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Abstract
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1 Introduction
In this paper, we investigate the existence of solutions for the following boundary value
problem:

{
–x′′(t) = g(x(t)) – f (t,x(t)), t ∈ J ,
x′() = , x() =

∑k
i= aix(ηi),

(.)

where J = [, ],  < ai ≤  for ≤ i ≤ k,  < η < η < · · · < ηk < , g :R →R, f : J ×R →R.
Nonlocal boundary value problems, studied by Il’in and Moiseev [], have been ad-

dressed by many authors; see, for example, [–] and references therein. In the related
literature, (.) is called resonance when

∑k
i= ai = , and non-resonance when

∑k
i= ai �= .

For the boundary value problems at resonance, researchers usually use the continuity
method or nonlinear alternative, which involves a complicated a priori estimate for the
solution set; see [, –]. However, it is very difficult to obtain a related estimate for
general differential equations. Here we list only a classical result about nonlocal boundary
value problems at resonance of the form

{
–x′′(t) = h(t,x(t),x′(t)) + e(t), t ∈ J ,
x′() = , x() =

∑k
i= aix(ηi),

(.)

where h : J × R × R → R is continuous, e : J → R is continuous and ai >  for  ≤ i ≤ k,∑k
i= ai = ,  < η < η < · · · < ηk < .

Theorem . [] Suppose that there are two constants M, δ >  such that
(A) x[h(t,x, ) + e(t)] > δ for any |x| >M, t ∈ J ;
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(A) there exist constants L,L : L >M, L < –M such that

h(t,x,L) + e(t) ≥ , ∀(t,x) ∈ J × [–M,M],

h(t,x,L) + e(t) ≤ , ∀(t,x) ∈ J × [–M,M];

(A) for (t,x,p) ∈ J × [–M,M]× [L,L],

∣∣h(t,x,p) + e(t)
∣∣ ≤ M

 – η
.

Then (.) has at least one solution.

For (.), condition (A) in Theorem . implies that f (t,x)≡ g(x) for (t,x) ∈ J× [–M,M].
It follows that (.) has infinitely many solutions (x≡ C ∈ [–M,M] is the solution of (.)).
At this point, Theorem . has little significance for (.). Moreover, there are few papers
considering multiple results at resonance. For the case with non-resonance, there is an
extensive literature; see [–] and the references therein.
The main purpose of this article is to discuss the existence of solutions of equation (.)

by means of Schauder’s fixed point theorem. We only need to consider the behavior of g
and f on some closed sets. Consequently, information on the location of the solution is
obtained andmultiple results are obtained if g and f satisfy the given conditions on distinct
regions. Our approach is valid for the cases at resonance or non-resonance. In addition,
some of our conditions are easily certified (see Corollaries . and .).
The paper is organized as follows. Section  introduces an important lemma. Section 

is devoted to the existence results of (.). In Section  we extend some results of Section 
to the general boundary conditions.

2 Preliminaries
In this section, we consider the following boundary value problem for the linear differen-
tial equation:{

–x′′(t) + px(t) = h(t), t ∈ J ,
x′() = , x() =

∑k
i= aix(ηi),

(.)

where p > ,  < αi ≤ ,  < ηi <  for  ≤ i ≤ k,  < a :=
∑k

i= ai ≤  and h ∈ C(J ,R).

Lemma .
() Boundary value problem (.) has a unique solution xh ∈ C(J ,R).
() If h≡ C ∈ R on J and a = , then xh ≡ C/p on J .
() If h(t) ≥  for all t ∈ J , then xh ≥  on J ; if h(t) ≤  for all t ∈ J , then xh ≤  on J .
() If |h(t)| ≤ C (C > ) on J , then |xh| ≤ C/p on J .
() Define an operator A : C(J ,R) → C(J ,R) by A(h) = xh, where ‖h‖ =maxt∈J |h(t)|;

then A is completely continuous.

Proof () Any solution of the differential equation –x′′(t) + px(t) = h(t) can be written as

x(t) = cet
√p + ce–t

√p + ϕ(t),
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where c, c are constants and ϕ ∈ C(t,R) is a particular solution of –x′′(t) + px(t) = h(t).
From the boundary conditions, we obtain that{

c[e
√p –

∑k
i= aie

√pηi ] + c[e–
√p –

∑k
i= aie–

√pηi ] =
∑k

i= aiϕ(ηi) – ϕ(),√p(c – c) = –ϕ′().
(.)

Since the above system has a unique solution (c, c), (.) has a unique solution xh ∈
C(t,R).
() The conclusion is obvious.
() Here we only prove the case of h≥ . We consider two cases.
Case . Assume that xh(t)≤  for all t ∈ J . We show that xh(t) ≡ , t ∈ J . From (.), we

obtain that

x′′
h(t) = pxh(t) – h(t) ≤ , ∀t ∈ J ,

which implies that x′
h is nonincreasing on J . Noting x′

h() = , we obtain that xh is nonin-
creasing. Thus xh() =mint∈J xh(t) ≤ .
Since xh is continuous, by the intermediate value theorem, there exists θ ∈ (, ) such

that axh(θ ) =
∑m

i= aixh(ηi).
If a = , one can obtain from the monotonicity of xh that xh(t) ≡ xh() on [θ , ]. Hence,

 ≥ px() = –x′′
h(t) + pxh(t) = h(t)≥ , t ∈ [θ , ],

which implies that xh() = . Hence, xh(t) ≡  on J .
If  < a < , then xh() =

∑m
i= aixh(ηi) = axh(θ ) ≥ axh(), which implies that xh() = .

Hence, xh(t) ≡  on J .
Case . There exist t, t ∈ J such that xh(t) <  and xh(t) > . We assume that t < t.

Otherwise, xh(t) ≤  for all t ∈ [t, ]. Similar to Case ., one can show that xh ≡  for
t ∈ [t, ], which is impossible.
If there is ε >  such that xh(t) ≤  for t ∈ (, ε), it is easy to check that xh(t) ≤  for

all t ∈ J , a contradiction. Since xh() ≥ ∑
{i:xh(ηi)<} aixh(ηi) ≥ min{xh(ηi) : xh(ηi) < }, there

exists r ∈ (, ) such that xh(r) =mint∈J xh(t). Noting that x′′
h(r) ≥  and xh(r) < , we obtain

that

 > pxh(r) = h(r) + x′′
h(r)≥ ,

which is a contradiction.
From Cases . and ., one can easily obtain that xh ≥  for all t ∈ J .
() Since –C ≤ h ≤ C, using the conclusion of (), we have

xh–C ≤ , xh+C ≥ , t ∈ J .

Noting that xh–C = xh – xC , xh+C = xh – x–C , we obtain that

x–C ≤ xh ≤ xC , t ∈ J . (.)

If a = , then xC = C/p and x–C = –C/p. Thus |xh| ≤ C/p on J .

http://www.boundaryvalueproblems.com/content/2013/1/238
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Assume that a < . There exist t, t ∈ [, ) such that

xC(t) =max
t∈J

xC(t), x–C(t) =min
t∈J x–C(t).

Noting that x′′
C(t) ≤  and x′′

–C(t) ≥ , we have

 ≤ pxC(t) = C + x′′
C(t) ≤ C, (.)

and

 ≥ px–C(t) = –C + x′′
–C(t) ≥ –C. (.)

From (.), (.) and (.), we obtain that |xh| ≤ C/p on J .
() Let hn → h in C(J ,R). For any ε > , there exists N(ε) >  such that

∣∣hn(t) – h(t)
∣∣ < ε, ∀t ∈ J ,∀n >N(ε).

Noting that A(hn – h) = xhn – xh, using the conclusion of (), we obtain that

|xhn – xh| ≤ ε/p, ∀t ∈ J ,∀n >N(ε),

which implies thatA is continuous. LetD be a bounded set inC(J ,R). Then there isM > 
such that ‖h‖ ≤M for all h ∈D. From the conclusion of (), we obtain that |A(h)| ≤M/p,
which implies that A(D) is a uniformly bounded set. Since A(h), h are bounded for h ∈ D
and

(Ah)′(t) = p
∫ t


(Ah)(s)ds –

∫ t


h(s)ds,

there existsM >  such that

∣∣(Ah)′(t)∣∣ ≤M, t ∈ J ,h ∈D,

which implies that A(D) is equicontinuous. It follows that A(D) is relatively compact in
C(J ,R) and A is a completely continuous operator. The proof is complete. �

Remark . Let h≡  and

αh=
p =max

t∈J
pxh(t), βh=

p =min
t∈J pxh(t).

By a direct computation, one can obtain that  < βh=
p ≤ αh=

p ≤  and

αh=
p =  –

( – a)
e
√p + e–

√p –
∑k

i= ai[e
√pηi + e–

√pηi ]
,

βh=
p =  –

( – a)(e
√p + e–

√p)
e
√p + e–

√p –
∑k

i= ai[e
√pηi + e–

√pηi ]
.

http://www.boundaryvalueproblems.com/content/2013/1/238


Wang and Yang Boundary Value Problems 2013, 2013:238 Page 5 of 10
http://www.boundaryvalueproblems.com/content/2013/1/238

The following well-known Schauder fixed point theorem is crucial in our arguments.

Lemma . [] Let X be a Banach space and D ⊂ X be closed and convex. Assume that
T :D →D is a completely continuous map; then T has a fixed point in D.

3 Main results
The following theorem is the main result of the paper.

Theorem . Assume that there exist constants M >m, p >  such that g ∈ C([m,M],R),
f ∈ C(J × [m,M],R), pu+ g(u) is nondecreasing in u ∈ [m,M] and αh=

p m ≤ βh=
p M. Further

suppose that

g(M) –
( – αh=

p )pM
αh=
p

≤ f (t,u) ≤ g(m) –
( – βh=

p )pm
βh=
p

, ∀(t,u) ∈ J × [m,M]. (.)

Then (.) has at least one solution x with m≤ x ≤M.

Proof From Lemma ., if x is a solution of (.), x satisfies

x = (A ◦H)x,

where A ◦H is composition of A and H defined as (A ◦H)x = A(Hx), and the operator H
is defined in C(J ,R) as

(Hx)(t) = px(t) + g
(
x(t)

)
– f

(
t,x(t)

)
.

Note that{
–[(A ◦H)x]′′(t) + p[(A ◦H)x](t) = (Hx)(t), t ∈ J ,
[(A ◦H)x]′() = , [(A ◦H)x]() =

∑k
i= ai[(A ◦H)x](ηi).

(.)

Obviously, a fixed point of A ◦ H is a solution of (.). Set 	 = {x ∈ C(J ,R) : m ≤ x(t) ≤
M, t ∈ J}. Since the function pu + g(u) is nondecreasing in u ∈ [m,M], we obtain that for
x ∈ 	,

pm + g(m) ≤ px(t) + g
(
x(t)

) ≤ pM + g(M).

Using (.), we have

pm
βh=
p

≤ (Hx)(t) = px(t) + g
(
x(t)

)
– f

(
t,x(t)

) ≤ pM
αh=
p

for any x ∈ 	. Since βh=
p ≤ pA() ≤ αh=

p , and A is one nondecreasing operator, we obtain
that for x ∈ 	,

m ≤ A
(

pm
βh=
p

)
≤ (A ◦H)x ≤ A

(
pM
αh=
p

)
=

pM
αh=
p

A() ≤M.

Hence, (A ◦H)(	)⊂ 	.
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Also, the fact that A is completely continuous and H is continuous gives that A ◦ H :
	 → 	 is a continuous, compact map. By Lemma ., A ◦ H has at least one fixed point
in 	. The proof is complete. �

Remark . In Theorem ., the condition that pu + g(u) is nondecreasing in u ∈ [m,M]
can been replaced by the weaker condition

pm + g(m) ≤ pu + g(u) ≤ pM + g(M), ∀u ∈ [m,M].

Corollary . Assume that a =  and the following condition holds:

(H) There exist constants m <M such that g ∈ C([m,M],R), f ∈ C(J × [m,M],R), and

g(M) ≤ f (t,u) ≤ g(m), ∀(t,u) ∈ J × [m,M]. (.)

Then (.) has at least one solution x with m≤ x ≤M.

Proof Since g ∈ C([m,M],R), there exists p >  such that the function pu + g(u) is non-
decreasing in u ∈ [m,M]. When a = , αh=

p = βh=
p = . We directly apply Theorem . and

this ends the proof. �

Corollary . Assume that  < a <  and the following condition holds:

(H) There exists constantM >  such that g ∈ C([,M],R), f ∈ C(J × [,M],R), and

g(M) ≤ f (t,u) ≤ g(), ∀(t,u) ∈ J × [,M]. (.)

Then (.) has at least one solution x with  ≤ x ≤M.

Proof Since g ∈ C([,M],R), there exists p >  such that the function pu + g(u) is non-
decreasing in u ∈ [,M]. Condition (.) is satisfied if (.) holds. The proof is complete.

�

Example . Consider the differential equation{
–x′′(t) = sinx + te–x(t), t ∈ J ,
x′() = , x() = x(η), η ∈ (, ).

(.)

Let mn = (n + .)π , Mn = (n + .)π , g(u) = sinu, f (t,u) = –te–u and n be a positive
integer. For any t ∈ J and u ∈ [mn,Mn],

g(Mn) = – ≤ f (t,u) ≤  = g(mn).

Hence, by Corollary ., (.) has a solution mn ≤ x ≤ Mn. Since n is an arbitrary positive
integer, (.) has infinitely many solutions.

Example . Consider the differential equation{
–x′′(t) =  – ex(t) + x(t), t ∈ J ,
x′() = , x() = 

x(η), η ∈ (, ).
(.)

http://www.boundaryvalueproblems.com/content/2013/1/238
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Using Corollary ., we obtain that (.) has at least a nonnegative solution x. Moreover,
it is not difficult to show that x ∈ (, ) for any t ∈ J .

4 Generalization
In this section, we extend some results in the previous section to the following equation:{

–x′′(t) = g(x(t)) – f (t,x(t)), t ∈ J ,
Ux = , Ux = ,

(.)

where U and U are linear operators defined as

Ux =
n∑
i=

aix(λi) +
n∑
j=

bjx′(μj), Ux =
m∑
s=

csx(νs) +
m∑
l=

dlx′(κl),

where ai,bj, cs,dl ∈ R and  < λi,μj,νs,κl ≤  for  ≤ i ≤ n,  ≤ j ≤ n,  ≤ s ≤ m,
≤ l ≤m.
Consider the boundary value problem for the linear differential equation:{

–x′′(t) + px(t) = h(t), t ∈ J ,
Ux = , Ux = ,

(.)

where p >  is sufficiently large, h : J →R. We introduce the following assumptions.

(P) The condition h ∈ C(J ,R) implies that boundary value problem (.) has a unique
solution xh ∈ C(J ,R).

(P) The condition h≡ C ∈R implies that xh ≡ C/p on J .
(P) The condition h ∈ C(J ,R) : h ≥  (t ∈ J) implies that xh ≥  on J .
(P) The condition h ∈ C(J ,R) : |h(t)| ≤ C (C > ) implies that |xh| ≤ C/p on J .

We say that the boundary condition Ux =Ux =  satisfies P if (.) satisfies condi-
tions (P), (P), (P), and P if (.) satisfies conditions (P), (P), (P).

Theorem .
() Assume that the boundary condition Ux =Ux =  satisfies P and (H) holds.

Then (.) has at least one solution x with m ≤ x≤M.
() Assume that the boundary condition Ux =Ux =  satisfies P and (H) holds.

Then (.) has at least one solution x with  ≤ x≤M.

The proof of Theorem . is similar to that of Theorem . and we omit it.

Remark . The solution obtained in Corollary . or () of Theorem . may be trivial.
Further suppose that

g() – f (t, ) �≡ , t ∈ J .

Then the solution obtained is nonnegative and nontrivial.

Remark . The boundary condition Ux =Ux =  satisfies P if it satisfies P.

http://www.boundaryvalueproblems.com/content/2013/1/238
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Remark . Consider the two-point boundary conditions:

x′() = x′() = , (.)

x() = x(), x′() = x′(), (.)

x() = x() = , (.)

x′() = x() = , (.)

x() = x′() = . (.)

One can easily check that boundary conditions (.), (.) satisfy P, and conditions
(.), (.), (.) satisfy P.
Next, we consider the boundary conditions

Ux := αx() – βx′() –
k∑
i=

bix(ηi) = ,

Ux := λx() +μx′() –
n∑
j=

cjx(ξj) = ,

(.)

where α, β , λ, μ, bi ( ≤ i ≤ k), cj ( ≤ j ≤ n) are constants and α,λ ∈ (, +∞), β ,μ,bi,
cj ∈ [, +∞), ηi, ξj ∈ (, ).

Theorem . Set b =
∑k

i= bi, c =
∑n

j= cj.
() If b = α, c = λ, then the boundary condition Ux =Ux =  satisfies P.
() If b ∈ [,α], c ∈ [,λ) or b ∈ [,α), c ∈ [,λ], then the boundary condition

Ux =Ux =  satisfies P.

Proof Without loss of generality, we assume thatm = n = . For any sufficiently large p > 
and h ∈ C(J ,R), the linear differential equation{

–x′′(t) + px(t) = h(t), t ∈ J ,
Ux = , Ux = 

(.)

has a unique solution xh ∈ C(J ,R).
Suppose that h ≥  on J ; if xh ≥  is not true, by the maximum principle, we get that

xh() =mint∈J xh(t) <  or xh() =mint∈J x(t) < . If xh() =mint∈J xh(t) < , then x′
h() ≥ .

From the boundary conditions, we have

 > xh() =
β

α
x′
h() +

b
α
xh(η) ≥ b

α
xh(η) ≥ xh(η).

By the maximum principle, we obtain that xh(η) ≥ , which is a contradiction. If xh() =
mint∈J xh(t) < , then x′

h() ≤ . From the boundary conditions, we have

 > xh() =
c
λ
xh(ξ) –

μ

λ
x′
h() ≥

c
λ
xh(ξ) ≥ xh(ξ).

By the maximum principle, we obtain that xh(ξ) ≥ , a contradiction.

http://www.boundaryvalueproblems.com/content/2013/1/238
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If h≡ C and b = α, c = λ, then xh ≡ C/p.
Now suppose that ≤ h≤ C on J and h �≡ .
If there is θ ∈ (, ) such that xh(θ ) =maxt∈J x(t) > , noting that x′′

h(θ ) ≤ , we have

 ≤ pxh(θ )≤ –x′′
h(θ ) + pxh(θ ) = h(θ )≤ C.

If xh() =maxt∈J x(t) > , from the boundary conditions, we obtain that b = α, βx′
h() = ,

which implies that xh(η) = xh() = maxt∈J x(t). The case has been discussed. If xh() =
maxt∈J x(t) > , from the boundary conditions, we obtain that c = λ, μx′

h() = , which
implies that xh(ξ) = xh() = maxt∈J x(t). The case has also been discussed. The proof is
complete. �

Example . Consider the differential equation

{
–x′′(t) = sin– x(t) – xλ(t) + tx(t), t ∈ J ,
x() = x(η), x() = x(ξ ),

(.)

where λ > ,  < η, ξ <  are constants.

Let g(u) = sin– u and f (t,u) = uλ – tu. Set mn = nπ + (nπ )–λ–, Mn = nπ + .π . If n
is a sufficiently large, positive integer, then for any t ∈ J , u ∈ [mn,Mn],

 = g(Mn) ≤ f (t,u) ≤ g(mn)≈ (nπ )λ+.

By Theorems . and ., (.) has a solution mn ≤ x ≤ Mn. Hence, (.) has infinitely
many solutions.

Example . Consider the differential equation

{
–x′′(t) + xμ(t) cosx(t) = t, t ∈ J ,
x() – x′() = x(ξ), x() = 

x(ξ) + λx(ξ),
(.)

where μ > ,  < ξ, ξ, ξ < ,  ≤ λ ≤ . are constants.

In fact, g(u) = –uμ cosu and f (t) = –t. The boundary conditions in (.) satisfy P for
λ ∈ [, .] and P for λ = ..
() Equation (.) has a solution  ≤ x̃ ≤  and x̃(t) > , t ∈ (, ] for all  ≤ λ ≤ ..

Set M = , then g(M) = – ≤ f (t) ≤ g() for all t ∈ J . By Theorems . and ., (.) has
a solution  ≤ x̃ ≤ . Now we show that x̃(t) >  for t ∈ (, ]. Assume that there exists
r ∈ (, ) with x̃(r) = . Since x̃(t)≥ , x̃(r) isminimumvalue and x̃′(r) = , x̃′′(r) ≥ .On the
other hand, x̃′′(r) = x̃μ(r) cos x̃(r) – r = –r < , a contradiction. If x̃() = , then x̃(ξ) = .
This is impossible.
() Equation (.) has infinitely many solutions for λ = .. Set Mn = nπ + π , mn =

nπ + .π , where n >  is an integer. Since g(Mn) = –Mμ
n ≤ f (t) ≤ g(mn) =mμ

n for all t ∈ J ,
(.) has a solutionmn ≤ x≤Mn. Hence, (.) has infinitely many solutions.

http://www.boundaryvalueproblems.com/content/2013/1/238
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