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We consider multilayered metal-dielectric metamaterials composed of alternating nanolayers of two types and

calculate the components of their effective dielectric permittivity tensors as functions of both frequency and wave

vector. We demonstrate that such structures can be described as strongly nonlocal uniaxial effective media, and

we analyze how the nonlocal permittivity tensor components are related to other manifestations of strong spatial

dispersion in such structures, and how the resonance of permittivity depends on the propagation direction.
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I. INTRODUCTION

Multilayered metamaterials (MLMMs), which can be

defined as one-dimensional structures of two periodically

alternating optically thin layers with sufficient optical contrast

between them, are known to have unusual electromagnetic

properties, being promising for many applications, especially

in the optical frequency range. Optical MLMMs have layer

thickness as small as a few tens of nanometers, and the

dielectric layers alternate with silver or gold layers having the

thickness of the same order. Such MLMMs can transport sub-

wavelength images,1–4 and this effect makes them promising

for nanolithography.5 Also, MLMM-based optical cloaks have

been proposed (see, e.g., Refs. 6 and 7). In a certain frequency

range, such metal-dielectric MLMMs can be modeled as

media with the hyperbolic dispersion surfaces in the space

of wave vectors. Such media are usually characterized by

an uniaxial permittivity tensor whose axial and transverse

components have different signs and therefore these media are

called indefinite materials.8 With indefinite materials used as

substrates or/and superstrates of nanoemitters such as quantum

dots or nanoantennas it is possible to obtain huge values for

the Purcell factor.9–14

The study of MLMMs was probably initiated in the classical

paper by Rytov15 who derived the dispersion equations for TM-

and TE-polarized waves and also analyzed the corresponding

eigenmodes. An attempt to interpret the refraction indices

and wave impedances of these eigenmodes in terms of

effective material parameters resulted in retrieved values of

ε and μ which were characterized by Rytov as physically

meaningless parameters since they violated the causality and

passivity limitations even in the case when both alternating

layers were dielectric and had subwavelength thickness. Rytov

concluded that the local effective medium concept can be

applied to MLMMs only with finite accuracy and only in some

special cases when the quasistatic model of MLMMs is also

applicable.

A more advanced theory of MLMMs was developed

in Ref. 16. This effective medium model generalized the

quasistatic model taking into account the retardation effects

of the first order with respect to the optical thickness of a

layer. However, this theory was concentrated mainly on the

normal propagation, and the limits of its validity remained

not well defined. Later, it was shown17,18 that the spatial

dispersion related to surface plasmon polaritons excited at

metal-dielectric interfaces of such structures plays a key role

in optical properties of MLMMs. Spatial dispersion implies

that the effective permittivity tensor components depend on

the wave vector.19,20 The existence of strong spatial dispersion

effects were revealed for different types of metamaterials, e.g.,

for arrays of split-ring resonators21 and wire metamaterials,22

and it is also inherent to MLMMs. New physics brought to

multilayered structures by nonlocality includes such effects as

emission control,13,14 single polarization beam-splitting,26 and

nonlocal transformation optics.23 Since the effective material

parameters proposed in Refs. 15 and 16 did not take into

account the effects of strong spatial dispersion which actually

present in MLMMs, in order to describe them correctly one

needs to generalize the homogenization theory taking into

account nonlocal effects.

A nonlocal homogenization theory that results in the

tensorial permittivity ε calculated for all possible values

of the wave vector k and frequency ω was suggested in

Ref. 24. Possible bianisotropic and magnetic responses of

the effective medium are comprised, respectively, in the

first- and second-order terms of the k-power expansion of

ε(k). When this ε is complemented by additional boundary

conditions, it allows solving a boundary value problem for a

half space and even for finite-thickness layers of the medium.

Unlike other homogenization models, this theory does not

imply any approximation. It is a strict approach based on the

exact knowledge of microscopic fields in an infinite regular

lattice composed of electromagnetically linear and reciprocal

dielectric or conducting inclusions. However, for a majority of

lattices this homogenization procedure is numerical. In other

words, as a rule the components of the nonlocal tensor ε cannot

be derived analytically beyond certain approximations, and

they have to be simulated numerically. To our knowledge,

only the case of MLMMs due to its geometrical simplicity

allows the exact analytical calculation of ε. This calculation

was described in our recent work25 and presented there as

an iterative set of rigorous expressions explicitly depending

on ω and k. To compute the components of the nonlocal

permittivity tensor, these expressions require performing some
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FIG. 1. (Color online) Original structure and its homogenized

representation.

matrix algebra. In this paper, we make the next step toward the

closed-form expressions. However, these expressions turned

out to be very involved, and for some components of ε it is

reasonable to keep their matrix form.

Thus, this paper aims to analyze the dependencies of

the tensor ε on ω and k and to find a link between these

dependencies and the effects of strong spatial dispersions

observed in MLMMs; this analysis extends further the results

of our earlier publications.25,26 A study of eigenmodes of

multilayered metamaterials considered in this paper and

corresponding field distributions can be found, for example, in

the recent Ref. 27.

II. QUASISTATIC AND NONLOCAL

EFFECTIVE MEDIUM MODELS

In the static limit, an infinite multilayered structure com-

posed of two alternating layers with thicknesses d1, d2 and

permittivities ε1, ε2 can be considered as a uniaxial medium

having the following permittivity tensor:

εloc =

⎛

⎝

ε⊥ 0 0

0 ε‖ 0

0 0 ε‖

⎞

⎠ , (1)

where

ε‖ =
ε1d1 + ε2d2

d1 + d2

, (2)

ε⊥ =

(

ε−1
1 d1 + ε−1

2 d2

d1 + d2

)−1

. (3)

This model is employed for the optical frequency region, and

it results in the representation of a metal-dielectric MLMM as

a local indefinite medium since the permittivity of metals is

negative in this range (more exactly, it has a negative real part).

However, in Ref. 26 it was revealed that such a description of

plasmonic MLMMs is not adequate. The first-order corrections

of the quasistatic model obtained in Ref. 16 are not helpful in

this case since the spatial dispersion in such structures is strong.

Even if the dependence ε(k) can be replaced by a power series,

the series convergence is not rapid enough to be restricted by

second- or third-order terms. Moreover, in the case of strong

spatial dispersion the dependence ε(k) can be resonant [i.e., in

the lossless case the function ε(k) can have singularities].

Similar to our previous work,25 we choose the coordinate

system in such a way that the axis x is normal to the layers, and

the Bloch wave with the wave vector k propagates in the plane

(x,y) (kz = 0). Then, a homogenized MLMM (see Fig. 1) can

be described by the permittivity tensor:25

ε(ω,k) =

⎛

⎝

εxx(ω,k) εxy(ω,k) 0

εyx(ω,k) εyy(ω,k) 0

0 0 εzz(ω,k)

⎞

⎠ . (4)

From the reciprocity condition, we have εxy(ω,k) =
εyx(ω,k), so that there are four independent components of

ε. In the Appendix we present the rigorous equations for

calculating these four scalar values.

A quite unexpected result of our earlier study25 is the

presence of the nonzero value of the off-diagonal components

εxy = εyx . It means that in order to transform the permittivity

tensor to a diagonal form, one has to rotate the coordinate

system XYZ around the axes z. The tensor becomes diagonal;

i.e., the medium behaves as a uniaxial medium when the optical

axis x ′ is tilted to the normal axis x by a certain angle θ . This

angle depends on both frequency ω and propagation direction.

For any ω it vanishes for both normal ky = 0 and in-plane

kx = 0, and it is maximal for nearly bisector propagation

(ky = kx). The nonzero value of θ is an important parameter

characterizing the spatial dispersion effect.

Another feature of the spatial dispersion is the nonequiv-

alence of two components εyy �= εzz both referring to the

plane of layers. If the spatial dispersion effects are negligible

both these components would be equivalent and equal to

the transversal permittivity of an effective uniaxial medium

(whose optical axis would be then normal to the layers). In

the quasistatic limit D ≡ d1 + d2 → 0 (more exactly when

k0D → 0, where k0 = ω/c is the free space wave number),

the nonlocal permittivity tensor (4) numerically turns into

Eqs. (1)–(3). This tendency is pointwise (not uniform for all k).

We have checked our calculations of ε(ω,k) in the fol-

lowing way. Eigenmodes in an arbitrary anisotropic material

described by the permittivity tensor ε are solutions of known

dispersion equations. For TE waves this dispersion equation is

known,19

k2
x + k2

y = εzz

(

ω

c

)2

. (5)

For TM waves we have the following equation:19

(

εxxεyy − ε2
xy

)

(

ω

c

)2

− εyyk
2
y − εxxk

2
x − 2kxkyεxy = 0. (6)

For an arbitrary MLMM, the rigorous dispersion

equations15 are the following (for TE and TM waves, respec-

tively):

�TE = sin(kx1d1) sin(kx2d2)
(

k2
x1 + k2

x2

)

+ 2kx1kx2[cos(kxD)

− cos(kx1d1) cos(kx2d2)] = 0, (7)

�TM = sin(kx1d1) sin(kx2d2)
(

k2
x1 + k2

x2

)

+ 2kx1kx2[cos(kxD)

− cos(kx1d1) cos(kx2d2)] = 0. (8)

Substituting these expressions for the components of

ε(ω,k), we find that Eqs. (5) and (6) are equivalent to Eqs. (7)

and (8), respectively. Dispersion diagrams of Ref. 26 were

obtained by using (8), and for metal-dielectric MLMMs

with permittivities ε1 = 4.6 and ε2 = 1 − λ2/λ2
p, where
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FIG. 2. (Color online) Dispersion diagram of MLMMs and

graphical solutions of the dispersion equations (10) for d1 = 1.5d2:

(a) D/λ = 0.108, (b) D/λ = 0.107, (c) D/λ = 0.1, and (d) D/λ =
0.085.

λp = 250 nm. The dispersion diagrams we discuss are cal-

culated by solving Eq. (6), and they turned out to be exactly

the same as those obtained in Ref. 26.

III. DISPERSION AND NONLOCAL PERMITTIVITY

We consider the special case of the in-plane propagation

kx = 0 when εxy = 0. Then Eq. (8) simplifies to become

εyy

[

εxx

(

ω

c

)2

− k2
y

]

= 0, (9)

and it is equivalent to the system of two dispersion equations,

εyy(ky) = 0, εxx(ky)

(

ω

c

)2

− k2
y = 0. (10)

The first equation in the system (10) corresponds to longitudi-

nal modes, and the second equation, to transverse modes.

In Fig. 2 (top) we show the dispersion curves of the structure

with the same values of ε1 and ε2 as above and thicknesses

d1 = 1.5d2 (namely, d1 = 37.5 nm and d2 = 25 nm). On the

frequency axis, we mark four example points and obtain

six values of the normalized wave number k̃y = kyD/π

corresponding to the selected frequencies. These results can

be also obtained by the graphical solutions of the system (10),

and we illustrate them with the plots in Figs. 2(a)–2(d). It is

also interesting to analyze the selected cases of the values of

εxx and εyy which correspond to these six dispersion states

(the dispersion state is a pair of ω, k).

At the normalized frequency ωa ≡ D/λ = 0.108, we have

εxx ≈ 60 and εyy ≈ 0.85. The ratio εxx/εyy ≈ 70 is high but

it turns out not to be sufficiently large for strong spatial

dispersion at this frequency. There is only one wave which

in the lossless approximation has zero group velocity (point

1). The presence of such a wave can be explained as

a competition of the forward and backward SPP modes.

At the normalized frequency ωb ≡ D/λ = 0.107, we have

εxx ≈ 40 and εyy ≈ 0.95 (point 2). Then εxx/εyy ≈ 45 and

anisotropy is again not sufficient for the spatial dispersion.

However, at point 3 we have εxx ≈ 130 and εyy ≈ 0.6. Then

εxx/εyy ≈ 220, and this amazing anisotropy turns out to be

large enough for the manifestation of spatial dispersion. Point

3 corresponds to the backward wave which exists in spite of

all positive components of the permittivity and permeability.

This wave clearly originates from the medium discreteness,

and it is the feature of strong spatial dispersion. This strong

spatial dispersion corresponds to the large ratio εxx/εyy > 200

which is hardly compatible with the concept of a continuous

medium.

The strong spatial dispersion is observed also at the nor-

malized frequency ωc ≡ D/λ = 0.1 where at point 4 we have

εxx ≈ 20 and εyy ≈ 0.05. This dispersion state corresponds

to the usual (forward transverse) wave. However, at the

same frequency there appears point 5, where εxx ≈ 24 and

εyy = 0. The anisotropy in the last case is infinitely large,

and the wave corresponding to point 5 is longitudinal. The

presence of the longitudinal wave in the lattice is obviously a

feature of strong spatial dispersion.21 Finally, at the frequency

ωd ≡ D/λ = 0.085 (point 6) where εxx ≈ 14 and εyy ≈ −0.4,

we have a rather modest ratio |εxx/εyy | ≈ 35, and there are no

features of the strong spatial dispersion (only one forward

transverse wave).

The plots presented in Fig. 3 for the case d2 = 1.5d1 are

analogous of the plots in Fig. 2. Here at ωa ≡ D/λ = 0.115

(point 1) εxx ≈ −5 and εyy = 0. The wave is not only

longitudinal, it is also backward, and this is the frequency

where the spatial dispersion is strong. At ωb ≡ D/λ = 0.099

(point 2) we have εxx ≈ 120 and εyy ≈ −1. Then |εxx/εyy | ≈
120, and this ratio turns out to be not sufficient to justify

the spatial dispersion. At this frequency, there exists only one

transverse forward wave.

For the case of a thin metal (d1 = 1.5d2), we reveal

that in the vicinity of the plasmon resonance frequency

the dispersion diagram possesses a fine structure shown in

Fig. 4. The branch for which two waves coexist at the same

frequency demonstrates even more unusual behavior: Three

waves instead of one can be excited at the same frequency at

the single branch. Assuming that there exists also the second

branch, we have four waves in the region of the fine structure

of MLMM dispersion.
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FIG. 3. (Color online) Dispersion diagram of MLMMs and

graphical solutions of dispersion equations (10) for d2 = 1.5d1 and

(a) D/λ = 0.115, (b) D/λ = 0.099.

From this analysis, one can conclude that for the structure

under study there is a direct correspondence between its

anisotropy and the spatial dispersion. Of course, the existence

of the spatial dispersion effect follows from the dependence

of the permittivity tensor on the wave vector. However,

D
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εyy , (c) εxy,εyx , (d) εzz vs the normalized wave vector components

k̃x = kxD/π and k̃y = kyD/π for metal-dielectric MLMMs at the

wavelength 480 nm (D/λ = 0.1302).

the presence or absence of the spatial dispersion features

in the eigenwaves at a given frequency are also linked to

the anisotropy of the corresponding permittivity tensor. If

anisotropy of ε(ω,k) for a certain pair (ω,k) is sufficiently large

(for the present structure, for |εxx/εyy | > 200), one should

expect a strong spatial dispersion at the frequency ω.

IV. ANALYSIS OF SPATIALLY DISPERSIVE

PERMITTIVITY

Next, we analyze how the permittivity tensor of a metal-

dielectric MLMM depends on the wave vector at different

frequencies. In Figs. 5–8 these dependencies are shown for

MLMMs with the parameters ε1 = 4.6, ε2 = 1 − λ2/λ2
p, d1 =

37.5 nm, and d2 = 25 nm, λp = 250 nm at the wavelengths of

480 nm, 580 nm, 630 nm, and 780 nm, respectively.

As can be seen from Figs. 5(a) to 8(a), at the highest

normalized frequency D/λ = 0.1302 [see Fig. 5(a)] the

component εxx grows with k̃y . At slightly lower frequency

D/λ = 0.1078, this component becomes a resonant function
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of the wave vector [see Fig. 6(a)], and at D/λ = 0.0992

it has a maximum [see Fig. 7(a)]. At the lowest frequency

D/λ = 0.0801 [see Fig. 8(a)], this component decreases with

k̃y . Resonant behavior of the tensor components can be

described in terms of the permittivity pole,
(

εxx εxy

εyx εyy

)

=
1

[ωres(k) − ω]

(

Axx(ω,k) Axy(ω,k)

Ayx(ω,k) Ayy(ω,k)

)

,

(11)

where Aαβ are analytical functions. In the theory of continuous

media this representation of the permittivity tensor (without its

dependence on k) has been obtained in the approximation of

low optical losses and ωres is the frequency of the resonant

absorption.19 Our study also neglects losses, and we can

interpret our ω̃res = D/λres as the presumable frequency of

resonant absorption if some small losses are introduced. This

resonant absorption is of course related to the collective

plasmon resonance of metal layers. However, due to the

spatial dispersion this frequency depends on k. We can

see in Figs. 6(a)–6(c) that at the wavelength 580 nm three

independent components of ε are resonant (εxx, εyy , and εxy =
εyx). Such behavior has been found in a rather wide range

around 580 nm for all these components. In Fig. 9, we show

the dispersion surface ω̃res = D/λres. A crossing of this surface

with the dispersion diagram would deliver the frequencies
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and propagation directions at which the resonant absorption

holds. Briefly, we claim that the resonant frequency in metal-

dielectric MLMMs depends on the propagation direction.

The only nonresonant component of the permittivity tensor

is εzz. As can be seen in Figs. 5(d) to 8(d), there are no

qualitative changes in the behavior of this component in respect

to the wave vector at different frequencies: The component εzz

decreases with an increase of k̃y , but it grows with the increase

of k̃x .

Next, we calculate the variation of εxy(ω,k) when the

coordinate system rotates around z. The purpose of this

calculation is to eliminate the off-diagonal component of the

permittivity tensor transforming the latter to the form of a

tensor of a uniaxial medium. This is possible to do for any ky at

a given frequency ω (whereas the wave vector component kx is

related to ky via the dispersion equation). For the semi-infinite

interval k0 < ky < ∞ at every frequency, there exists a finite

value ky at which the needed rotation angle θ is maximal. At

the wavelength 480 nm the maximum of the function θ (ky)

for this semi-infinite interval of ky equals 8◦56′. At 630 nm

θmax = 15◦40′, and θmax = 13◦7′ at 780 nm. For a half space

of our MLMMs whose boundary is parallel to the layers, the

eigenmodes with k0 < ky < ∞ can be excited only by incident

evanescent waves. Eigenmodes with ky < k0 can be excited by

propagating plane waves, and for these eigenmodes the optical

axis rotation turned out to be much smaller. For ky < k0, the

values of θmax are equal to 46′ at the wavelength 480 nm, to

30′ at 580 nm, to 21′ at 630 nm, and to 17′ at 780 nm. We

can conclude that for incident propagating waves this effect

of spatial dispersion can be practically negligible. However,

this refers only to one special geometry of the boundary. If

the interface of the MLMM half space is orthogonal to the

layers the eigenmodes k0 < ky < ∞ can be excited by incident

plane waves kx < k0, as well. In this case the component

kx of the incident wave vector is preserved in the excited

eigenmode and eigenmodes with kx < k0 and ky > k0 exist in

the metal-dielectric MLMMs. For this geometry, the optical

axis rotation is an important effect of spatial dispersion which

holds for propagating incident waves as well.

V. LAYERED DIELECTRIC STRUCTURES

For comparison, we apply the model of the nonlocal

effective medium to the case of all-dielectric MLMMs. As

an example, we consider an all-dielectric structure created by

the layers of two dielectric materials with ε1 = 1 and ε2 = 4.6
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FIG. 10. Nonlocal permittivity tensor components: (a) εxx ,

(b) εyy , (c) εxy,εyx , (d) εzz vs the normalized wave vector components

k̃x = kxD/π and k̃y = kyD/π for all-dielectric layered structures

with ε1 = 4.6 and ε2 = 1 at the wavelength of 580 nm (d1 = 1.5d2).

at wavelength 580 nm, also taking the layers’ thicknesses as

d1 = 37.5 nm and d2 = 25 nm, respectively. The results are

based on the analysis stated above, and they are presented in

Fig. 10. From those results we observe that the components of

the permittivity tensor vary noticeably along with variations

of the wave vector even for this all-dielectric structure.

Therefore, the spatial dispersion effects are still not negligible

though they are not so strong as in the case of metal-dielectric

MLMMs.

The component εxx varies within 32% from its maximum

value, and the component εyy changes in the range of 31%.

In the case of all-dielectric multilayers, off-diagonal tensor

components are also present, but their values range from −0.15

to 0.13, depending on the wave vector. The smallest variation

(no more than 2%) is found for the component εzz.

Off-diagonal components εxy and εyx do not vanish, and

they are quite noticeable. We calculate also the value of the

angle θmax for the all-dielectric structure under consideration.

At the wavelength 580 nm we obtain θmax = 7◦10′, for k0 <

ky < ∞, and θmax = 31′ for ky < k0.

VI. CONCLUSIONS

We have studied the effects of spatial dispersion on the

properties of nanostructured metal-dielectric metamaterials.

We have verified the general concepts of the nonlocal ho-

mogenization theory earlier developed for such structures25,26

and also analyzed some novel effects associated with the

manifestation of the nonlocal response. In particular, we

have revealed that in nanostructured media the optical axis

becomes tilted with respect to its position in the homogeneous

dielectric medium, and this tilt depends on both frequency and

propagation direction. We have shown numerically that this

effect is significant not only for metal-dielectric metamaterials

but also for all-dielectric nanostructured materials. We have

also pointed out the correspondence between the extreme

anisotropy in the nonlocal permittivity tensor and the spatial

dispersion. Multilayered metamaterials provide a remarkable

example of nanostructured materials for which the nonlocal

homogenization theory can be developed and implemented

analytically.
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APPENDIX

After some algebra, we rewrite the relations of the ap-

pendices of Ref. 25 in a more explicit form. The component

orthogonal to the propagation plane can be written as follows:

εzz(ω,k) =
[(

ε1d1

(

ε2k
2
0 − k2

)

+ ε2d2

(

ε1k
2
0 − k2

))(

ε1k
2
0 − k2

)(

ε2k
2
0 − k2

)

�TE − 2α(ε1 − ε2)2k2
0k

2
]

×
[(

d1

(

ε2k
2
0 − k2

)

+ d2

(

ε1k
2
0 − k2

)(

ε1k
2
0 − k2

))(

ε2k
2
0 − k2

)

�TE − 2α(ε1 − ε2)2k4
0

]−1
,

α = 2A + B
(

k2
x1 + k2

x

)

+ C
(

k2
x2 + k2

x

)

,

A = kx1kx2kx [cos(kx2d2) sin(kxd1) + cos(kx1d1) sin(kxd2) − sin(kxD)] , (A1)

B = kx2 sin(kx1d1) [cos(kx2d2) − cos(kxd2)] ,

C = kx1 sin(kx2d2) [cos(kx1d1) − cos(kxd1)] ,

�TE = sin(kx1d1) sin(kx2d2)
(

k2
x1 + k2

x2

)

+ 2kx1kx2 [cos(kxD) − cos(kx1d1) cos(kx2d2)] ,

where k is the wave vector in the metamaterial, kx1 =
√

ε1k
2
0 − k2

y , kx2 =
√

ε2k
2
0 − k2

y .

The relations for other components look more compact in the matrix form:

(

εxx(ω,k) εxy(ω,k)

εyx(ω,k) εyy(ω,k)

)

= 〈E〉−1〈D〉. (A2)
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Components of the matrices 〈E〉 and 〈D〉 can be written in the following form:

〈E〉xx =
[

k2
x

(

k2
0

(

ε2
1d2 + ε2

2d1

)

− k2(ε1d2 + ε2d1)
)

+ ε1ε2k
2
0

(

k2D − k2
0(ε1d2 + ε2d1)

)]

(ε1ε2)−1

+
Pk2

y

ε1ε2

{

2Aε1ε2k
2
0

[

k2
0(ε1 + ε2) − k2

]

− Bε1

[

ε2
2k

4
0

(

ε1k
2
0 − k2

y

)

+ k2
x

(

k2 − k2
0(ε1 + ε2)

)2]

−Cε2

[

ε2
1k

4
0

(

ε2k
2
0 − k2

y

)

+ k2
x

(

k2 − k2
0(ε1 + ε2)

)2]}

,

〈E〉xy = 〈E〉yx = −kxky

[

k2(ε2d1 + ε1d2) − k2
0

(

ε2
2d1 + ε2

1d2

)]

(ε1ε2)−1

−
Pky

ε1ε2

{

A
ε1ε2k

2
0

kx

[

ε1ε2k
4
0 +

(

k2
y − k2

x

)(

k2 − (ε1 + ε2)k2
0

)]

− Bε1kx

[

ε2
2k

4
0

(

ε1k
2
0 − k2

y

)

+
[

ε1ε2k
4
0 + k2

y

(

k2 − (ε1 + ε2)k2
0

)][(

ε1 + ε2)k2
0 − k2

)]]

− Cε2kx

[

ε2
1k

4
0

(

ε2k
2
0 − k2

y

)

+
(

(ε1 + ε2)k2
0 − k2

)

×
(

k4
0ε1ε2 + k2

y

(

k2 − (ε1 + ε2)k2
0

))]

}

,

〈E〉yy =
[

k2
y

(

k2
0

(

ε2
1d2 + ε2

2d1

)

− k2(ε1d2 + ε2d1)
)

+ ε1ε2k
2
0

(

k2D − k2
0(ε1d2 + ε2d1)

)]

(ε1ε2)−1

−
P

ε1ε2

{

2Aε1ε2k
2
0

[

k2
y

(

(ε1 + ε2)k2
0 − k2

)

− k4
0ε1ε2

]

+ Bε1

[(

ε1ε2k
4
0 + k2

y

(

k2 − (ε1 + ε2)k2
0

))2

+ ε2
2k

4
0k

2
x

(

ε1k
2
0 − k2

y

)]

+ Cε2

[

ε2
1k

4
0k

2
x

(

ε2k
2
0 − k2

y

)

+
(

ε1ε2k
4
0 + k2

y

(

k2 − (ε1 + ε2)k2
0

))2]}

,

〈D〉xx = k2
0

[

k2
x(ε2d1 + ε1d2) + k2(ε1d1 + ε2d2)

]

− D
(

k4
0ε1ε2 + k2

xk
2
)

− Pk2
y

{

A
[

− ε1ε2k
4
0 + (ε1 + ε2)k4 − k2k2

0

]

+Bk2
0

[

ε1k
2
x

(

ε1k
2
0 − k2

)

+ ε2

(

ε1k
2
0

(

2k2
x + k2

y

)

− k2
yk

2
)]

+ Ck2
0

[

ε2k
2
x

(

ε2k
2
0 − k2

)

+ ε1

(

ε2k
2
0

(

2k2
x + k2

y

)

− k2
yk

2
)]}

,

〈D〉xy = kxky

(

k2
0(ε2d1 + ε1d2) − k2D

)

− Pky

{

A

kx

[

k2
yk

2
(

k2 − ε2k
2
0

)

+ ε1

(

ε2k
4
0

(

k2 + k2
x

)

− k2k2
0k

2
y

)]

−Bk2
0kx

[

ε1k
2
y

(

k2 − ε1k
2
0

)

+ ε2

(

ε1k
2
0

(

k2
x + ε1k

2
0

)

− k2
yk

2
)]

− Ck2
0kx

[

ε2k
2
y

(

k2 − ε2k
2
0

)

+ ε1

(

ε2k
2
0

(

k2
x + ε2k

2
0

)

− k2
yk

2
)]

}

,

〈D〉yx = kxky

(

k2
0(ε2d1 + ε1d2) − k2D

)

+ Pkxky

{

A
[

−ε1ε2k
4
0 + (ε1 + ε2)k4 − k2k2

0

]

+Bk2
0

[

ε1k
2
x

(

ε1k
2
0 − k2

)

+ ε2

(

ε1k
2
0

(

2k2
x + k2

y

)

− k2
yk

2
)]

+ Ck2
0

[

ε2k
2
x

(

ε2k
2
0 − k2

)

+ ε1

(

ε2k
2
0

(

2k2
x + k2

y

)

− k2
yk

2
)]}

,

〈D〉yy = k2
0

[

k2
y(ε2d1 + ε1d2) + k2(ε1d1 + ε2d2)

]

− D
(

ε1ε2k
4
0 + k2

yk
2
)

+Pkx

{

A

kx

[

k2
yk

2
(

k2 − ε2k
2
0

)

+ ε1

(

ε2k
4
0

(

k2 + k2
x

)

− k2k2
0k

2
y

)]

− Bk2
0kx

[

ε1k
2
y

(

k2 − ε1k
2
0

)

+ ε2

(

ε1k
2
0

(

k2
x + ε1k

2
0

)

− k2
yk

2
)]

− Ck2
0kx

[

ε2k
2
y

(

k2 − ε2k
2
0

)

+ ε1

(

ε2k
2
0

(

k2
x + ε2k

2
0

)

− k2
yk

2
)]

}

,

where

P =
2(ε1 − ε2)2�−1

TM
(

k2 − ε1k
2
0

)(

k2 − ε2k
2
0

) . (A3)

The physcial meaning of 〈E〉 and 〈D〉 is the following: These two matrices describe, respectively, the components of the

electric field and electric displacement field, normalized by the factor i[ωε0(k2 − ε1k
2
0)(k2 − ε2k

2
0)]−1 and averaged over the

period of the structure, D = d1 + d2.
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