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Abstract 

In this paper, a novel nonlocal anisotropic elastic shell model is developed to investigate the nonlinear 

vibrations of double-walled carbon nanotubes (DWCNTs) in the framework of Sanders-Koiter shell 

theory. Van der Waals interaction forces between the two concentric single-walled carbon nanotubes 

(SWCNTs) composing a DWCNT are modelled via Lennard-Jones potential and He’s formulation. 

In the linear vibration analysis, the displacement field of each SWCNT is expanded by means of a 

double mixed series in terms of Chebyshev orthogonal polynomials along the longitudinal direction 

and harmonic functions along the circumferential direction, and Rayleigh-Ritz method is considered 

to get approximate natural frequencies and modal shapes. In the nonlinear vibration analysis, the three 

displacements of each SWCNT are re-expanded by means of the approximate eigenfunctions derived 

in the linear analysis, and an energy approach based on Lagrange equations is adopted to obtain a set 

of nonlinear ordinary differential equations of motion, which is then solved numerically. Molecular 

dynamics simulations are performed in order to calibrate the proper value of nonlocal parameter to 

be inserted in the constitutive equations of the proposed elastic continuum model. A simplified linear 

distribution of van der Waals interaction forces is initially adopted to analyse the nonlinear vibrations 

of DWCNTs, obtaining a hardening nonlinear behaviour. By considering a more realistic nonlinear 

distribution of van der Waals interaction forces, a stronger hardening nonlinear behaviour is found. 
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1. Introduction 

Carbon nanotubes (CNTs), due to their extraordinary mechanical properties, in particular very high 

elastic modulus and tensile strength, together with very small diameter, can reach natural frequencies 

of the THz order, and therefore have been considered as ideal candidates in several high sensitivity 

electro-mechanical devices, such as resonators, sensors and oscillators [1-4]. 

These relevant industrial applications have led many Researchers to focus their attention on the study 

of CNT vibrations, which have been investigated by means of experimental, atomistic mechanics and 

continuum mechanics methods. 

Resonant Raman spectroscopy (RRS) represents the most common experimental technique for the 

study of CNT vibrations. It starts from the measurement of the diameter by means of atomic force 

microscopy and investigates atomic structure, chirality and natural frequencies of CNTs [5-7]. 

However, due to their high technological complexity, experimental techniques cannot be considered 

as efficient approaches for the study of CNT mechanical behaviour, especially in case of multi-walled 

carbon nanotubes (MWCNTs). 

Molecular dynamics (MD) simulations are the most common atomistic mechanics method for the 

study of CNT vibrations. By considering CNT atoms as interacting point-like masses, they record 

CNT vibrations for a certain amount of time at fixed temperature and then compute the corresponding 

natural frequencies via Discrete Fourier Transform [8-10]. 

However, since modelling CNTs as frame-like discrete structures is computationally very expensive, 

then atomistic mechanics methods cannot be easily applied to the structural simulation of CNTs, in 

particular of MWCNTs, which incorporate a large number of carbon atoms. 

Continuous elastic models are the most common continuum mechanics method for the study of CNT 

vibrations. In these models, actual discrete CNTs are replaced by equivalent continuous homogeneous 

structures, ignoring their intrinsic atomic nature and therefore reducing the number of degrees of 

freedom. Both beam-like [11-15] and shell-like [16-20] continuous models have been proposed. 

Since theoretical models based on continuum mechanics are computationally more efficient than MD 

simulations and does not present the technological complexity of RRS, then they have been largely 

adopted for the study of CNT vibrations. In particular, the analogy between circular cylindrical shells 

and CNTs led to extensive application of continuous elastic shell models for CNT vibration analysis, 

see fundamental books of Leissa [21], Yamaki [22] and Amabili [23], where the most important thin 

shell theories, together with numerical and experimental results, are reported. 

CNTs are frequently modelled as isotropic elastic shells [24-26]. However, there are clear indications 

showing that CNTs exhibit chirality-induced anisotropic behaviour that cannot be neglected [27]. 
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Chang et al. [28] developed a molecular mechanics model, called “stick-spiral model”, able to predict 

chirality and size-dependent elastic properties of SWCNTs. Starting from the governing equations of 

this model, they derived the explicit expression for longitudinal Young’s modulus and Poisson’s ratio, 

circumferential Young’s modulus and Poisson’s ratio, and tangential shear modulus in the case of 

chiral SWCNTs. In particular, they demonstrated that the classical relationship of the isotropic elastic 

continuum mechanics between Young’s and shear moduli is no longer valid for SWCNTs. 

Chang [29] derived a closed-form expression for the anisotropic surface elastic constants of SWCNTs 

obtained via the “stick-spiral model” of Ref. [28], and developed a molecular based anisotropic shell 

model able to predict the mechanical behaviour of SWCNTs. In particular, by adopting Donnell thin 

shell theory, he obtained explicit expressions for the coupling of axial, circumferential and torsional 

deformations, radial breathing mode natural frequency, and longitudinal and torsional wave speed. 

Ghavanloo and Fazelzadeh [30], starting from the results of Ref. [29], developed an anisotropic elastic 

shell model including chirality effects to study the vibration characteristics of SWCNTs. By applying 

Flügge thin shell theory and complex method, they obtained natural frequencies of radial breathing, 

torsional, longitudinal and radial modes under different CNT diameters and chiralities. They validated 

their model by means of comparisons with experimental RRS and numerical MD simulation data. 

Favata and Podio-Guidugli [31] developed a new orthotropic linearly elastic shell theory to study the 

mechanical response of MWCNTs. Starting from a modified version of the classic three-dimensional 

principle of virtual power, which considers a three-dimensional shell-shaped elastic body and admits 

thickness changes due to changes in the inter-layer separation distance of MWCNTs (“unshearability 

constraint” kinematic hypothesis), two-dimensional balance equations were obtained in terms of two-

dimensional stress measures. The constitutive equations, derived from an orthotropic elasticity tensor 

and able to capture differences in chirality, were then inserted into the balance equations, in order to 

obtain the governing equations of motion of the new theory. 

In addition to anisotropy, another relevant issue to be taken into account in the modelling of CNTs as 

continuous elastic shells is nonlocality. Classical continuum mechanics models assume that the stress 

state at a given point of a body is uniquely dependent on the strain state at the same point of the body, 

and they do not admit any intrinsic size dependence in their elastic constitutive equations; therefore, 

they are not able to identify the small-scale effect on the mechanical behaviour of CNTs. Since, at 

nanometre scales, the material microstructure, i.e., the lattice spacing between the individual atoms, 

becomes increasingly important, then the size effects are prominent, and the discrete structure of the 

material cannot be simply homogenised into a continuum, but the nonlocal elastic continuum model, 

which takes into account the scale effect, must be adopted [32]. 
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Specifically, the nonlocal elasticity theory developed by Eringen [33-34] assumes that the stress state 

at a given point of a body is a function of the strain state at every point of the body, where the scale 

effect is inserted into the constitutive equations of the material via nonlocal parameter. 

Hu et al. [35], starting from Eringen’s nonlocal elasticity theory [33], developed a nonlocal elastic 

shell model based on Flügge thin shell theory to study transverse and torsional waves of DWCNTs. 

They estimated the value of the nonlocal parameter by matching CNT dispersions observed from MD 

simulations with numerical results obtained from nonlocal continuous elastic shell model. 

Ansari et al. [36], starting from Eringen’s nonlocal elasticity theory [33], developed a nonlocal shell 

model based on Donnell thin shell theory to analyse vibrations of DWCNTs with arbitrary boundary 

conditions. They calibrated the value of the nonlocal parameter by comparing natural frequencies of 

armchair and zigzag CNTs obtained from MD simulations with those from the nonlocal shell model.   

It should be underlined that many MD simulation results for DWCNTs available in literature cannot 

be used to calibrate the value of the nonlocal parameter within the nonlocal elastic shell models since 

they are referred to CNTs not respecting the hypothesis of thin shells (Kirchhoff-Love’s assumptions, 

see Ref. [21] for more details). 

As an example, Ansari et al. [37] performed MD simulations based on Tersoff-Brenner and Lennard-

Jones potentials to investigate the vibration characteristics of DWCNTs under various geometries and 

boundary conditions, subjected to initial tensile and compressive strains. However, the results of these 

MD simulations cannot be used to calibrate the nonlocal parameter since the two concentric SWCNTs 

are not equivalent to thin cylindrical shells. 

With regard to the topic analysed in the present work, a relevant paper was written by Fazelzadeh and 

Ghavanloo [38]. In fact, they derived for the first time a continuous elastic shell model to investigate 

vibrations of SWCNTs with arbitrary chirality by taking into account both nonlocal and anisotropic 

effects. Starting from Eringen’s nonlocal elasticity theory [33], by using Flügge thin shell theory and 

complex method, they computed natural frequencies of SWCNTs under different values of nonlocal 

parameter, number of longitudinal and circumferential waves, CNT diameter and chiralities.  

However, to the Authors’ best knowledge, a nonlocal anisotropic elastic shell model, which combines 

nonlocal continuum and molecular mechanics, for the linear vibrations of DWCNTs has not yet been 

proposed. The first goal of the present paper is therefore to extend the nonlocal anisotropic elastic 

shell model for the linear vibrations of SWCNTs reported in Ref. [38] to DWCNTs. To this aim, van 

der Waals interactions between the two concentric SWCNTs composing a DWCNT must be properly 

modelled. 
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Ru [39] proposed a linear relationship between pressure due to van der Waals interaction forces and 

radial displacement for the buckling and vibration investigation of MWCNTs in which van der Waals 

interaction coefficient is constant, i.e., it does not depend on the radius of the individual SWCNTs. 

However, it is clear that this simplified formulation does not provide correct results. 

In order to accurately model van der Waals interaction forces in MWCNTs, He et al. [40] proposed 

a linear relationship between pressure due to van der Waals interaction forces and radial displacement 

in which van der Waals interaction coefficient depends on the radius of the individual SWCNTs. 

Based on this more refined model, natural frequencies of MWNTs were analysed by the same Authors 

in [41-42] for different values of SWCNT length and radius, and compared with molecular dynamics 

simulations for DWNTs and TWNTs, with excellent agreement. 

From the papers reported above, it can be noted that the linear vibrations of CNTs have been intensely 

studied. Conversely, the nonlinear vibrations of CNTs have attracted much lower attention. However, 

the study of CNT nonlinear vibrations is very important, since nonlinear effects can strongly amplify 

or even modify the resonant behaviour of CNTs in their industrial applications, e.g., nano-electro-

mechanical devices. 

Avramov [43] investigated geometrically nonlinear vibrations of SWCNTs by means of a nonlocal 

elastic shell model. Sanders-Koiter shell theory was adopted to obtain the nonlinear partial differential 

equations of motion, which were transformed into nonlinear ordinary differential equations by means 

of Galerkin’s method. The harmonic balance method was used to study the free nonlinear vibrations. 

Periodic and quasi-periodic SWCNT vibrations, owing to Naimark-Sacker bifurcation, were analysed 

numerically. It was found that, differently from cylindrical shells, the three displacement components 

(longitudinal, circumferential and radial) of the periodic and quasi-periodic SWCNT vibrations are 

of the same order in terms of magnitude (while, for the shells, the radial displacement component is 

predominant). 

In addition to geometric nonlinearity, nonlinear vibrations of DWCNTs can be due also to nonlinear 

van der Waals interaction forces between inner and outer SWCNTs. 

Fang et al. [44] performed a nonlinear vibration analysis of DWCNTs based on nonlocal elasticity 

theory. Ru’s formulation [39] was used to model van der Waals interaction coefficient. Von Kármán 

geometric nonlinearity and nonlinear van der Waals interaction forces were considered. The nonlinear 

equations of motion were derived by adopting Euler beam theory and Hamilton principle. The effect 

of nonlocal parameter, aspect ratio and surrounding elastic medium on the nonlinear behaviour of 

DWCNTs was considered. 

Xu et al. [45] studied vibrations of a DWCNT aroused by nonlinear interlayer van der Waals forces. 

Ru’s formulation [39] was used to model van der Waals interaction coefficient. The inner and outer 
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SWCNTs were modelled as two individual elastic beams. Harmonic balance method was adopted to 

obtain the relation between amplitudes of deflection and frequencies of coaxial and noncoaxial free 

vibrations. The effect of aspect ratio and boundary conditions on the nonlinear behaviour of DWCNTs 

was investigated. 

He et al. [46], starting from He’s formulation [40], derived a refined nonlinear pressure distribution 

to describe van der Waals interactions between any two layers of a MWCNT. A continuum cylindrical 

shell model was used to study buckling and post-buckling of MWCNTs. By comparing the results of 

the linear and nonlinear van der Waals interaction force model, they found that the buckling responses 

before the critical buckling strain value are almost the same, while the post-buckling responses from 

the nonlinear model are significantly lower than those from the linear one. 

Ke et al. [47] analysed nonlinear free vibrations of embedded DWCNTs based on Eringen’s nonlocal 

elasticity theory and von Kármán geometric nonlinearity. The effect of transverse shear deformation 

and rotary inertia was considered in the framework of Timoshenko beam theory. Surrounding elastic 

medium was described via Winkler model. Ru’s formulation [39] was used to model van der Waals 

interaction coefficient. Governing equations were derived by using Hamilton’s principle. Different 

boundary conditions were considered. The effect of nonlocal parameter, SWCNT length and spring 

constant on the nonlinear vibrations of DWCNTs was investigated. 

Cigeroglu and Samandari [48]  studied nonlinear free vibrations of DWCNTs embedded in an elastic 

medium. Geometric nonlinearities due to large deflection of SWCNTs and nonlinear van der Waals 

interaction forces were considered. The differential quadrature method was adopted to obtain the 

nonlinear equations of motion. The effect of nonlinearities, boundary conditions, initial curvature and 

surrounding elastic medium on the nonlinear behaviour of DWCNTs was analysed. 

Other relevant results on the nonlinear vibrations of CNTs and circular cylindrical shells obtained by 

the Authors of the present paper can be found in Refs. [49-55]. In detail, in Refs. [49-50] parametric 

analyses were carried out by varying aspect and thickness ratios in order to obtain a clear scenario on 

the influence of the geometry on the nonlinear vibrations of thin circular cylindrical shells, where the 

corresponding regions of softening and hardening nonlinear behaviour were derived. In addition, in 

Refs. [51-52] convergence analyses were performed on the nonlinear modal expansions of SWCNTs 

by adding suitable modes, i.e., asymmetric and axisymmetric modes, to the resonant one, in order to 

obtain accurate nonlinear responses with minimum computational effort. To conclude, in Refs. [53-

55] nonlinear resonance interactions and dynamic stability of SWCNTs and shells were investigated. 

However, in spite of some achievements in nonlinear vibration analysis of DWCNTs, to the Authors’ 

best knowledge, there is available no attempt to tackle the topic described in the present investigation, 
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i.e., to study the effect of the nonlinear van der Waals interaction forces on the nonlinear vibrations 

of DWCNTs. 

In the present paper, a novel nonlocal anisotropic elastic shell model is developed in order to study 

the vibrations of DWCNTs under simply supported boundary conditions. Sanders-Koiter shell theory 

is used to obtain the strain-displacement relationships. Lennard-Jones potential and He’s formulation 

are used to model van der Waals interaction forces between the two concentric SWCNTs composing 

a DWCNT. In the linear vibration analysis, the displacement field of each SWCNT is expanded by 

means of a double mixed series in terms of Chebyshev orthogonal polynomials along the longitudinal 

direction and harmonic functions along the circumferential direction, where elastic strain, kinetic and 

van der Waals interaction energies are expressed in terms of the free parameters of the mixed series, 

and Rayleigh-Ritz method is used to obtain approximate natural frequencies and modal shapes. In the 

nonlinear field, the three displacements of each SWCNT are re-expanded by using the approximate 

eigenfunctions derived in the linear field, where elastic strain, kinetic and van der Waals interaction 

energies are expressed in terms of the modal coordinates, and Lagrange equations are considered to 

obtain a set of nonlinear ordinary differential equations of motion, which is solved numerically. In 

the numerical results, natural frequencies of DWCNTs are initially obtained from a local anisotropic 

elastic shell model. These natural frequencies are then compared with those derived from molecular 

dynamics simulations in order to obtain the proper value of nonlocal parameter to be inserted into the 

constitutive equations of the nonlocal model. Nonlinear vibrations of DWCNTs are finally obtained 

by adopting a nonlocal anisotropic elastic shell model and using the previously calibrated nonlocal 

parameter. Increasing modal initial conditions are applied on the directly excited vibration mode and 

corresponding amplitude-frequency curves are obtained. The nonlinear responses derived by using a 

linear and a nonlinear distribution of van der Waals interaction forces are compared. 
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2. Sanders-Koiter shell theory for DWCNTs 

In the present paper, the actual discrete DWCNT of Figure 1(a) is modelled by means of a couple of 

concentric equivalent continuous elastic thin cylindrical shells with van der Waals interaction forces. 

In Figures 1(b, c) a continuous elastic thin cylindrical shell with radius 𝑅, length 𝐿 and thickness ℎ is 

shown; a cylindrical coordinate system (𝑂, 𝑥, 𝜃, 𝑧) is considered, where the origin 𝑂 of the reference 

system is located at the centre of one end of the cylindrical shell. Three displacements are present: 

longitudinal 𝑢(𝑥, 𝜃, 𝑡), circumferential 𝑣(𝑥, 𝜃, 𝑡) and radial 𝑤(𝑥, 𝜃, 𝑡), where the radial displacement 

𝑤 is assumed as positive outward; (𝑥, 𝜃) are the longitudinal and angular coordinates of an arbitrary 

point on the middle surface of the shell; 𝑧 is the radial coordinate along the thickness ℎ; 𝑡 is the time. 

 

 

Figure 1. Continuum modelling of a DWCNT. (a) Actual discrete DWCNT. (b) Geometry of the equivalent 

continuous elastic thin cylindrical shell. (c) Cross-section of the surface of the equivalent continuous shell 

 

2.1. Displacement field 

The dimensionless displacement field (𝑢/! , 𝑣/! , 𝑤0!) of the i-th cylindrical shell is written as [20]: 

 

𝑢"! = 𝑢!𝑅! 𝑣"! = 𝑣!𝑅! 𝑤'! = 𝑤!𝑅!  𝑖 = 1,2 (1) 
 

where (𝑢! , 𝑣! , 𝑤!) is the dimensional displacement field and 𝑅! is the radius of the 𝑖-th shell. 

 

(a) 

(b) 

(c) 
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2.2. Strain-displacement relationships 

In the present paper, Sanders-Koiter shell theory is used to model DWCNT dynamics. In this theory, 

the relationships between strains and displacements are based on “Kirchhoff-Love’s assumptions”, 

see Ref. [21] for more details. 

The dimensionless middle surface strains (𝜀"̃,$,! , 𝜀%̃,$,! , 𝛾/"%,$,!) of the 𝑖-th cylindrical shell, taking into 

account both linear and nonlinear terms, are written as: 

 

𝜀"̃,$,! = 𝛼! 𝜕𝑢"!𝜕𝜂 + 12𝛼!% 4𝜕𝑤'!𝜕𝜂 5% + 184𝛼! 𝜕𝑣"!𝜕𝜂 − 𝜕𝑢"!𝜕𝜃 5% 

𝑖 = 1,2 (2) 𝜀&̃,$,! = 𝜕𝑣"!𝜕𝜃 + 𝑤'! + 124𝜕𝑤'!𝜕𝜃 − 𝑣"!5% + 18 4𝜕𝑢"!𝜕𝜃 − 𝛼! 𝜕𝑣"!𝜕𝜂 5% 

𝛾""&,$,! = 𝜕𝑢"!𝜕𝜃 + 𝛼! 𝜕𝑣"!𝜕𝜂 + 𝛼! 𝜕𝑤'!𝜕𝜂 4𝜕𝑤'!𝜕𝜃 − 𝑣"!5 

 

where 𝜂 = 𝑥/𝐿 is the dimensionless longitudinal coordinate of the shell and 𝛼! = 𝑅!/𝐿. 

Moreover, the dimensionless middle surface changes in curvature and torsion (𝑘:",! , 𝑘:%,! , 𝑘:"%,!) of the 

𝑖-th cylindrical shell are expressed as [20]: 

 

𝑘;",! = −𝛼!% 𝜕%𝑤'!𝜕𝜂%  𝑘;&,! = 𝜕𝑣"!𝜕𝜃 − 𝜕%𝑤'!𝜕𝜃%  𝑘;"&,! = −2𝛼! 𝜕%𝑤'!𝜕𝜂𝜕𝜃 + 32𝛼! 𝜕𝑣"!𝜕𝜂 − 12𝜕𝑢"!𝜕𝜃  𝑖 = 1,2 (3) 
 

Finally, the dimensionless strain components (𝜀"̃,! , 𝜀%̃,! , 𝛾/"%,!) at a generic point of the 𝑖-th cylindrical 

shell are related to the dimensionless middle surface strains and changes in curvature and torsion of 

the 𝑖-th shell by means of the following relationships [20]: 

 𝜀"̃,! = 𝜀"̃,$,! + 𝜁!𝑘;",! 𝜀&̃,! = 𝜀&̃,$,! + 𝜁!𝑘;&,! 𝛾""&,! = 𝛾""&,$,! + 𝜁!𝑘;"&,! 𝑖 = 1,2 (4) 
 

where 𝜁! = 𝑧!/𝑅! is the dimensionless radial coordinate of the 𝑖-th shell. 

 

3. Nonlocal anisotropic elastic shell model for DWCNTs 

In the present Section, a new nonlocal anisotropic elastic shell model for the vibrations of DWCNTs 

is proposed. Specifically, this model extends the nonlocal anisotropic elastic shell model for SWCNTs 

reported in Ref. [38] to DWCNTs. 
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3.1. Stress-strain relationships 

By considering the plane stress hypothesis (𝜎& = 0), the dimensionless stresses (𝜎/",! , 𝜎/%,! , 𝜏̃"%,!) at a 

generic point of the 𝑖-th cylindrical shell are related to the dimensionless strains at all the other points 

of the 𝑖-th shell by means of the following nonlocal anisotropic elastic constitutive equations: 

 𝜎"",! − (𝑒$𝑎")%∇C!%𝜎"",! = 𝑌;'',!𝜀"̃,! + 𝑌;'%,!𝜀&̃,! + 𝑌;'(,!𝛾""&,!  

(5) 𝜎"&,! − (𝑒$𝑎")%∇C!%𝜎"&,! = 𝑌;%',!𝜀"̃,! + 𝑌;%%,!𝜀&̃,! + 𝑌;%(,!𝛾""&,! 𝑖 = 1,2 

𝜏̃"&,! − (𝑒$𝑎")%∇C!%𝜏̃"&,! = 𝑌;(',!𝜀"̃,! + 𝑌;(%,!𝜀&̃,! + 𝑌;((,!𝛾""&,!  

 

where 𝑒$ is the unknown nonlocal parameter that must be calibrated by means of comparisons with 

results from molecular dynamics simulations, 𝑎 is the C-C bond length and 𝑎/ = 𝑎/𝑅' is the correlated 

dimensionless parameter where 𝑅' is the radius of the inner SWCNT, ∇B!
( is the dimensionless Laplace 

operator expressed in polar coordinates: 

 

∇C!%= 𝛼!% 𝜕%𝜕𝜂% + 𝜕%𝜕𝜃% 𝑖 = 1,2 (6) 
 

and 𝑌:)*,! are dimensionless anisotropic surface elastic constants, in the form: 

 𝑌;)*,! = H𝐺;+),!𝐺;+*,! + 2𝜇𝐻C+),!𝐻C+*,!L 𝑗, 𝑘, 𝑙 = 1,2,3	(sum	over	𝑙) 𝑖 = 1,2 (7) 
 

where (𝐺:+),! , 𝐺:+*,! , 𝐻B+),! , 𝐻B+*,!) are dimensionless constants and 𝜇 is a dimensionless parameter [28]: 

 

𝜇 = 𝐾&𝐾,𝑎% (8) 
 

where 𝐾, and 𝐾% are force constants associated with stretching and angular distortion of the carbon-

carbon bond, respectively, and they can be obtained from quantum or empirical molecular mechanics 

analyses, or fitted to experimental data, see Ref. [29] for more details. 

The corresponding matrices 𝐆B! and 𝐇B ! can be calculated as follows: 

 𝐆C! = 𝐁C!-'H𝐈\ − 𝐃C !𝐅;!L,					𝐇C ! = 𝐐C !𝐅;! 𝑖 = 1,2 (9) 
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where 𝐈K is the identity matrix, matrix 𝐅:! is given by: 

 𝐅;! = b𝐔C!𝐁C!-'𝐃C ! − (2𝜇𝐕C!𝐀C! +𝐖C!)g-'𝐔C!𝐁C!-' 𝑖 = 1,2 (10) 
 

and matrices M𝐀B! , 𝐁B! , 𝐃B ! , 𝐔B! , 𝐕B! ,𝐖B! , 𝐐B!U are given by: 

 𝐀C! = i𝐴\)*,!k = i− cos𝜔).,! cos𝜔*.,!k 𝑗, 𝑘, 𝑝 = 1,2,3	(sum	over	𝑝) 𝑖 = 1,2 (11) 
 

𝐁C! = 13o𝑟!% + 𝑟!𝑠! + 𝑠!%r
(2𝑟! + 𝑠!) cos𝜙',! −(𝑟! − 𝑠!) cos𝜙%,! −(𝑟! + 2𝑠!) cos𝜙(,!√3	𝑠! sin𝜙',! −√3(𝑟! − 𝑠!) sin𝜙%,! √3	𝑟! sin𝜙(,!(2𝑟! + 𝑠!) sin𝜙',! −(𝑟! − 𝑠!) sin𝜙%,! −(𝑟! + 2𝑠!) sin𝜙(,!w (12) 

 

𝐃C ! = 13o𝑟!% + 𝑟!𝑠! + 𝑠!%r
−(2𝑟! + 𝑠!) sin𝜙',! (𝑟! − 𝑠!) sin𝜙%,! (𝑟! + 2𝑠!) sin𝜙(,!√3	𝑠! cos𝜙',! −√3(𝑟! + 𝑠!) cos𝜙%,! √3	𝑟! cos𝜙(,!(2𝑟! + 𝑠!) cos𝜙',! −(𝑟! − 𝑠!) cos𝜙%,! −(𝑟! + 2𝑠!) cos𝜙(,!w (13) 

 

𝐔C! = r sin𝜙',! sin𝜙%,! sin𝜙(,!cos𝜙',! cos𝜙%,! cos𝜙(,!𝑠! cos𝜙',! −(𝑟! + 𝑠!) cos𝜙%,! 𝑟! cos𝜙(,!w (14) 
 

𝐕C! = r−cos𝜙',! −cos𝜙%,! −cos𝜙(,!sin𝜙',! sin𝜙%,! sin𝜙(,!0 0 0 w (15) 
 

𝐖C ! = r 0 0 00 0 0−𝑠! sin𝜙',! (𝑟! + 𝑠!) sin𝜙%,! −𝑟! sin𝜙(,!w (16) 
 𝐐C! = i𝑄;)*,!k = i− cos𝜔*),!k 𝑗, 𝑘 = 1,2,3 𝑖 = 1,2 (17) 
 

where: 

 

cos𝜔)*,! = y(cos𝜙),! sin𝜙.,! cos𝜑*,! − sin𝜙),! cos𝜙.,!) sin 𝜃*,!⁄0 											𝑗 ≠ 𝑘 ≠ 𝑝𝑗 = 𝑘  (18) 
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and (𝑟! , 𝑠!) are the chirality indices of the 𝑖-th carbon nanotube, which define its radius [20]: 

 

𝑅! = √3	𝑎2𝜋 	o𝑟!% + 𝑟!𝑠! + 𝑠!% (19) 
 

The structural parameters of the 𝑖-th single-walled carbon nanotube, i.e., chiral angles (𝜙',! , 𝜙(,! , 𝜙-,!) 

and torsion angles (𝜑',! , 𝜑(,! , 𝜑-,!), which can be calculated by means of the equations [30]: 

 

𝜙',! = arccos 2𝑟! + 𝑠!2o𝑟!% + 𝑟!𝑠! + 𝑠!% 𝜙%,! = 4𝜋3 + 𝜙',! 𝜙(,! = 2𝜋3 + 𝜙',! (20) 
 

𝜑',! = 𝜋o𝑟!% + 𝑟!𝑠! + 𝑠!% cos𝜙',! 𝜑%,! = 𝜋o𝑟!% + 𝑟!𝑠! + 𝑠!% cos �
𝜋3 + 𝜙',!� 

(21) 𝜑(,! = 𝜋o𝑟!% + 𝑟!𝑠! + 𝑠!% cos �
𝜋3 − 𝜙',!� 

 

and bond angles (𝜃',! , 𝜃(,! , 𝜃-,!), which can be written as a function of the previous parameters in the 

following form [30]: 

 cos 𝜃),! = sin𝜙*,! sin𝜙.,! cos𝜑),! + cos𝜙*,! cos𝜙.,! (22) 𝑗, 𝑘, 𝑝 = 1,2,3	(sum	over	𝑝)										𝑖 = 1,2 

 

are illustrated in Figure 2, see Ref. [28] for more details. 

It should be stressed that, in the nonlocal anisotropic elastic constitutive equations (5), the size effects 

are taken into account by introducing the nonlocal parameter 𝑒$ (nonlocal model), while the chirality 

effects are considered by adopting the anisotropic surface elastic constants 𝑌:)*,! (anisotropic model). 
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Figure 2. Schematic illustration of a (r, s) single-walled carbon nanotube. (a) Global structure with a zoom 

of a single representative atom; (b) side view of the local structure; (c) top view of the local structure [28] 

 

Starting from equations (5), and assuming that carbon nanotubes satisfy the estimations 𝑒$𝑎/𝐿 ≪ 1 

and 𝑒$𝑎/𝑅 ≪ 1 (i.e., accuracy is not lost by simplifying the higher order terms than the second one 

with respect to Laplace operator), the dimensionless stresses (𝜎/",! , 𝜎/%,! , 𝜏̃"%,!) can be rewritten as: 

 𝜎"",! = 𝑌;'',!𝜀"̃,! + 𝑌;'%,!𝜀&̃,! + 𝑌;'(,!𝛾""&,! + (𝑒$𝑎")%∇C!%H𝑌;'',!𝜀"̃,! + 𝑌;'%,!𝜀&̃,! + 𝑌;'(,!𝛾""&,!L 
(23) 𝜎"&,! = 𝑌;%',!𝜀"̃,! + 𝑌;%%,!𝜀&̃,! + 𝑌;%(,!𝛾""&,! + (𝑒$𝑎")%∇C!%H𝑌;%',!𝜀"̃,! + 𝑌;%%,!𝜀&̃,! + 𝑌;%(,!𝛾""&,!L 

𝜏̃"&,! = 𝑌;(',!𝜀"̃,! + 𝑌;(%,!𝜀&̃,! + 𝑌;((,!𝛾""&,! + (𝑒$𝑎")%∇C!%H𝑌;(',!𝜀"̃,! + 𝑌;(%,!𝜀&̃,! + 𝑌;((,!𝛾""&,!L 
 

From equations (23) it can be noted that, if it is posed 𝑒$ = 0 (the nonlocal effects are removed), then 

the nonlocal anisotropic elastic shell model becomes a local anisotropic elastic shell model. 

 

3.2. Force and moment resultants 

Starting from the nonlocal anisotropic elastic constitutive equations (23), the correlated dimensionless 

force resultants per unit length of the 𝑖-th cylindrical shell (𝑁B",! , 𝑁B%,! , 𝑁B"%,!) are written as a function 

of the corresponding dimensionless middle surface strains in the form: 

 

(a) 

(b) 

(c) 
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𝑁C",! = 𝑌;'',!𝜀"̃,$,! + 𝑌;'%,!𝜀&̃,$,! + 𝑌;'(,!𝛾""&,$,! + (𝑒$𝑎")%∇C!%H𝑌;'',!𝜀"̃,$,! + 𝑌;'%,!𝜀&̃,$,! + 𝑌;'(,!𝛾""&,$,!L  

𝑁C&,! = 𝑌;%',!𝜀"̃,$,! + 𝑌;%%,!𝜀&̃,$,! + 𝑌;%(,!𝛾""&,$,! + (𝑒$𝑎")%∇C!%H𝑌;%',!𝜀"̃,$,! + 𝑌;%%,!𝜀&̃,$,! + 𝑌;%(,!𝛾""&,$,!L (24) 
𝑁C"&,! = 𝑌;(',!𝜀"̃,$,! + 𝑌;(%,!𝜀&̃,$,! + 𝑌;((,!𝛾""&,$,! + (𝑒$𝑎")%∇C!%H𝑌;(',!𝜀"̃,$,! + 𝑌;(%,!𝜀&̃,$,! + 𝑌;((,!𝛾""&,$,!L  

 

and the correlated dimensionless moment resultants per unit length of the 𝑖-th shell (𝑀B",! , 𝑀B%,! , 𝑀B"%,!) 

are written as a function of the corresponding dimensionless middle surface changes in curvature and 

torsion in the form: 

 

𝑀C",! = 𝛽!12 �𝑌;'',!𝑘;",! + 𝑌;'%,!𝑘;&,! + 𝑌;'(,!𝑘;"&,! + (𝑒$𝑎")%∇C!%H𝑌;'',!𝑘;",! + 𝑌;'%,!𝑘;&,! + 𝑌;'(,!𝑘;"&,!L�  

𝑀C&,! = 𝛽!12 �𝑌;%',!𝑘;",! + 𝑌;%%,!𝑘;&,! + 𝑌;%(,!𝑘;"&,! + (𝑒$𝑎")%∇C!%H𝑌;%',!𝑘;",! + 𝑌;%%,!𝑘;&,! + 𝑌;%(,!𝑘;"&,!L� (25) 
𝑀C"&,! = 𝛽!12 �𝑌;(',!𝑘;",! + 𝑌;(%,!𝑘;&,! + 𝑌;((,!𝑘;"&,! + (𝑒$𝑎")%∇C!%H𝑌;(',!𝑘;",! + 𝑌;(%,!𝑘;&,! + 𝑌;((,!𝑘;"&,!L�  

 

where 𝛽! = ℎ/𝑅! is the thickness ratio of the 𝑖-th cylindrical shell. 

The previous equations will be adopted into the following expressions of the boundary conditions of 

the 𝑖-th cylindrical shell. 

 

3.3. Elastic strain energy 

The dimensionless elastic strain energy 𝑈B! of the 𝑖-th cylindrical shell, which models the single-walled 

carbon nanotube, under plane stress hypothesis (𝜎& = 0), can be expressed as follows [20]: 

 

𝑈C! = 12 1𝛽! � � � H𝜎"",!𝜀"̃,! + 𝜎"&,!𝜀&̃,! + 𝜏̃"&,!𝛾""&,!L𝑑𝜂𝑑𝜃𝑑𝜁/0!/%

-0!/%

%2

$

'

$

 (26) 
 

By inserting relationships (23) and (4) into equation (26), the dimensionless elastic strain energy 𝑈B! 

of the 𝑖-th cylindrical shell, in case of homogeneous anisotropic elastic material, becomes: 

 

𝑈C! = 12�� � H𝑌;'',!𝜀"̃,$,!% + 𝑌;'%,!𝜀"̃,$,!𝜀&̃,$,! + 𝑌;'(,!𝜀"̃,$,!𝛾""&,$,! +𝑌;%',!𝜀"̃,$,!𝜀&̃,$,! +%2

$

'

$

  

+𝑌;%%,!𝜀&̃,$,!% + 𝑌;%(,!𝜀&̃,$,!𝛾""&,$,! + 𝑌;(',!𝜀"̃,$,!𝛾""&,$,! + 𝑌;(%,!𝜀&̃,$,!𝛾""&,$,! + 𝑌;((,!𝛾""&,$,!% L  
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𝑑𝜂𝑑𝜃 + 𝛽!%12� � H𝑌;'',!𝑘;",!% + 𝑌;'%,!𝑘;",!𝑘;&,! + 𝑌;'(,!𝑘;",!𝑘;"&,! +𝑌;%',!𝑘;",!𝑘;&,! +%2

$

'

$

  

+𝑌;%%,!𝑘;&,!% + 𝑌;%(,!𝑘;&,!𝑘;"&,! + 𝑌;(',!𝑘;",!𝑘;"&,! + 𝑌;(%,!𝑘;&,!𝑘;"&,! + 𝑌;((,!𝑘;"&,!% L𝑑𝜂𝑑𝜃 +  

+(𝑒$𝑎")% �� � H𝑌;'',!𝜀"̃,$,!∇C!%𝜀"̃,$,! + 𝑌;'%,!𝜀"̃,$,!∇C!%𝜀&̃,$,! + 𝑌;'(,!𝜀"̃,$,!∇C!%𝛾""&,$,! +%2

$

'

$

 (27) 
+𝑌;%',!𝜀&̃,$,!∇C!%𝜀"̃,$,! + 𝑌;%%,!𝜀&̃,$,!∇C!%𝜀&̃,$,! + 𝑌;%(,!𝜀&̃,$,!∇C!%𝛾""&,$,! + 𝑌;(',!𝛾""&,$,!∇C!%𝜀"̃,$,! +  

+𝑌;(%,!𝛾""&,$,!∇C!%𝜀&̃,$,! + 𝑌;((,!𝛾""&,$,!∇C!%𝛾""&,$,!L𝑑𝜂𝑑𝜃 + 𝛽!%12� � H𝑌;'',!𝑘;",!∇C!%𝑘;",! +%2

$

'

$

  

+𝑌;'%,!𝑘;",!∇C!%𝑘;&,! + 𝑌;'(,!𝑘;",!∇C!%𝑘;"&,! + 𝑌;%',!𝑘;&,!∇C!%𝑘;",! + 𝑌;%%,!𝑘;&,!∇C!%𝑘;&,! +  

+𝑌;%(,!𝑘;&,!∇C!%𝑘;"&,! + 𝑌;(',!𝑘;"&,!∇C!%𝑘;",! + 𝑌;(%,!𝑘;"&,!∇C!%𝑘;&,! + 𝑌;((,!𝑘;"&,!∇C!%𝑘;"&,!L𝑑𝜂𝑑𝜃L�  

 

In equation (27), the first two terms on the right-hand side are associated with a local model: the first 

term, which is related to the middle surface strains of the shell, represents the local stretching energy, 

while the second one, which is related to the middle surface changes in curvature and torsion of the 

shell, represents the local bending energy [23]. 

Moreover, in equation (27), the third and the fourth terms on the right-hand side are connected with 

a nonlocal model: the third term, which is related to the middle surface strains of the shell, represents 

the nonlocal stretching energy, while the fourth one, which is related to the middle surface changes 

in curvature and torsion of the shell, represents the nonlocal bending energy. 

The dimensionless elastic strain energy of a DWCNT, given by two concentric SWCNTs, is [20]: 

 

𝑈C =�𝛿!𝑈C!%

!3'

 (28) 
 

where 𝛿! = 𝑅!/𝑅' and 𝑅' is the radius of the inner SWCNT. 

 

3.4. Kinetic energy 

The dimensional time variable 𝑡 is made dimensionless by adopting a reference frequency 𝜔$, which 

denotes the lowest extensional circular frequency of an anisotropic ring under plane strain hypothesis, 

expressed in the form [26]: 
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𝜔$ = � 𝑌𝜌ℎ𝑅'% 
(29) 

 

where: 

 

𝑌 = 2𝐾,3√3 (30) 
 

is a reference dimensional surface elastic constant, 𝜌 and ℎ are mass density and thickness of the two 

layers of the DWCNT, respectively, and 𝜏 = 𝜔$𝑡 is the dimensionless time variable. 

The dimensionless velocity field of the 𝑖-th cylindrical shell (𝑢/!
., 𝑣/!

., 𝑤0!
.) is written in the form [20]: 

 

𝑢"!4 = 𝑑𝑢"!𝑑𝜏 = 𝑢̇!𝑅!𝜔$ 𝑣"!4 = 𝑑𝑣"!𝑑𝜏 = 𝑣̇!𝑅!𝜔$ 𝑤'!4 = 𝑑𝑤'!𝑑𝜏 = 𝑤̇!𝑅!𝜔$ 𝑖 = 1,2 (31) 
 

where (𝑢̇! , 𝑣̇! , 𝑤̇!) is the corresponding dimensional velocity field. 

The dimensionless kinetic energy of the 𝑖-th cylindrical shell, which models the single-walled carbon 

nanotube, by neglecting the rotary inertia effect, is given by [20]: 

 

𝑇;! = 12𝛿!%� � (𝑢"!4% + 𝑣"!4% +𝑤'!4%)𝑑𝜂𝑑𝜃%2

$

'

$

 𝑖 = 1,2 (32) 
 

The dimensionless kinetic energy of a DWCNT, given by two concentric SWCNTs, is [20]: 

 

𝑇; =�𝛿!𝑇;!%

!3'

 (33) 
 

3.4. Nonlinear van der Waals interaction energy 

Van der Waals interaction forces between the two layers (𝑖, 𝑗) of a DWCNT can be modelled starting 

from the dimensionless Lennard-Jones pair potential [41]: 

 

𝑉;56(𝑎") = 4𝜀̃ �4𝜎"𝑎"5'% − 4𝜎"𝑎"57� (34) 
 

where 𝜀 is the C-C potential depth and 𝜀̃ = 𝜀/𝑌𝑅'( is the correlated dimensionless parameter, 𝜎 is the 

C-C equilibrium separation distance and 𝜎/ = 𝜎/𝑅'	is the correlated dimensionless parameter. 
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The dimensionless van der Waals interaction force is found by deriving the dimensionless Lennard- 

Jones pair potential (34) with respect to the C-C atom distance [41]: 

 

𝐹;(𝑎") = −𝑑𝑉;56(𝑎")𝑑𝑎" = 24𝜀̃𝜎" �2 4𝜎"𝑎"5'( − 4𝜎"𝑎"58� (35) 
 

In order to properly investigate the effect of van der Waals interactions on the mechanical behaviour 

of DWCNTs, we have to expand the dimensionless van der Waals interaction force (35) not only to 

the first-order term (i.e. linear analysis), therefore neglecting the change in distance between the two 

layers of the DWCNT due to van der Waals interactions, but at least up to the third-order term (i.e. 

cubic nonlinearity) [46]: 

 

𝐹;(𝑎") = 𝐹;(𝑎"$) + 𝑑𝐹;(𝑎"$)𝑑𝑎"$ (𝑎" − 𝑎"$) + 16𝑑(𝐹;(𝑎"$)𝑑𝑎"$( (𝑎" − 𝑎"$)( (36) 
 

where 𝑎/$ is the dimensionless initial C-C atom distance of the two layers prior to bucking. 

It should be observed that in expansion (36) the second-order term (i.e. quadratic nonlinearity) is not 

present, this is because van der Waals interaction force (35) is an odd function of 𝑎/. Moreover, if in 

expansion (36) also the third-order term is eliminated, then the linear van der Waals interaction force 

is obtained. 

By substituting equation (35) into expansion (36) it is derived [46]: 

 

𝐹;(𝑎") = 24𝜀̃𝜎" �2 4 𝜎"𝑎"$5'( − 4 𝜎"𝑎"$58� − 24𝜀̃𝜎"% �26 4 𝜎"𝑎"$5'9 − 774 𝜎"𝑎"$5:� ∙ (37) ∙ (𝑎" − 𝑎"$) − 24𝜀̃𝜎"9 �910 4 𝜎"𝑎"$5'7 − 844 𝜎"𝑎"$5'$� ∙ (𝑎" − 𝑎"$)( 

 

At the equilibrium position prior to buckling, the initial van der Waals interaction force 𝐹:(𝑎/$) is very 

small and it can be neglected. By integrating equation (37) over the entire DWCNT, it is obtained the 

dimensionless pressure 𝑝/! exerted on the 𝑖-th SWCNT due to van der Waals interactions between the 

two layers (𝑖, 𝑗), expressed as a function of the dimensionless radial displacements (𝑤0! , 𝑤0)) [46]: 

 𝑝"!(𝜂, 𝜃) = 𝑐̃!)H𝛿!𝑤'! − 𝛿)𝑤')L + 𝑒̃!)(𝛿!𝑤'! − 𝛿)𝑤'))(  𝑖, 𝑗 = 1,2 𝑖 ≠ 𝑗 (38) 
 

where (𝑐̃!) , 𝑒̃!)) are dimensionless van der Waals interaction coefficients between the layers (𝑖, 𝑗). 
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These coefficients can be expressed by adopting He’s formulation in the following form [46]: 

 

𝑐̃!) = −�1001𝜋𝜀̃𝜎"'%3𝑎"9 𝐸;!)'( − 1120𝜋𝜀̃𝜎"79𝑎"9 𝐸;!)8� 𝛿)  𝑖, 𝑗 = 1,2 𝑖 ≠ 𝑗 (39) 𝑒̃!) = −�65065𝜋𝜀̃𝜎"'%6𝑎"9 𝐸;!)'; − 3920𝜋𝜀̃𝜎"73𝑎"9 𝐸;!)< �𝛿) 
 

The dimensionless elliptical integral 𝐸:!)
/ of the interaction coefficients (39) is written as [42]: 

 

𝐸;!)= = (𝛿) + 𝛿!)-=� 𝑑𝜃(1 − 𝑘;!) cos% 𝜃)=/%2/%

$

 𝑖, 𝑗 = 1,2 𝑖 ≠ 𝑗 𝑚 = 7,9,13,15 (40) 
 

where the dimensionless geometric coefficient 𝑘:!) of the integrals (40) is expressed as [42]: 

 

𝑘;!) = 4𝛿)𝛿!(𝛿) + 𝛿!)% 𝑖, 𝑗 = 1,2 𝑖 ≠ 𝑗 (41) 
 

The dimensionless van der Waals interaction energy of the i-th cylindrical shell, which models the 

single-walled carbon nanotube, is expressed as follows [20]: 

 

𝑉;! = −12𝛿! � � 𝑝"!(𝜂, 𝜃)𝑤'!𝑑𝜂𝑑𝜃%2

$

'

$

 𝑖 = 1,2 (42) 
 

and the dimensionless van der Waals interaction energy of a DWCNT is [20]: 

 

𝑉; =�𝛿!𝑉;!%

!3'

 (43) 
 

4. Vibration modelling of DWCNTs 

In order to perform the vibration analysis of DWCNTs, a two-step energy based procedure is adopted: 

(i) in the linear field, the displacement field of each SWCNT is expanded by means of a double mixed 

series, the elastic strain, kinetic and van der Waals interaction energies of the DWCNT are expressed 

in terms of free parameters of the series and Rayleigh-Ritz method is used to get approximate natural 

frequencies and modal shapes; (ii) in the nonlinear field, the three displacements of each SWCNT are 

re-expanded by considering the approximate eigenfunctions derived in the linear analysis, the elastic 

strain, kinetic and van der Waals interaction energies of the DWCNT are expressed in terms of modal 



 

20 

 

coordinates and Lagrange equations are adopted to obtain a system of nonlinear ordinary differential 

equations of motion, which is then solved numerically. 

 

4.1. Linear vibration analysis 

In the linear vibration analysis, only the linear terms within the expressions of the elastic strain energy 

(27) and van der Waals interaction energy (42) are considered. 

A modal vibration, i.e. a synchronous motion, of a DWCNT, composed by two concentric SWCNTs, 

which are modelled as thin cylindrical shells, can be formally written as [20]: 

 𝑢"!(𝜂, 𝜃, 𝜏) = 𝑈C!(𝜂, 𝜃)𝑓\!(𝜏) 𝑣"!(𝜂, 𝜃, 𝜏) = 𝑉;!(𝜂, 𝜃)𝑓\!(𝜏) 𝑖 = 1,2 (44) 𝑤'!(𝜂, 𝜃, 𝜏) = 𝑊C!(𝜂, 𝜃)𝑓\!(𝜏) 
 

where (𝑈B! , 𝑉:! ,𝑊B!) are the three dimensionless components of the modal shape of the 𝑖-th cylindrical 

shell and 𝑓K!(𝜏) is the corresponding dimensionless time law, which is supposed to be the same for the 

three dimensionless displacements (𝑢/! , 𝑣/! , 𝑤0!) (modal vibration hypothesis). 

The modal shape components (𝑈B! , 𝑉:! ,𝑊B!) are expanded by means of a double mixed series in terms 

of 𝑚-th degree Chebyshev orthogonal polynomials 𝑇/∗ (𝜂) along the longitudinal direction 𝜂 and 

harmonic functions (cos 𝑛𝜃 , sin 𝑛𝜃) along the circumferential direction 𝜃, in the form [26]: 

 

𝑈C!(𝜂, 𝜃) = � �𝑈C!,=,>𝑇=∗ (𝜂) cos𝑛𝜃@

>3$

A"

=3$

 𝑉;!(𝜂, 𝜃) = � �𝑉;!,=,>𝑇=∗ (𝜂) sin𝑛𝜃@

>3$

A#

=3$

 

𝑖 = 1,2 (45) 
𝑊C!(𝜂, 𝜃) = � �𝑊C!,=,>𝑇=∗ (𝜂) cos𝑛𝜃@

>3$

A$

=3$  
 

where 𝑇/∗ = 𝑇/(2𝜂 − 1), 𝑚 denotes the number of longitudinal half-waves, 𝑛 represents the number 

of circumferential waves and (𝑈B!,/,1, 𝑉:!,/,1,𝑊B!,/,1) are unknown coefficients, which can be obtained 

by imposing the boundary conditions. 

 

4.2. Boundary conditions 

In this paper, simply supported DWCNTs are analysed. The corresponding boundary conditions are 

expressed in the form [26]: 

 𝑣"! = 0 𝑤'! = 0 𝑁C",! = 0 𝑀C",! = 0 𝜂 = 0,1 𝑖 = 1,2 (46) 
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Starting from conditions (46), taking into consideration equations (24,25) for the dimensionless force 

and moment resultants, equations (44) for the dimensionless displacements, and expansions (45) for 

the corresponding modal shape components, the following relationships are derived [26]: 

 

𝑉;!(𝜂, 𝜃) = � �𝑉;!,=,>𝑇=∗ (𝜂) sin 𝑛𝜃@

>3$

A#

=3$

= 0 

𝜂 = 0,1 𝑖 = 1,2 (47) 
𝑊C!(𝜂, 𝜃) = � �𝑊C!,=,>𝑇=∗ (𝜂) cos 𝑛𝜃@

>3$

A$

=3$

= 0 

𝑈C!,B(𝜂, 𝜃) = � �𝑈C!,=,>𝑇=,B∗ (𝜂) cos 𝑛𝜃@

>3$

A"

=3$

= 0 

𝑊C!,BB(𝜂, 𝜃) = � �𝑊C!,=,>𝑇=,BB∗ (𝜂) cos 𝑛𝜃@

>3$

A$

=3$

= 0 

 

where (∙),2 = 𝜕(∙)/𝜕𝜂 and (∙),22 = 𝜕((∙)/𝜕𝜂(. 

The linear algebraic system given by equations (47) can be solved analytically in terms of coefficients 

(𝑈B!,',1, 𝑈B!,(,1, 𝑉:!,$,1, 𝑉:!,',1,𝑊B!,$,1,𝑊B!,',1,𝑊B!,(,1,𝑊B!,-,1), for 𝑛 ∈ [0, 𝑁]. Therefore, in the specific case of 

simply supported DWCNTs, eight different dimensionless coefficients for each SWCNT are derived. 

 

4.3. Rayleigh-Ritz method 

In the case of DWCNTs, the maximum number of variables needed to describe a general vibration 

mode with 𝑛 circumferential waves is given by 𝑁3 = 2 × (𝑀4 +𝑀5 +𝑀6 + 3 − 𝑝), where 2 is the 

number of concentric SWCNTs, 𝑀4 = 𝑀5 = 𝑀6 is the maximum number of longitudinal half-waves 

considered and 𝑝 is the number of equations needed to satisfy the boundary conditions. In the case of 

simply supported DWCNTs, it is imposed 𝑝 = 8. 

Moreover, by means of a specific convergence analysis, it was obtained that 𝑀4 = 𝑀5 = 𝑀6 = 11 

gives accurate results with relatively reduced computational effort. Therefore, it is found 𝑁3 = 56. 

For a multi-mode vibration analysis including different values of circumferential waves 𝑛, the number 

of degrees of freedom of the system is computed by the relation 𝑁789 = 𝑁3 × (𝑁 + 1), where 𝑁 is 

the maximum number of circumferential waves considered. 

Equations (44) are then inserted into the linear expressions of elastic strain energy (27), kinetic energy 

(32) and van der Waals interaction energy (42) in order to obtain the value of Rayleigh quotient 𝑅(𝐪0), 

where 𝐪0 is a vector containing all the unknown coefficients of expansions (45), which is expressed in 
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the form [26]: 

 

𝐪' =
⎣⎢
⎢⎢
⎡ ⋮𝑈C!,=,>𝑉;!,=,>𝑊C!,=,>⋮ ⎦⎥

⎥⎥
⎤
 𝑖 = 1,2 (48) 

 

After imposing the stationarity to Rayleigh quotient 𝑅(𝐪0), the following classic eigenvalue problem 

in dimensionless form is obtained [26]: 

 H−𝜔'%𝐌C + 𝐊CL𝐪' = 𝟎 (49) 
 

which provides approximate dimensionless circular frequencies (eigenvalues 𝜔0)) and modal shapes 

(eigenvectors 𝐪0)), with 𝑗 = (1,2, … , 𝑁789), where 𝐌B  and 𝐊B  are the dimensionless mass and stiffness 

matrices, respectively. 

The approximate modal shape of the 𝑗-th mode of the 𝑖-th cylindrical shell is provided by expansions 

(45), where coefficients (𝑈B!,/,1, 𝑉:!,/,1,𝑊B!,/,1) are replaced with coefficients (𝑈B!,/,1
()) , 𝑉:!,/,1

()) ,𝑊B!,/,1
()) ), 

which are the components of the 𝑗-th eigenvector 𝐪0 of equation (49), and the vector function: 

 

𝐖C ())(𝜂, 𝜃) = ⎣⎢⎢
⎡𝑈C!())(𝜂, 𝜃)𝑉;!())(𝜂, 𝜃)𝑊C!())(𝜂, 𝜃)⎦⎥

⎥⎤ 𝑖 = 1,2
 

(50) 
 

is the approximation of the 𝑗-th eigenfunction vector of the original problem. 

Eventually, the components of the 𝑗-th eigenfunction vector (50) can be normalised by imposing: 

 

max ¥max ¦𝑈C!())(𝜂, 𝜃), 𝑉;!())(𝜂, 𝜃),𝑊C!())(𝜂, 𝜃)§¨ = 1 𝑖 = 1,2 (51) 
 

The previous normalization is carried out in order to assign a maximum amplitude equal to the unity 

to the dominant component of the 𝑗-th eigenfunction vector (50), which is the dominant direction of 

vibration of the 𝑗-th modal shape; this normalization improves the computational efficiency. 
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4.4 Nonlinear vibration analysis 

In the nonlinear vibration analysis, the full expressions of elastic strain energy (27) and van der Waals 

interaction energy (42) are considered (cubic nonlinearity). 

The three dimensionless displacements (𝑢/ ! , 𝑣/! , 𝑤0!) (44) are re-expanded by adopting the approximate 

dimensionless modal shapes (𝑈C!(),>), 𝑉;!(),>),𝑊C!(),>)) derived in the previous linear analysis and different 

dimensionless time laws (𝑓K!,4,),1, 𝑓K!,5,),1, 𝑓K!,6,),1) for each displacement, in the form [51]: 

 

𝑢"!(𝜂, 𝜃, 𝜏) =��𝑈C!(),>)(𝜂, 𝜃)𝑓\!,E,),>(𝜏)@

>3'

@"

)3'

   

𝑣"!(𝜂, 𝜃, 𝜏) =��𝑉;!(),>)(𝜂, 𝜃)𝑓\!,F,),>(𝜏)@

>3'

@#

)3'

 𝑖 = 1,2 (52) 
𝑤'!(𝜂, 𝜃, 𝜏) =��𝑊C!(),>)(𝜂, 𝜃)𝑓\!,G,),>(𝜏)@

>3'

@$

)3'

   

 

where index 𝑗 is adopted to order the modes with increasing natural frequency, index 𝑛 indicates the 

number of circumferential waves and the dimensionless modal coordinates (𝑓K!,4,),1, 𝑓K!,5,),1, 𝑓K!,6,),1) are 

unknown time laws to be determined. 

Expansions (52) are then inserted into the dimensionless nonlinear expressions of elastic strain energy 

(27), kinetic energy (32) and van der Waals interaction energy (42). 

The dimensionless Lagrange equations of motion, in the case of free vibrations, are written as [52]: 

 𝑑𝑑𝜏 � 𝜕𝑇;𝜕𝑞̇*� + 𝜕(𝑈C + 𝑉;)𝜕𝑞* = 0 𝑘 ∈ [1, 𝑁HIJ] (53) 
 

where (𝑞* , 𝑞̇*) are the dimensionless Lagrangian coordinates and 𝑁789 denotes the maximum number 

of degrees of freedom of the system, which depends on the number of vibration modes considered in 

expansions (52). 

By substituting the dimensionless vector functions [53]: 

 

𝐅(𝐪) = 𝜕(𝑈C + 𝑉;)𝜕𝐪  𝐌𝐪̈ = 𝑑𝑑𝜏 �𝜕𝑇;𝜕𝐪̇� (54) 
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into the equations (53), where 𝐌 is the dimensionless mass matrix and (𝐪, 𝐪̇, 𝐪̈) are the dimensionless 

Lagrangian coordinate vectors, we obtain [53]: 

 𝐌𝐪̈ + 𝐅(𝐪) = 𝟎 (55) 
 

By introducing the vector function 𝐅𝐱(𝐪) = 𝐌='𝐅(𝐪) into the equation (55), then the dimensionless 

Lagrange equations of motion for free vibrations are expressed as [53]: 

 𝐪̈ + 𝐅𝐱(𝐪) = 𝟎 (56) 
 

The dimensionless Lagrange equations of motion (56) denote a set of nonlinear ordinary differential 

equations; these equations, completed by the modal initial conditions on displacements and velocities, 

are then solved by considering Runge-Kutta numerical method with suitable accuracy, precision and 

number of steps. 
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5. Molecular dynamics simulations of DWCNTs 

In the present paper, MD simulations of DWCNTs were performed by using the program developed 

in the Institute of Mathematical Problems in Biology of the Russian Academy of Sciences (RAS) of 

Moscow by Professor Nikolai K. Balabaev. In this program, named “PUMA”, the AMBER (Assisted 

Model Building with Energy Refinement) force field is adopted for the modelling of the potential 

energies, whose constants are measured in Kcal/mol or Kcal/mol∙Å2 in dependence on the kind of 

interaction, the length is measured in Angstroms (Å), the time in picoseconds (1 ps = 10-12 s), the 

atomic mass in atomic mass units (a.m.u.) and the pressure in GPa. The potential energies used in the 

MD simulations of DWCNTs are related to the parameters listed below, see Refs. [51-52]. 

1. Valence bond length 𝐿 (C-C, sp2 hybridization), with energy: 

 𝑈L-L = 𝐾'(𝐿 − 𝐿$)% (57) 
 

and constants: 

 

𝐾' = 480.00	 Kcalmol	Å% , 𝐿$ = 1.42	Å (58) 
 

2. Valence angle 𝜃 (C-C-C, sp2 hybridization), with energy: 

 𝑈L-L-L = 𝐾%(𝜃 − 𝜃$)% (59) 
 

and constants: 

 

𝐾% = 90.00	 Kcalmol , 𝜃$ = 120° (60) 
 

3. Torsion angle 𝜑 (C-C-C-C, sp2 hybridization), which represents the “dihedral” interaction. 

There are two different types of this interaction. 

a. The first is associated with the so-called “proper” dihedral angle, with energy: 

 𝑈.N = 𝐾((1 − cos 2𝜑) (61) 
 

and constant: 
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𝐾( = 3.0	 Kcalmol  (62) 
 

b. The second is associated with the so-called “improper” dihedral angle, with energy: 

 𝑈!=.N = 𝐾9(1 − cos 2𝜑) (63) 
 

and constant: 

 

𝐾9 = 0.37	 Kcalmol  (64) 
 

4. Van der Waals interactions, which are calculated for the carbon atoms that are not coupled by 

valence bonds. Van der Waals interactions are described by Lennard-Jones pair potential: 

 

𝑈FOP = 4𝜀 4�𝜎𝑟�'% − �𝜎𝑟�75 (65) 
 

with constants: 

 

𝜀 = 0.086	 Kcalmol , 𝜎 = 3.816	Å (66) 
 

Since van der Waals interactions are long-range enough, then the cutting radius 𝑅 = 10.5	Å 

is adopted to restrict their domain. 

The typical procedure of MD simulations consists of three consecutive stages. 

 

I. The first stage is the initialization. The initially built object is simulated during approximately 

20 ps at the thermostat temperature 𝑇 = 100	K. The thermostat is of collision-type. The bath 

of the virtual particles with fixed mass and kinetic energy collides with the atoms of the CNTs. 

The frequency of collisions and the mass of thermostat particles can be varied: in this work, 

a frequency ~ 10 collisions per ps and a mass of thermostat particles ~ 0.5 a.m.u. are adopted. 

II. The second stage is the relaxation. Usually, the thermostat temperature is increased up to 300 

𝐾 and then it is waited for approximately 100 ps, until the stabilization of the main parameters 

of the DWCNT, i.e., temperature 𝑇, density 𝜌, unit cell dimensions (𝐴" , 𝐴> , 𝐴&) and pressure 

components (𝑃" , 𝑃> , 𝑃&), is obtained. 
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III. The third stage consists in the deformation of the CNTs. A priori, the required circumferential 

and longitudinal wave numbers and the amplitude of the deformation are set. During this stage 

the external field is applied to the CNTs and it is waited for until the relaxation to the deformed 

shape is finished. During this stage the temperature is preserved at 𝑇 = 300	𝐾. As usual, this 

stage is finished after ~ 100 ps. An additional procedure may be applied for the cooling of the 

deformed CNT. Usually, the cooling rate is ~ 2 K per ps. However, it is not mandatory. 

 

The measurement of the oscillation frequencies assumes the conservation of the energy. Therefore, 

the thermostat is turned off at the start of this stage. As a rule, zero masses of the thermostat particles 

are assumed. Simultaneously, the external field is turned off. Naturally, since the deformation shape 

of the CNT is not absolutely accurate for the discrete system, some redundant displacements of the 

atoms can be observed. Therefore, the measurement is started 3-5 ps later. Then, the velocities of the 

atoms during approximately 150-200 ps are recorded in the trajectory file. 

Two approaches may be used to obtain the frequency spectrum. 

 

A. The first approach consists in the analysis of the correlation function velocity-velocity along 

the trajectory. The Fourier spectrum of the function displays only the main frequency of the 

system (partial spectrum). This results in a long and very expensive procedure. 

B. The second approach assumes that the frequency spectrum of the system contains all the most 

relevant motions of the object under consideration. If the system has been initially deformed 

in approximately correct state, then the most important oscillations will be well distinguished 

within the spectrum (total spectrum). 

 

Actually, the MD simulation results reported in the present work have been obtained by considering 

in some cases the first and in other cases the second approach, based on the computational effort. 
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6. Numerical results 

In the present paper, the vibrations of a simply supported armchair DWCNT with chirality indices 

(𝑟', 𝑠') = (20,20) for the inner SWCNT and (𝑟(, 𝑠() = (25,25) for the outer SWCNT are analysed. 

By adopting relation (19), these chirality indices provide radius 𝑅' = 1.356	nm for the inner SWCNT 

and radius 𝑅( = 1.695	nm for the outer SWCNT, respectively. Geometric parameters of the DWCNT 

are completed by equivalent thickness ℎ = 0.066	nm [26] and length 𝐿 = 12.17	nm of the SWCNTs, 

see Table 1. 

The previous configuration for the DWCNT was selected on the basis of three considerations. 

1) The difference between the radii of the two concentric SWCNTs composing this DWCNT is equal 

to 0.34	nm, and “a MWCNT consists of two or more concentric cylindrical shells of graphene sheets 

arranged coaxially around a central hollow with interlayer separation as in graphite (0.34	nm)” [40]. 

Therefore, the DWCNT of Table 1 is realistic. 

2) In the elastic shell model, assuming the equivalent thickness ℎ = 0.066	nm [26], it is found that 

the thickness ratios of the inner SWCNT (𝑅' ℎ⁄ = 20.54) and of the outer SWCNT (𝑅( ℎ⁄ = 25.68) 

are both comprised within the range of validity of the thin shell theories (20 ≤ 𝑅/ℎ ≤ 500), see Ref. 

[21], where the first Kirchhoff-Love’s assumption is verified (i.e., the thickness is small if compared 

with the radius of curvature of the middle surface of the shell). Therefore, the DWCNT of Table 1 

can be studied by adopting Sanders-Koiter thin shell theory. 

3) By considering the discrete nature of CNTs, and assuming the geometric parameters of Table 1, it 

is found for the DWCNT a total number of carbon atoms (9986) very close but however lower than 

the maximum number (10000) tractable by the MD simulation program packet PUMA adopted in 

this work. 

In particular, the DWCNT length 𝐿 = 12.17	nm corresponds to 50 C-C bond rings, where the axial 

distance between two rings of C-C atoms in the case of armchair SWCNTs is 𝑑 = 0.246	nm. 

 

Inner radius 𝑅!	[nm] 1.356 

Outer radius 𝑅"	[nm] 1.695 

Equivalent thickness ℎ	[nm] 0.066 

Length 𝐿	[nm] 12.17 

Table 1. Geometric parameters of the considered simply supported armchair DWCNT 
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6.1. Local anisotropic elastic shell model 

In Table 2, the values of carbon-carbon (C-C) bond parameters (𝑎, 𝐾,, 𝐾%), C-C distance parameters 

(𝜀, 𝜎) and material parameters (𝑌, 𝜌) of CNTs retrieved from the literature are listed. 

In particular parameters 𝐾, and 𝐾%, which denote force constants related to the variance of C-C bond 

length and angle, respectively, were derived from experimental data of graphite and are used in the 

anisotropic “stick-spiral model” that is based on the molecular mechanics approach, see Refs. [28-

29] for the details. 

Moreover, in the present paper, van der Waals interaction forces between the layers of the DWCNT 

are modelled by adopting Taylor expansion of Lennard-Jones pair potential (34), considering C-C 

bond length 𝑎, C-C potential depth 𝜀 and C-C equilibrium separation distance 𝜎 [40]. 

Finally, in order to study the actual discrete DWCNT as a couple of concentric equivalent continuous 

thin cylindrical shells, a reference dimensional surface elastic constant 𝑌 (30) and an equivalent mass 

density 𝜌, resulting from surface density of graphite 𝜎 = 𝜌ℎ = 7.718	 × 10=?	kg/m(, are used [26]. 

 

C-C bond parameters [28-29] 

C-C bond length 𝑎	[nm] 0.142 

C-C bond elongation 𝐾#	[nN/nm] 742 

C-C bond angle variance 𝐾$	[nN ∙ nm] 1.42 

C-C distance parameters [40] 

C-C potential depth 𝜀	[10%""	J] 4.755 

C-C equilibrium separation distance 𝜎	[nm] 0.3407 

CNT material parameters [26] 

Surface elastic constant 𝑌	[N/m] 285.6 

Mass density 𝜌	[kg/m&] 11700 

Table 2. Mechanical parameters of the considered simply supported armchair DWCNT 

  



 

30 

 

In Table 3, the lowest natural frequencies of a simply supported armchair DWCNT with the geometric 

parameters of Table 1 and the mechanical parameters of Table 2 are listed. These natural frequencies 

are obtained by using Sanders-Koiter shell theory and local (𝑒$ = 0) anisotropic elastic shell model 

(the proper value of nonlocal parameter 𝑒$ will be calibrated by means of comparisons with data from 

molecular dynamics simulations). The radial displacement 𝑤 is considered (i.e. natural frequencies 

related to modal shapes with prevalent radial component 𝑊). Bending (𝑛 = 1) and circumferential 

flexure (𝑛 = 2) modes are investigated (they are the modes with the lowest natural frequencies). 

From Table 3 it can be seen that, both for bending and for circumferential flexure modes, the prevalent 

radius (i.e. the radius providing the highest radial displacement 𝑤) always corresponds to 𝑅' (inner 

SWCNT). Moreover, the fundamental mode (i.e. the mode with the lowest natural frequency) is (1,2). 

 

Mode (𝑚, 𝑛) Displacement (𝑢, 𝑣, 𝑤) Radius (𝑅!,𝑅") Natural frequency 𝑓	[THz] 

(1,2) 𝑤 𝑅! 0.26122 

(2,2) 𝑤 𝑅! 0.62898 

(1,1) 𝑤 𝑅! 0.73878 

(3,2) 𝑤 𝑅! 0.84648 

(2,1) 𝑤 𝑅! 1.29156 

(4,2) 𝑤 𝑅! 1.35412 

(5,2) 𝑤 𝑅! 1.51207 

(3,1) 𝑤 𝑅! 1.53321 

(6,2) 𝑤 𝑅! 1.65061 

(4,1) 𝑤 𝑅! 1.78831 

(7,2) 𝑤 𝑅! 1.83847 

(5,1) w 𝑅! 1.94160 

(6,1) w 𝑅! 2.06526 

Table 3. Natural frequencies of the simply supported armchair DWCNT of Table 1. Local anisotropic elastic shell 

model with mechanical parameters of Table 2. Bending modes (𝑛 = 1). Circumferential flexure modes (𝑛 = 2) 
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6.2. Molecular dynamics simulations 

In the present Section, the results from MD simulations carried out on a simply supported armchair 

DWCNT with the geometric parameters of Table 1, by taking into account the force field parameters 

and applying the procedure stages described in Section 5, are reported. 

In particular, the DWCNT is simulated by means of two concentric isolated SWCNTs with van der 

Waals interaction forces between the layers and periodic (i.e. simply supported) boundary conditions 

along the SWCNT axis. 

In Figure 3 the initialization of the DWCNT, which is the first stage of MD simulations, is illustrated. 

During this initial stage, the DWCNT remains undeformed (no longitudinal or circumferential wave) 

and is subjected to the constant thermostat temperature 𝑇 = 100	K. 

 

 

Figure 3. Initialization of the DWCNT at thermalized state (𝑇 = 100	K) 

 

By considering the results from the local anisotropic elastic shell model reported in Section 6.1, the 

first MD simulations are performed for the circumferential flexure mode (1,2), which has 𝑚 = 1 

longitudinal half-wave and 𝑛 = 2 circumferential waves (it is the fundamental mode in the continuum 

modelling, i.e., the vibration mode with the lowest natural frequency). 

In Figure 4, the circumferential flexure deformation of the DWCNT with (𝑚, 𝑛) = (1,2), under radial 

deformation amplitude 𝛿𝑤 = 0.1	nm and constant temperature 𝑇 = 300	K, is shown. 
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Figure 4. Circumferential flexure deformation of the DWCNT with (𝑚, 𝑛) = (1,2) 

 

In this case, in order to obtain the frequency spectrum, velocity-velocity correlation function along 

the trajectory was studied (see the first approach described in Section 5). In Figure 5, Fourier spectrum 

of the autocorrelation function < 𝑣)(0)	𝑣)(𝑡) >, which displays the frequency corresponding to the 

circumferential flexure deformation (𝑚, 𝑛) = (1,2), is shown, where the CFM oscillation frequency 

is 𝑓',( ≈ 2.5 × 10''	Hz. 

 

 

Figure 5. Frequency spectrum of the circumferential flexure deformed DWCNT with (𝑚, 𝑛) = (1,2) 



 

33 

 

In this specific case, an additional procedure was applied for the cooling of the circumferential flexure 

deformed DWCNT from 𝑇 = 300	K to 𝑇 = 100	K in the time interval from 𝑡 = 20	ps to 𝑡 = 100	ps 

with cooling rate 𝑑𝑇 𝑑𝑡⁄ = 2.5	K/ps, see Figure 6, where the measurement of the oscillation natural 

frequencies is actually performed at 160	K. 

 

 

Figure 6. Cooling procedure of the circumferential flexure deformed DWCNT with (𝑚, 𝑛) = (1,2) 

 

The same procedure is performed for the MD simulations of the DWCNT in case of circumferential 

flexure mode (2,2), with 𝑚 = 2 longitudinal half-waves and 𝑛 = 2 circumferential waves (it is the 

mode with the second lowest natural frequency in the continuum modelling of Section 6.1). In Figure 

7, Fourier spectrum of the autocorrelation function < 𝑣)(0)	𝑣)(𝑡) > for the circumferential flexure 

deformation (𝑚, 𝑛) = (2,2) is shown, where the CFM oscillation frequency is 𝑓(,( ≈ 6.0 × 10''	Hz. 

 

 

Figure 7. Frequency spectrum of the circumferential flexure deformed DWCNT with (𝑚, 𝑛) = (2,2) 
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Let us consider the MD simulations of the DWCNT in the case of circumferential flexure mode (3,2), 

which presents 𝑚 = 3 longitudinal half-waves and 𝑛 = 2 circumferential waves. 

In Figure 8, the circumferential flexure deformation of the DWCNT with (𝑚, 𝑛) = (3,2), under radial 

deformation amplitude 𝛿𝑤 = 0.1	nm and constant temperature 𝑇 = 100	K, is shown. 

 

 

Figure 8. Circumferential flexure deformation of the DWCNT with (𝑚, 𝑛) = (3,2) 

 

In this case, in order to obtain a frequency spectrum containing all the CFM natural frequencies, it is 

adopted the second approach reported in Section 5, i.e., the Fourier transform of the average square 

of the atom velocities is performed to obtain the FFT spectrum of the kinetic energy, see Figure 9. 

 

 

Figure 9. Frequency spectrum with all the CFM natural frequencies (deformation mode (3,2)) 
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From Figure 9, the following CFM natural frequencies 𝑓',( ≈ 2.5 × 10''	Hz, 𝑓(,( ≈ 6.0 × 10''	Hz, 

𝑓-,( ≈ 8.0 × 10''	Hz, 𝑓@,( ≈ 1.25 × 10'(	Hz, 𝑓A,( ≈ 1.35 × 10'(	Hz and 𝑓B,( ≈ 1.40 × 10'(	Hz can 

be clearly distinguished within the spectrum. 

A similar “total spectrum” can be obtained by computing Fourier transform of the average square of 

the atom velocities of the DWCNT in the case of circumferential flexure deformation with (𝑚, 𝑛) =

(1,2) (see Figure 4), whose “partial spectrum” was reported in Figure 5. 

In Figure 10 the FFT spectrum of the kinetic energy of the DWCNT for the CFM (1,2) is shown; the 

same CFM natural frequencies of Figure 9, i.e., 𝑓',( ≈ 2.5 × 10''	Hz, 𝑓(,( ≈ 6.0 × 10''	Hz, 𝑓-,( ≈

8.0 × 10''	Hz, 𝑓@,( ≈ 1.25 × 10'(	Hz, 𝑓A,( ≈ 1.35 × 10'(	Hz and 𝑓B,( ≈ 1.40 × 10'(	Hz are clearly 

distinguished also within this spectrum. 

 

 

Figure 10. Frequency spectrum with all the CFM natural frequencies (deformation mode (1,2)) 

 

However, in the frequency spectrum shown in Figure 10 there is a peak at the natural frequency 𝑓 ≈

7.0 × 10''	Hz with relatively high amplitude that is not present in the frequency spectrum of Figure 

9 and therefore should be investigated. 

Since, from Table 3, it is derived that the vibration mode with natural frequency 𝑓 ≈ 7.0 × 10''	Hz 

is the bending mode (𝑚, 𝑛) = (1,1), with 𝑚 = 1 longitudinal half-wave and 𝑛 = 1 circumferential 

wave, then MD simulations were performed also on this mode. 

In Figure 11, the bending deformation of the DWCNT with (𝑚, 𝑛) = (1,1), under radial deformation 

amplitude 𝛿𝑤 = 0.1	nm and constant temperature 𝑇 = 100	K, is shown. In Figure 12, the frequency 

spectrum of the DWCNT for the bending mode (1,1), obtained by computing the Fourier transform 

of the average square of the atom velocities (i.e. “total spectrum” of the kinetic energy), is reported. 
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Figure 11. Bending deformation of the DWCNT with (𝑚, 𝑛) = (1,1) 

 

 

 

 

Figure 12. Frequency spectrum with all the BM natural frequencies (deformation mode (1,1)) 
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From Figure 12, it can be clearly distinguished the natural frequency 𝑓 ≈ 2.5 × 10''	Hz, which is 

related to the CFM (1,2), and the natural frequencies 𝑓 ≈ 7.0 × 10''	Hz and 𝑓 ≈ 1.2 × 10'(	Hz, 

which are related to the bending modes (1,1) and (2,1). 

Since within the frequency spectrum with all the BM natural frequencies of Figure 12 it appears also 

the natural frequency of the CFM (1,2) with the highest amplitude peak, then it can be concluded 

that there is a strong resonance interaction between circumferential flexure (1,2) and bending (1,1) 

modes. 

The results of the MD simulations for the natural frequencies of bending (𝑛 = 1) and circumferential 

flexure (𝑛 = 2) modes are reported in Table 4, where the fundamental mode (i.e. the vibration mode 

with the lowest natural frequency) is again the CFM (1,2). 

 

Mode (𝑚, 𝑛) Natural frequency 𝑓	[THz] 

(1,2) 0.25 

(2,2) 0.60 

(1,1) 0.70 

(3,2) 0.80 

(2,1) 1.20 

(4,2) 1.25 

(5,2) 1.35 

(6,2) 1.40 

Table 4. Natural frequencies of the simply supported armchair DWCNT of Table 1. Molecular dynamics simulations 

with potential energy parameters of Section 5. Bending modes (𝑛 = 1). Circumferential flexure modes (𝑛 = 2) 
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6.3. Calibration of the nonlocal parameter 

In the present Section, the natural frequencies, obtained from the local anisotropic elastic shell model 

of Section 6.1, are compared with the ones from the MD simulations of Section 6.2. The goal is to 

get the proper value of the nonlocal parameter 𝑒$ to be inserted into the constitutive equations (5) of 

the nonlocal anisotropic elastic shell model. 

In Table 5, the natural frequencies of the simply supported armchair DWCNT of Table 1, obtained 

by means of the local (𝑒$ = 0) anisotropic elastic shell model (see Table 3), are compared with the 

ones obtained via MD simulations (see Table 4). Bending modes (BMs) and circumferential flexural 

modes (CFMs) are considered. 

 

Mode (𝑚, 𝑛) Natural frequency 𝑓	[THz] Difference % 

 
Local anisotropic       

elastic shell model  

Molecular dynamics 

simulations 

 

(1,2) 0.26122 0.25 4.49 

(2,2) 0.62898 0.60 4.83 

(1,1) 0.73878 0.70 5.54 

(3,2) 0.84648 0.80 5.81 

(2,1) 1.29156 1.20 7.63 

(4,2) 1.35412 1.25 8.33 

(5,2) 1.51207 1.35 12.0 

(6,2) 1.65061 1.40 17.9 

Table 5. Natural frequencies of the simply supported armchair DWCNT of Table 1. Comparisons between local 

(𝑒( = 0) anisotropic elastic shell model (see Table 3) and molecular dynamics simulations (see Table 4) 

 

From Table 5, the following observations can be made: 

• the local anisotropic elastic shell model overestimates the natural frequencies compared to the 

MD simulations both for BMs and for CFMs; 

• considering the same number of circumferential waves 𝑛, the overestimation increases as the 

number of longitudinal half-waves 𝑚 increases; 
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• considering the same number of longitudinal half-waves 𝑚, the overestimation decreases as 

the number of circumferential waves 𝑛 increases (the overestimation is higher for BMs than 

for CFMs). 

 

The calibration of the nonlocal parameter 𝑒$ is performed by inserting different values of 𝑒$ into the 

constitutive equations (5) of the nonlocal anisotropic elastic shell model until the natural frequency 

of the fundamental (i.e. the lowest frequency) mode (1,2) becomes equal to the one of the same mode 

obtained via MD simulations: from this iterative calibration procedure we obtained the nonlocal 

parameter 𝑒$ = 2, which gives 𝑓',( = 0.25028	THz ≈ 0.25	THz (the fundamental natural frequency 

of the nonlocal model coincides with the one from MD simulations). 

Once we calibrated the nonlocal parameter and inserted its value into the constitutive equations (5), 

the natural frequencies of the nonlocal anisotropic elastic shell model are obtained, and they are 

reported in Table 6 together with the natural frequencies derived from MD simulations. 

 

Mode (𝑚, 𝑛) Natural frequency 𝑓	[THz] Difference % 

 
Nonlocal anisotropic       

elastic shell model  

Molecular dynamics 

simulations 

 

(1,2) 0.25028 0.25 0.11 

(2,2) 0.60378 0.60 0.63 

(1,1) 0.70567 0.70 0.81 

(3,2) 0.81192 0.80 1.49 

(2,1) 1.22796 1.20 2.33 

(4,2) 1.29050 1.25 3.24 

(5,2) 1.40495 1.35 4.07 

(6,2) 1.48316 1.40 5.94 

Table 6. Natural frequencies of the simply supported armchair DWCNT of Table 1. Comparisons 

between nonlocal (𝑒( = 2) anisotropic elastic shell model and molecular dynamics simulations 

 

From Tables 5-6, the following comments can be made: 
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• the natural frequencies reduce from the local to the nonlocal anisotropic elastic shell model 

both for BMs and for CFMs; 

• in the nonlocal anisotropic elastic shell model, the natural frequencies reduce as the value of 

the nonlocal parameter 𝑒$ increases both for BMs and for CFMs; 

• considering the same number of circumferential waves 𝑛, the reduction increases as the 

number of longitudinal half-waves 𝑚 increases; 

• considering the same number of longitudinal half-waves 𝑚, the reduction decreases as the 

number of circumferential waves 𝑛 increases (the reduction is higher for BMs than for CFMs). 

 

By comparing Tables 5-6, we note that the nonlocal anisotropic elastic shell model predicts the natural 

frequencies that are lower than the local model, moreover, the natural frequencies decrease with the 

increasing of the nonlocal parameter. This behaviour is due to the fact that the nonlocal elasticity 

theory [33] introduces a flexible model, in which a SWCNT is viewed as a system of carbon atoms 

connected by elastic springs, while the local elasticity theory [21] considers infinitely rigid springs 

between the carbon atoms: as a physical consequence, the nonlocal model has frequency reduction. 

 

6.4. Nonlinear vibrations of DWCNTs 

In the present Section, nonlinear vibrations of a simply supported armchair DWCNT with geometric 

parameters of Table 1 and mechanical parameters of Table 2 are investigated by adopting the nonlocal 

anisotropic elastic shell model with the nonlocal parameter 𝑒$ = 2. 

Nonlinear modal expansions in the terms of approximate linear modal shapes and different nonlinear 

time laws (i.e. modal coordinates) for each displacement of the two SWCNTs are adopted. 

It was demonstrated that the nonlinear modal expansions including the directly excited (i.e. subjected 

to relatively high modal initial conditions) mode, one asymmetric and one axisymmetric mode (8dof 

model), are able to predict with sufficient accuracy the nonlinear behaviour of SWCNTs, see Refs. 

[51-52] for more details. 

Therefore, in the present work, it is assumed that the following nonlinear modal expansions for the 

two SWCNTs, which include the vibration modes (1,2), (2,2) and (1,0) (16 dof model), are able to 

properly predict the nonlinear behaviour of the considered DWCNT: 

 

𝑢"!(𝜂, 𝜃, 𝜏) = 𝑈C!(',%)(𝜂, 𝜃)𝑓\!,E,',%(𝜏) + 𝑈C!(%,%)(𝜂, 𝜃)𝑓\!,E,%,%(𝜏) + 𝑈C!(',$)(𝜂, 𝜃)𝑓\!,E,',$(𝜏)   

𝑣"!(𝜂, 𝜃, 𝜏) = 𝑉;!(',%)(𝜂, 𝜃)𝑓\!,F,',%(𝜏) + 𝑉;!(%,%)(𝜂, 𝜃)𝑓\!,F,%,%(𝜏) 𝑖 = 1,2 (67) 
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𝑤'!(𝜂, 𝜃, 𝜏) = 𝑊C!(',%)(𝜂, 𝜃)𝑓\!,G,',%(𝜏) +𝑊C!(%,%)(𝜂, 𝜃)𝑓\!,G,%,%(𝜏) +𝑊C!(',$)(𝜂, 𝜃)𝑓\!,G,',$(𝜏)   

 

In the present nonlinear analysis, no modal initial conditions are imposed on the velocities; on the 

other hand, increasing modal initial conditions on the displacements of the mode (1,2), which is the 

directly excited mode, and constant modal initial conditions on the displacements of the asymmetric 

(2,2) and axisymmetric (1,0) modes, are applied, see Table 7. 

 

Case 𝑓U),*,!,"(0) = 𝑓U),+,!,"(0) = 𝑓U),,,!,"(0) 𝑓U),*,","(0) = 𝑓U),*,!,((0) = 𝑓U),+,","(0) = 𝑓U),,,","(0) = 𝑓U),,,!,((0) 

A 1.0 × 10%" 1.0 × 10%- 

B 1.0 × 10%! 1.0 × 10%- 

C 2.0 × 10%! 1.0 × 10%- 

D 3.0 × 10%! 1.0 × 10%- 

E 4.0 × 10%! 1.0 × 10%- 

F 5.0 × 10%! 1.0 × 10%- 

Table 7. Dimensionless modal initial conditions imposed on the displacements in the nonlinear modal expansions (67) 

 

6.4.1. Linear van der Waals interaction forces 

In this part, the full expression of the elastic strain energy (27) (i.e. linear and nonlinear terms) and 

the linear expression of van der Waals interaction energy (42) (i.e. only linear terms) are considered, 

where the dimensionless pressure 𝑝/! (38) is expressed in linear form as: 

 𝑝"!(𝜂, 𝜃) = 𝑐̃!)H𝛿!𝑤'! − 𝛿)𝑤')L  𝑖, 𝑗 = 1,2 𝑖 ≠ 𝑗 (68) 
 

In Figure 13, the time histories of the dimensionless radial modal coordinate 𝑓K',6,',((𝜏) of the inner 

SWCNT related with the directly excited mode (1,2) under the increasing dimensionless modal initial 

conditions 𝑓K',6,',((0) of Table 7 are shown. From this Figure it is noted that, by increasing the value 

of the dimensionless modal initial conditions, the behaviour of the dimensionless modal coordinate 

changes from linear (cases A,B,C) to nonlinear (cases D,E,F), where the periodicity is absent, and the 

maximum amplitude of the response increases. 
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Figure 13. Time histories of the dimensionless modal coordinate 𝑓U!,,,!,"(𝜏) under increasing modal 

initial conditions of Table 7. ▬: Case A. ▬: Case B. ▬: Case C. ▬: Case D. ▬: Case E. ▬: Case F. 

 

Starting from the time histories reported in Figure 13, by sampling them at regular time steps, we can 

first obtain the fast Fourier transform (FFT) of the sampled data with an appropriate choice of Fourier 

parameters, as an integral in the time, and then, once defined a set of frequency values able to provide 

abscissae for the spectral values, we can plot the corresponding frequency spectra. 

By considering the spectra derived for the different increasing values of modal initial conditions, and 

computing frequency and amplitude of the main peak, we can build the corresponding dimensionless 

amplitude-frequency response, in the form of a backbone curve, see Figure 14. 
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Figure 14. Nonlinear amplitude-frequency curve of the simply supported armchair DWCNT of Table 1. Initially 

excited mode (1,2) with increasing modal initial conditions of Table 7. Linear van der Waals interaction energy 

 

In the dimensionless amplitude-frequency curve represented in Figure 14, 𝑓CD/𝑓D is the ratio between 

the nonlinear and linear natural frequency of the initially excited mode (1,2), where the linear natural 

frequency is constant (𝑓D = 0.25028	THz) and the nonlinear natural frequency 𝑓CD is a function of 

the increasing modal initial conditions imposed, while 𝐴/E"/𝑅' is the ratio between the maximum 

amplitude 𝐴/E" of the corresponding response and the radius 𝑅' of the inner SWCNT. 

From Figure 14 it can be noted that the nonlinear response of the considered DWCNT is hardening: 

this confirms the results obtained for cylindrical shells in Refs. [49-50], that is, in case of relatively 

thick cylindrical shells (𝑅/ℎ ≤ 25), a hardening nonlinear behaviour is present, where the DWCNT 

analysed in the present paper has thickness ratios 𝑅' ℎ⁄ = 20.54 (inner SWCNT) and 𝑅( ℎ⁄ = 25.68 

(outer SWCNT). 

 

6.4.2. Nonlinear van der Waals interaction forces 

In this part, the full expressions of the elastic strain energy (27) and van der Waals interaction energy 

(42) (i.e. linear and nonlinear terms) are adopted. The goal is to investigate the effect of the nonlinear 

van der Waals interaction forces on the nonlinear vibrations of DWCNTs. 

In Figure 15, the time histories of the dimensionless radial modal coordinate 𝑓K',6,',((𝜏) of the inner 

SWCNT related with the directly excited mode (1,2) in case of linear and nonlinear van der Waals 
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interaction forces under the increasing dimensionless modal initial conditions 𝑓K',6,',((0) of Table 7 

are shown. From this Figure it is seen that, by increasing the value of the dimensionless modal initial 

conditions, the effect of the nonlinear van der Waals interaction forces increases, and a phase shift in 

time between the modal coordinates corresponding to linear van der Waals interaction energy (blue 

line) and nonlinear van der Waals interaction energy (red line) close to 𝜋/2 is present at the maximum 

value of the considered dimensionless modal initial conditions (case F). 

 

Case A Case B 

  

Case C Case D 

  

Case E Case F 

  

Figure 15. Time histories of the dimensionless modal coordinate 𝑓U!,,,!,"(𝜏) under increasing modal initial 

conditions of Table 7. ▬: linear van der Waals interaction energy. ▬: nonlinear van der Waals interaction energy 
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Starting from the time histories reported in Figure 15, by adopting the same procedure described in 

Section 6.4.1, we can obtain the corresponding dimensionless amplitude-frequency responses, in the 

form of two distinct backbone curves (blue line: linear van der Waals interaction energy, red line: 

nonlinear van der Waals interaction energy), see Figure 16. 

 

 

 

Figure 16. Nonlinear amplitude-frequency curves of the simply supported armchair DWCNT 

of Table 1. Initially excited mode (1,2) with increasing modal initial conditions of Table 7. 

▬: linear van der Waals interaction energy. ▬: nonlinear van der Waals interaction energy 

 

From Figure 16 it is observed that the nonlinear behaviour of the considered DWCNT in presence of 

nonlinear van der Waals interaction forces is more hardening than the one in presence of linear van 

der Waals interaction forces. 
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7. Conclusions 

In this paper, a novel nonlocal anisotropic elastic shell model to investigate the vibrations of simply 

supported DWCNTs was proposed. Molecular dynamics simulations were performed to obtain the 

proper value of nonlocal parameter to be inserted into the constitutive equations of the model. The 

effect of a nonlinear distribution of van der Waals interaction forces on the nonlinear vibrations of 

DWCNTs was investigated. The main results are summarised as follows. 

 

• The local model overestimates the natural frequencies compared to MD simulations, where 

this overestimation increases as the number of longitudinal half-waves 𝑚 increases, and it is 

higher for BMs than for CFMs. 

• The natural frequencies decrease from the local to the nonlocal model and also as the nonlocal 

parameter 𝑒$ increases, where this decrease is higher as the number of longitudinal half-waves 

𝑚 increases, and again it is higher for BMs than for CFMs. 

• By taking the results of MD simulations as a reference, it is obtained the value of the nonlocal 

parameter 𝑒$ = 2, for which the lowest natural frequency from the nonlocal model is equal to 

the one from MD simulations, and the estimate of the natural frequencies from the nonlocal 

model is globally more accurate than that from the local model. 

• The amplitude-frequency curve of the considered DWCNT obtained from the nonlocal model 

under increasing modal initial conditions in presence of a linear distribution of van der Waals 

interaction forces denotes a hardening nonlinear behaviour. 

• In presence of a nonlinear distribution of van der Waals interaction forces (with a third-order 

nonlinearity), it is found that the nonlinear response of the considered DWCNT is significantly 

more hardening than that given by the corresponding linear distribution. 

• This last result shows that the hardening behaviour of the nonlinear response of the considered 

DWCNT increases from linear to nonlinear van der Waals interaction force distribution. 
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