0.9762

1 0 10 0.020 0.9297 0.9293 0.9280
20 0.005 0.9804 0.9803 0.9800

3 10 0.020 0.9295 0.9221 0.9139
20 0.005 0.9804 0.9785 0.9762

2 0 10 0.020 0.9640 0.9631 0.9517
20 0.005 0.9896 0.9893 0.9865

3 10 0.020 0.9635 0.9413 0.9526
20 0.005 0.9895 0.9840 0.9867

6 Numerical results and discussion

6.1 Validation studies

The first validation study is performed to check the correctness of the nonlocal nonlinear frequency ratio,
which is defined as follows:

Nonlocal nonlinear frequency ratio = Nonlocal nonlinear natural frequency

Classical nonlinear natural frequency
(60)

For the S-S case, the present study results are given in Table 2 along with those reported in references [78]
and [79] for different values of amplitude parameters A and gradation index n. The geometrical configuration
of the beam such as length L , breadth b and height h is 10nm, 1nm and 1nm, respectively. The beam material
properties used in this study are the same as those of [78]. This validation study does not consider the elastic
foundation effects. The obtained results are in agreement with the published results as reported in Table 2.

In the previous validation, it is assumed that the neutral axis and the geometrical axis coincide with each
other. The second validation is performed to check the correctness of the linear frequency based on the above
assumption. The natural frequency was estimated for various values of the ratio EU/EL and for two values of
the material gradation index n = 0 and 4. The properties of the beam are EL = 210 GPa and ρ = 7800kg/m3

and are the same used by Eltaher et al. [55]. The beam length is L = 100nm, and the width and height of its
cross section are chosen such that b = 0.1L and h = 0.01L . The present study results are reported in Table 3
and found to be in good agreement as compared with those of reference [55].

The previous validations were conducted on EBT nanobeams with a length-to-thickness ratio equal to
10. The purpose of the third validation is to assess the accuracy of the nondimensional nonlinear nonlocal
frequency for a deep S-S TBT nanobeam with a length-to-thickness ratio varying between 5 and 8. The results
obtained using MMS are tabulated in Table 4 and are compared with those published by Refs. [44,45] using
DQM for different values of the inhomogeneity index n, the vibration amplitude A and the nonlocal parameter
μ0. Excellent agreement is achieved between the obtained and published results.

6.2 Parametric study

6.2.1 Free vibration response

In this section, the effect of varying the aspect ratio L/h, material inhomogeneity n, nonlocal parameter
μ̂0, elastic modulus ratio EU/EL , amplitude A, surface elastic modulus ratio Es

U/Es
L and elastic foundation

stiffness coefficients k̂L , k̂s and k̂N L on the nonlinear frequency of the beam is studied in this section. The
results are obtained for S-S and C-C boundary conditions using MMS and accounting for the physical neutral
axis and using both MMS and DQM. The parametric study is conducted by considering the graded nanobeam
with a beam length of 10 nm. Based on the power-law model given by (1), the bottom surface is enriched with
aluminum material properties with an elastic modulus E = 70 GPa, density ρ = 2700 kg/m3 and surface
elastic modulus Es=5.1882 N/m. The modeshape functions used to obtain the results are provided in Table 1.



Nonlocal and surface effects on nonlinear vibration 165

Table 3 Comparison of the nondimensional linear natural frequency obtained for the simply supported beam with shifted neutral
axis (NA) with results obtained by Eltaher et al. [55] for different elastic modulus ratios (μ̂0 = 0, L/h = 100, ρU /ρL = 1 and

λ =
√

ω̂
τ
L 4
√

ρL A
EL I

)

EU /EL n = 0 Present Eltaher et al. [55]

λ ω̂ h0/h λ ω̂ h0/h

1 3.1415 9.8679 0 3.1417 9.8702 0
2 3.7359 9.8679 0 3.7361 9.8701 0
4 4.4427 9.8679 0 4.4430 9.8701 0
8 5.2833 9.8679 0 5.2836 9.8699 0
10 5.5865 9.8679 0 5.5867 9.8698 0

EU /EL n = 4 λ ω̂ h0/h λ ω̂ h0/h

1 3.1415 9.8679 0 3.1417 9.8702 0
2 3.3348 9.8678 0.0555 3.3350 9.8699 0.0556
4 3.5566 9.8678 0.1250 3.5570 9.8711 0.1250
8 3.7867 9.8679 0.1944 3.7869 9.8698 0.1944
10 3.8627 9.8679 0.2142 3.8629 9.8699 0.2143

Table 4 Comparison of the nondimensional nonlinear nonlocal frequency for a deep TBT nanobeam obtained using MMS with
those published by Refs. [44,45] using DQM for different values of the inhomogeneity index n; (k̂s = 5, k̂L = 50, k̂N L = 50)

L
h A μ̂0 n DQM [44,45] MMS

2 4 2 4

8 0.5 0.00 14.4091 14.3918 14.2855 14.2713
0.01 14.1112 14.0939 13.985 13.9709
0.03 13.6389 13.6216 13.5083 13.4942

1 0.00 15.8821 15.8287 15.488 15.442
0.01 15.6156 15.5616 15.215 15.1683
0.03 15.1959 15.1407 14.7847 14.7367

5 0.5 0.00 14.2031 14.1817 14.0815 14.0632
0.01 13.9136 13.8925 13.7895 13.7716
0.03 13.4546 13.4342 13.3265 13.3093

1 0.00 15.6715 15.6149 15.2859 15.2367
0.01 15.4134 15.3566 15.0213 14.9718
0.03 15.0066 14.9492 14.6047 14.5546

Figure 2a, b depicts the influence of varying the inhomogeneity index n from 1 to 100 and the amplitude
A from 0 to 1 on the nonlocal nonlinear frequency versus the beam aspect ratio for the cases where the
normalized nonlocal parameter μ̂0 is equal to 0.04. The elastic modulus ratio EU/EL was chosen to be 2
and 10 which correspond to the critical cases to investigate the influence of the aspect ratio of the beam on
the nondimensional frequency. The upper and lower two plots correspond, respectively, to the S-S and C-C
boundary conditions. A substantial variation of the nondimensional frequency in the low aspect ratio range
can be observed especially below the value of 10 and regardless of the value of the ratio EU/EL . As expected,
a large value of EU/EL amplifies the effect of the inhomogeneity index n. Furthermore, it can be seen that the
higher the aspect ratio, the lower the impact of the inhomogeneity index. Such observation is expected since
low aspect ratio beams provide higher moment contribution for the unevenly distributed material. In addition,
it can be noted that the higher the value of the amplitude, the higher the effect of the inhomogeneity. Moreover,
the effect of the inhomogeneity index n seems to be strongly related to EU/EL ratio and this is true for both
S-S and C-C cases. Indeed, given the nature of the material distribution, it is expected that raising n does not
always move the nonlinear frequency toward the same direction. This is clearly illustrated when observing the
case of EU/EL = 2 and A = 1 where the frequency curves order does not follow their inhomogeneity index.
Furthermore, when EU/EL is raised to a value of 10, the curves presetting the same amplitude but different
inhomogeneity index n are affected differently. This can probably be attributed to the fact that for each value of
EU/EL , there is a different value of n that maximizes or minimizes the position of h0 to yield a larger effect of
EU/EL . In the linear case, where A = 0, the frequency curves split at a value of 10. However, increasing the
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(a) (b)

Fig. 2 Nonlocal nonlinear frequency versus aspect ratio for different values of the inhomogeneity index and amplitude a μ̂0 = 0
and b μ̂0 = 0.04 for both S-S and C-C cases

amplitude drives the splitting value further away. In general, the effect of the amplitude appears to be highly
nonlinear.

It is also interesting to explore the influence of considering the physical neutral axis. For this study, the data
used to generate Fig. 2a, b, are recreated without considering the physical neutral axis (i.e., the neutral axis
is positioned in the center line of the beam). The resulting frequencies are presented in Table 5 as percentage
of their corresponding frequencies had the physical neutral axis been adopted. Furthermore, the same data are
regenerated while considering a high surface stress ratio. Given the results in Table 5, it can be observed that
for a low value of EU/EL , the effect of the position of the neutral axis is small. In fact, this variation reaches
a maximum at 99.36% for the S-S and 97.39% for the C-C case for the lowest aspect ratio. However, when
EU/EL ratio is high, the difference reaches 9% for the C-C case. Interestingly, it can be seen that raising
the amplitude or lowering the aspect ratio of the beam widens the variation of the natural frequency which
emphasizes the importance of considering the neutral axis especially for the nonlinear results. When exploring
the data where the surface stress is accounted, up to a 12% deviation is recorded between frequencies computed
with and without accounting for the physical neutral axis . This further highlights the importance of accounting
for surface stress when calculating the position of the neutral axis.

Figure 3a,b depicts the effect of varying the amplitude A from 0 to 1 and the nonlocal parameter μ̂0 from
0 to 2 on the nonlocal nonlinear frequency versus the inhomogeneity index n for the cases where the elastic
moduli ratio EU/EL is equal to 2 and 10, respectively. The beam aspect ratio L/h was chosen to be 6 to
represent a deep beam. The upper and lower two plots correspond, respectively, to the S-S and C-C boundary
conditions. Unlike the amplitude A, μ̂0 does not seem to alter significantly the shape of the frequency curves.
It is also observed that the variation of the frequencies registers a minimum especially for high values of the
amplitude A. A higher value of EU/EL not only boosts the effect of the inhomogeneity index but also moves
the position of the minimum. It can also be noted that raising the value of μ̂0 not only results in a softening but
also increases the effect of the amplitude A as the plot of the same line type is more spread for higher values
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Table 5 Effect of neglecting the physical neutral axis location on the natural frequencies

BC
Es
U

Es
L

EU
EL

L
h n 1 10 100

A 0 0.5 1 0 0.5 1 1

HH – 2 4 99.83% 99.68% 99.36% 99.93% 99.89% 99.78% 100.00%
10 4 98.99% 97.89% 95.65% 98.17% 97.18% 94.97% 99.72%

4.5 99.18% 98.07% 95.79% 98.49% 97.49% 95.25% 99.74%
5 99.32% 98.20% 95.91% 98.74% 97.73% 95.47% 99.75%
6 99.51% 98.39% 96.07% 99.09% 98.07% 95.78% 99.76%
8 99.71% 98.59% 96.24% 99.46% 98.44% 96.11% 99.78%
10 99.81% 98.68% 96.32% 99.65% 98.63% 96.28% 99.79%

10 2 4 98.80% 98.32% 97.29% 98.78% 98.41% 97.59% 98.44%
10 4 98.59% 97.45% 95.09% 96.81% 95.69% 93.19% 97.83%

4.5 98.80% 97.64% 95.24% 97.20% 96.06% 93.48% 97.76%
5 98.96% 97.80% 95.35% 97.51% 96.35% 93.70% 97.69%
6 99.19% 98.01% 95.51% 97.98% 96.77% 94.01% 97.57%
8 99.46% 98.25% 95.66% 98.54% 97.28% 94.34% 97.34%
10 99.60% 98.38% 95.72% 98.86% 97.55% 94.47% 97.15%

CC – 2 4 99.33% 99.26% 99.08% 99.75% 99.72% 99.67% 99.99%
10 4 95.97% 95.45% 94.21% 93.38% 92.92% 91.78% 99.57%

4.5 96.54% 96.02% 94.75% 94.21% 93.75% 92.59% 99.61%
5 97.01% 96.48% 95.20% 94.91% 94.45% 93.27% 99.65%
6 97.72% 97.19% 95.89% 96.02% 95.56% 94.36% 99.71%
8 98.57% 98.04% 96.71% 97.44% 96.96% 95.73% 99.78%
10 99.03% 98.50% 97.16% 98.24% 97.76% 96.51% 99.82%

10 2 4 96.29% 96.07% 95.53% 96.39% 96.22% 95.80% 97.28%
10 4 94.78% 94.24% 92.97% 90.14% 89.64% 88.40% 96.18%

4.5 95.34% 94.80% 93.50% 90.86% 90.34% 89.06% 96.08%
5 95.81% 95.27% 93.94% 91.50% 90.98% 89.65% 96.00%
6 96.56% 96.01% 94.65% 92.59% 92.05% 90.66% 95.92%
8 97.54% 96.97% 95.55% 94.18% 93.61% 92.11% 95.88%
10 98.12% 97.54% 96.08% 95.24% 94.65% 93.07% 95.92%

of μ̂0. The frequency curves of C-C case seem to be less affected by the variation of the inhomogeneity index.
Here, the correlation between the effect of n and EU/EL can clearly be seen when observing the location of
the observed minima which is slightly affected by μ̂0 and heavily affected by the elastic moduli ratio EU/EL .
These results are in agreement with the observations presented earlier.

Figure 4a, b describes the effect of varying the inhomogeneity index n from 5 to 20 and the amplitude A
from 0 to 1 on the nonlocal nonlinear frequency versus the elastic moduli ratio for the cases where the beam
aspect ratio L/h is equal to 4 and 8, respectively. The nonlocal parameter μ̂0 was chosen to be equal to 2.
The upper and lower two plots correspond, respectively, to the S-S and C-C boundary conditions. An aspect
ratio L/h ranging between 4 and 8 is chosen. This should lead to a more pronounced effect of EU/EL . The
reduction of the value of L/h does not seem to affect the general evolution of the frequency plots. However,
it does highlight that thicker beams are more sensitive to the variation of EU/EL , especially for the C-C
cases. Both the ratio EU/EL and the inhomogeneity index n seem to alter the values of the natural frequency
in different ways resulting in the occurrence of minima in few curves. Raising the value of the amplitude
A mainly exaggerates these effects. This is clearly illustrated in Fig. 5 which shows a rapid increase in the
frequencies as A increases especially for the S-S case.

Figure 6a, b represents the effect of varying the inhomogeneity index n from 5 to 20 and the beam aspect
ratio L/h from 4 to 8 on the nonlocal nonlinear frequency versus the elastic surface moduli ratio Es

U/Es
L for

the cases where the amplitude A is equal to 0 and 1 and the elastic moduli ratio EU/EL is equal to 2 and
10. Modifying the value of Es

U/Es
L changes the stiffness distribution across the beam in a different way than

EU/EL . As indicated in Appendix B, while modifying EU/EL affects the shear stiffness D̃, modifying the
surface stress ratio Es

U/Es
L does not. On the other hand, it can be seen that the expression of κ0 given by (17)

indicates that the geometric nonlinearity is directly affected by the surface stress. Figure 6a,b shows significant
variation in the frequency as the ratio Es

U/Es
L increases. This effect tends to be more pronounced for low

aspect ratio regardless of the boundary conditions. This effect is slightly influenced by the vibration amplitude
especially for the S-S case.
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(a) (b)

Fig. 3 Nonlocal nonlinear frequency versus inhomogeneity index for different values of the amplitude and nonlocal parameter a
EU /EL = 2 and b EU /EL = 10 for both S-S and C-C cases

In Fig. 7a,b, the natural frequencies for different surface stiffness ratios, amplitudes, inhomogeneity indices
are plotted as a function of the aspect ratio. It can be observed that a low aspect ratio greatly enhances the effect
of the surface stress ratio for both C-C and S-S cases. It is important to note that the surfaces stresses have
higher lever arm to the neutral axis in deep beams, thereby a higher contribution to the moment. Furthermore,
the expression of h0 is dependent on the surface stresses values. These two facts may explain the importance
of surface stress in deep beams. A crossing in the frequency is also observed as the aspect ratio is raised and its
location seems to be affected by the vibration amplitude A. As stated earlier, this can be traced to the expression
of κ0. This study shows the importance of modeling surface stresses in an FGM beam using Timoshenko beam
theory. In fact, since Timoshenko beam theory accounts for shear effects, it is now clearer that the effect of
surface stress gradient and gradient elasticity is different than for the Euler–Bernoulli beam theory. This effect
is more pronounced for deep beamswhich further highlights the importance of using Timoshenko beam theory.

The effect of the elastic foundation under different boundary conditions on the nonlinear frequency is
illustrated in Fig. 8a, b with and without the nonlinear stiffness coefficient k̂N L , respectively. The plotted
results are based on the current MMS formulation in addition to the DQM formulation proposed by Trablelssi
et al. [44]. It can be observed that there is a slight increase in the frequency with the increase in amplitude. The
net effect of the shear stiffness coefficients dominates the nonlinear frequency. The set of values chosen for k̂L
and k̂S in Fig. 8 is chosen based on the expression of β2 and β3 in Appendix D. k̂L and k̂S only appear in the
expression of β2 and β3. It can be seen that the effects of k̂L and k̂S are comparable except that k̂S is multiplied
by the second space derivative of the weighted sum of the shape function and few of its space derivative. A
rough calculation using the linear modeshapes for both S-S and C-C case shows that the effect of k̂S should
be about 10 times the effect of k̂L for S-S case and around 20 times for the C-C case. This observation can be
easily detected in the MMS results since linear modeshape are used for the evaluation of the results. However,
while the DQM and MMS produce comparable results for the S-S case, the results for the C-C case are vastly
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(a) (b)

Fig. 4 Nonlocal nonlinear frequency versus elastic moduli ratio for different values of the inhomogeneity index, amplitude and
aspect ratio a L/h = 4 and b L/h = 8 for both S-S and C-C cases

Fig. 5 Nonlocal nonlinear frequency versus amplitude for different values of the inhomogeneity index and aspect ratio for both
S-S and C-C cases
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(a)

(b)

(a)

(b)

Fig. 6 Nonlocal nonlinear frequency versus surface elastic moduli ratio for different values of the aspect ratio, inhomogeneity
index, amplitude and elastic moduli ratio a EU /EL = 2 and b EU /EL = 10 for both S-S and C-C cases

different for both methods. This is most likely due to the fact that for the C-C case the modeshape can no longer
be approximated with a linear modeshape. A comparable observation was made by Trabelssi et al. [43] on a
similar problem. It can be concluded that these errors occur mainly becauseMMS assumes the first modeshape
function for both S-S and C-C cases which are classical modeshape functions as given in Table 1, but DQM
employs a nonclassical modeshape function.

The data presented in Fig. 8 can be used to examine the effect of the nonlinearities on the beam response
which is either caused by the van Karman strain nonlinearity or the nonlinear stiffness coefficient k̂N L or a
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(a) (b)

Fig. 7 Nonlocal nonlinear frequency versus aspect ratio for different values of the surface elastic moduli ratio, amplitude, elastic
moduli ratio and inhomogeneity index a n = 5 and b n = 20 for both S-S and C-C cases
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combination of both. As stated earlier, this can be achieved by comparing the frequencies obtained for an
amplitude equal to and different from zero corresponding to the linear and nonlinear behavior, respectively.
When k̂N L is set to zero, only the geometric nonlinearity is responsible for the dependence of the frequency
on the amplitude. Compared to the linear case, the geometric nonlinearity results in a slight increase in the
natural frequency when the vibration amplitude is raised. However, when k̂N L is set to 100, the effect of the
nonlinear foundation increases the dependence of the natural frequencies on the amplitude making it further
depart from the linear case.

6.2.2 Forced vibration response

The proposed forced vibration study investigates the effects of the aspect ratio, the material inhomogeneity,
the nonlocal parameter, the foundation coefficients while considering the effect of surface elasticity on the
frequency response curve (FRC) of the nanobeam. The damping coefficient is taken as ĉ = 0.1, and the force
amplitude is selected as F̄1 = 1 for the S-S case.

The effect of the aspect ratio L/h on the frequency response of the nanobeam under different elastic
modulus ratios without and with surface elasticity effects is shown in Fig. 9. It is observed that the effect of
surface stress, though small, is noticeable on the FRCs. It is noted that setting ES

U/ES
L = 10 enhances the effect

of the aspect ratio. These observations agree with the free vibration results shown in Fig. 2 where low aspect
ratio amplifies the surface stress contribution due to higher moment contribution for the unevenly distributed
material.

The influence of the inhomogeneity index n and the nonlocal parameter of the beam on the frequency
response of the beam is explored in Fig. 10. Different elastic modulus ratios are considered, with or without
surface elasticity effects. A relatively low aspect ratio of L/h = 6 is selected, while elasticity ratio is set to
EU/EL = 10. As established in the free vibration response, such a choice should help highlight the effect of
the inhomogeneity of the beam material. It can be seen from Fig. 10a that raising the inhomogeneity index
n does not always produce the same effect. This is expected since raising n does not always make the beam
less homogeneous. Looking back at Figs. 2 and 3 in the free vibration study, a similar behavior was observed
where raising the value does not produce a monotonous effect. The effect of the nonlocal parameter on the
frequency response under different elastic modulus ratios is depicted in Fig. 10b. As expected, regardless of
surface elasticity, raising the nonlocal parameter induces a hardening of the FRC. A similar observation was
made by Trabelssi et al. [44].

The effect of the nonlinear foundation is considered in Fig. 11. It can be seen that increasing either the
linear stiffness or the shear coefficient softens the FRCs. However, as discussed in the free vibration section,
given the expression of β2 and β3, the effect of the shear coefficient is more pronounced than the linear stiffness
coefficient and is shape function dependent.

The nonlinear stiffness coefficient appears to be the major contributor to the nonlinear response of the
FRCs of the nanobeam, as shown in Fig. 11. In fact, for low values of k̂N L , the FRCs show a very limited
hardening. This hardening can be rapidly increased by raising the value k̂N L .

7 Conclusions

This paper investigates the effects of combining surface elasticity, nonlocality and physical neutral axis location
on the dynamic performance of a graded nonlinear Timoshenko deep beam. The principle of virtual displace-
ments was utilized to obtain the equations of motion by considering the surface effects. By employing the
method of multiple scales (MMS), a fourth-order nonlinear ordinary differential equation was obtained to yield
the nondimensional nonlinear frequencies and the frequency response curves of the beam. Since MMS was
derived using linear classical modeshapes, a DQMnumerical solution which uses the nonclassical modeshapes
was employed to assess the accuracy of the MMS solution. The present study results were validated based on
published results. A parametric study was performed to examine the effects of the aspect ratio, surface mod-
ulus ratio, the elastic modulus ratio, the nonlocal parameter, the inhomogeneity index, the elastic foundation
coefficients on the dynamic behavior of the graded nanobeam. The major findings in this work are outlined as
given below

• The nonlinear natural frequency reduces rapidly for low aspect ratios for both S-S and C-C cases.
• The nonlocal parameter reduces the natural frequency, while the amplitude is dependent on n and the ratio

EU/EL .
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(a) (b)

Fig. 8 Nonlocal nonlinear frequency versus amplitude for different linear stiffness, shear and nonlinear stiffness coefficients a
k̂N L = 0, b k̂N L = 100 for both S-S and C-C cases
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(a) (b)

Fig. 9 Effect of the aspect ratios at elastic moduli ratio EU /EL = 1 on the frequency response of FG beam without and with
surface effects (ρU /ρL = 1, n= 20, μ̂0= 0.02, k̂L= 10, k̂S= 5, k̂N L= 50)

(a) (b)

Fig. 10 Effect of the inner material properties on the frequency response of FG beamwith surface effects (ρU /ρL = 1,EU /EL =
10, Es

U /Es
L = 10 , Lh = 6, k̂L=10, k̂N L= 50, k̂s= 5)

• For both C-C and S-S cases, the inhomogeneity index slightly decreases and then increases the natural
frequency for low values of EU/EL and remains insensitive otherwise. The inhomogeneity index effect is
also slightly sensitive to the amplitude and μ0.

• Deeper beams are found to be more sensitive to the variation of EU/EL especially for the C-C cases. A
low aspect ratio also enhances the effect of the surface stiffness ratio Es

U/Es
L .• Unlike the S-S case, a study, based on the expressions of β2 and β3, revealed that for low aspect ratio the

C-C nanobeam modeshape deviates from the classical one.
• A significant variation in the natural frequency is observed as the ratio Es

U/Es
L increases especially for low

aspect ratio.
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Fig. 11 Effect of the elastic foundation properties on the frequency response of FG beam S-S nanobeam (L/h = 6,ρU /ρL = 1,
n= 20, μ̂0= 0.02,EU /EL = 10, Es

U /Es
L = 10 , k̂N L= 50, k̂s= 5,k̂L= 10)

• The forced vibration study showed that raising to Es
U/Es

L = 10 boosts the effect of the aspect ratio.
• The forced vibration study showed that raising the inhomogeneity index n does not always produce the
same effect on FRC. This behavior was also observed in the free vibration study.

• As expected, in the forced vibration study, raising the nonlocal parameter results in a hardening of the
FRC.

• Given the expression of β2 and β3, the effect of the shear coefficient on the FRCs is more pronounced than
the linear stiffness coefficient and is shape function dependent

• In the forced vibration study, it was observed that nonlinear stiffness coefficient is responsible for most of
the nonlinear response of the FRCs of the nanobeam.

• For the Timoshenko beam, the ratio Es
U/Es

L affects its bending stiffness and does not contribute to its shear
stiffness, while the ratio EU/EL alters both the bending and shear stiffness. For the Euler–Bernoulli beam,
there are no shear effects accounted in the model.

• Surface stress gradient affects the position of the beam neutral axis and possesses a higher lever arm
resulting in a larger moment contribution especially in deep beams.
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• The expressions of the nonlinear frequencies � j ( j = 1, 2) given by Eqs. (46a) and (46b) and that of the
frequency response curve given by Eq. (55) are validated using the differential quadrature method and can
be potentially employed in a design problem of a nanobeam.
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A Expression of the position of the neutral axis appearing in (12):

To determine the neutral axis location, the axial displacement is ignored and higher-order terms are neglected.
Thus, Eq. (11) reduces to

B̃

(
∂φ

∂x

)
= 0 ⇔ B̃ = 0 (A.1)

In what follows, B̃ is equated to zero. Simplifying (A.1) results in the following expression:

b
∫ h

2−h0

−h
2 −h0

E(z)z dz + b

[
Es
U

(
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2
− h0

)
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L
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2
− h0

)]
+ 2

∫ h
2−h0

−h
2 −h0

Es(z)z dz = 0 (A.2)

Making the following change of variables z = zm − h0, Eq. (A.2) can be written as follows:
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Es(zm)(zm − h0) dzm = 0 (A.3)

From Eq. (A.3), the position of the neutral axis can be determined

h0 =
b

∫ h
2

−h
2
E(zm)zm dzm + h

2b
[
Es
U − Es

L

] + 2
∫ h

2
−h
2
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b
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2
−h
2
E(zm) dzm + b

[
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L
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2
−h
2
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= − h
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) + 2hn
) (
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]

2(n + 2)
(
bnEs

L + bEs
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) (A.4)

B Simplified expressions of Ã, D̃ and G̃ appearing in (13):

Ã = b
∫ h

2

− h
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]
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= bh (nEL + EU )

n + 1
+ b

(
Es
L + Es

U

) + 2h
(
nEs

L + Es
L

)
n + 1

,

D̃ = b
∫ h
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U

)

G̃ = Ks

2(1 + ν)

bh(nEL + Eu)

n + 1
(B.1)

C Eliminating the axial displacement appearing in (13):

The first assumption along with (8a) results in M (0)
xx being a constant. Hence, the following expression is

obtained:

∂u

∂x
+ 1

2

(
∂w

∂x

)2

= c1(t) (C.1)

Integrating the above equation yields the expression of the axial displacement

u(x, t) = −
∫ x

0

[
1

2

(
∂w(s, t)

∂s

)2
]
ds + c1(t)x + c2(t) (C.2)

where c1 and c2 are obtained from the second assumption as follows:

c1(t) = 1

L

∫ L

0

[
1

2

(
∂w

∂x

)2
]
dx and c2(t) = 0 (C.3)

As a result:

M (0)
xx = Ãc1(t) (C.4a)

M (1)
xx = D̃

∂φ

∂x
(C.4b)

where c1 is provided by (C.3).

D Expressions of βi (i = 1, . . . , 5) and μi (i = 1, . . . , 4) appearing in (29):

β1 = 1

�

∫ 1

0

{[
1 − μ̂0

d2

dξ2

] (
ψ − (

m + s2
)
ψ ′′)

+ ms2
[
k̂L − k̂S

d2

dξ2

] (
ψ − 2μ̂0ψ

′′ + μ̂2
0ψ

(4)
)}

ψ dξ (D.1a)

β2 = 1

�

∫ 1

0

{
ψ(4) +

[
k̂L − k̂S

d2

dξ2

] (
ψ − s2ψ ′′ − μ̂0

(
ψ ′′ − s2ψ(4)

))}
ψ dξ (D.1b)

β3 = 1

�

∫ 1

0

{
−Iκ

[
1 − μ̂0

d2

dξ2

] (
ψ ′′ − s2ψ(4)

)
+ k̂NL

(
ψ3 − 3s2

(
ψ2ψ ′′ + 2ψψ ′2))



178 S. El-Borgi et al.

− 3μ̂0k̂NL
(
ψ2

(
ψ ′′ − s2ψ(4)

)
− 12s2ψ ′2ψ ′′ + 2ψ

(
ψ ′2 − s2

(
3ψ ′′2 + 4ψ(3)ψ ′)))}

ψ dξ (D.1c)

β4 = ms2

�

∫ 1

0

{
3Iκ

(
−ψ ′′ + 2μ̂0ψ

(4) − μ̂2
0ψ

(6)
)

+ 3k̂NL
(
ψ3 − 6μ̂0

(
ψ2ψ ′′ + 2ψψ ′2))

+ 9k̂NLμ̂2
0

(
ψ(4)ψ2 + 12ψ ′2ψ ′′ + 2ψ

(
3ψ ′′2 + 4ψ(3)ψ ′))}

ψ dξ (D.1d)

β5 = 2β4 (D.1e)

in which � = ms2
∫ 1
0

{
ψ − 2μ̂0ψ

′′ + μ̂2
0ψ

′′′′
}
ψ dξ and Iκ = κ

∫ 1
0

(
dψ
dξ

)2
dξ .

μ1 = ms2
ĉ

�

∫ 1

0

{
ψ − 2μ̂0ψ

′′ + μ̂2
0ψ

(4)
}
ψdξ (D.2a)

μ2 = ĉ

�

∫ 1

0

{
ψ − μ̂0ψ

′′ −
(
ψ ′′ − μ̂0ψ

(4)
)
s2

}
ψdξ (D.2b)

μ3 = 1

�

∫ 1

0

{
ψF − (

μ̂0 + s2
)
ψ ′′
F + s2μ̂0ψ

(4)
F

}
ψdξ (D.2c)

μ4 = −ms2

�

∫ 1

0

{
ψF − 2μ̂0ψ

′′
F + μ̂2

0ψ
(4)
F

}
ψdξ (D.2d)
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