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Vibration analyses of coupled nanobeam system under initial compressive pre-stressed condition are pre-
sented. An elastically connected double-nanobeam-system is considered. Expressions for bending-vibration
of pre-stressed double-nanobeam-system are formulated using Eringen’s nonlocal elasticity model. An
analytical method is proposed to obtain natural frequencies of the nonlocal double-nanobeam-system
(NDNBS). Nano-scale effects and coupling spring effects in (i) in-phase type, (ii) out-of-phase type vibra-
tion; and (ii) vibrationwith one nanobeam fixed are examined. Scale effects in higher natural frequencies of
NDNBS are also highlighted in this manuscript. Results reveal the difference (quantitatively) by which the
pre-load affects the nonlocal frequency in the in-phase type and out-of-phase type vibrations mode of
NDNBS.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

A beam is a simple model of one-dimensional continuous system
(Timoshenko, 1953). Its importance in various engineering fields is
well appreciated (Jennings, 2004). Beam-type structures are widely
used in many branches of modern civil, mechanical and aerospace
engineering. Recently, it is being extensively utilized as nano-
structure components (Harik and Salas, 2003) for nano-
electromechanical (NEMS) and microelectromechanical systems
(MEMS). Being important from the theoretical and engineering
points of view, the dynamic problems involving one-dimensional
continuous beam have drawn great deal of attention over the past
few decades.

An important technological extension of the concept of the single
beam is that of the complex coupled-beam-systems. One such simple
coupled beamsystem is the double-beam-system. The double-beam-
system is a continuous system consisting of two one-dimensional
beams joined by an elastic medium represented by distributed
vertical springs. Employing beam theories, several important works
on vibration and buckling of elastically connected double-beam
systems are reported. Vu et al. (2000) studied the vibration of
homogenous double-beam system subjected to harmonic excitation.
Erol and Gurgoz (2004) extended the analysis of Vu et al. (2000) to
axially vibrating double-rod system coupled by translational springs
: þ44 1792 295676.
T.Murmu@swansea.ac.uk

son SAS. All rights reserved.
and dampers. Oniszczuk (2000a) studied the free vibrations of two
parallel simply supported beams continuously joined by a Winkler
elastic layer. Undamped forced transverse vibrations of an elastically
connected simply supported double-beam system were analysed.
Free and forced vibration of double-string complex system was also
investigated by Oniszczuk (2000b, 2000c). Hilal (2006) investigated
the dynamic response of a double EulereBernoulli beam due to
moving constant load. The effects of the speedof themoving load, the
damping and the elasticity of the coupling viscoelastic layer on the
dynamic responses of the beam system were presented. Vibration
analysis of double-beam systems interconnected only at discrete
points was reported by Hamada et al. (1983) and Gurgoz and Erol
(2004). Buckling and the effect of a compressive load on the free
and forced vibration on double-beam systems were reported by
Zhang et al. (2008a, 2008b). Kelly and Srinivas (2009) carried out
vibrations of elastically connected stretched beam systems. Analyses
of double-beamsystemsbynumerical techniqueswere also reported.
Rosa and Lippiello (2007) presented non-classical boundary condi-
tions and differential quadrature method for vibrating double-
beams. Li and Hua (2007) presented spectral finite element analysis
of elastically connected double-beam systems.

From the above discussion, it can be observed that the vibration
theory of double-beam systems is well developed and studied
in details. However, there are only few contributions dealing
with the vibrations of beam-systems which are scale-dependent.
Scale-dependent beams structures are those fabricated from nano-
materials. The nanomaterials are future generation engineering
materials and have stimulated the interest of the scientific
researcher’s communities in physics, chemistry, biomedical and
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engineering. These nanomaterials have special properties resulting
from their nanoscale dimensions. Common examples of materials
that exhibit interesting properties on the nanoscale include nano-
particles, nanowires and nanotubes (viz. carbon nanotubes, ZnO
nanotubes). These nanomaterials havepromisingmechanical (tensile
strength), chemical, electrical, optical and electronic properties (Dai
et al., 1996; Bachtold et al., 2001; Kim and Lieber, 1999). Because of
many desirable properties, nanomaterials are perceived to be the
components for various nanoelectromechanical systems (NEMS) and
nanocomposites. Structural beams fabricated from nanomaterials
and of nanometre dimension are referred as nanobeams.

The understanding of dynamics of single-nanobeam (carbon
nanotubes, nanowires) is important. The vibration characteristics of
nanobeams can be employed for NEMS/MEMS applications (Pugno
et al., 2005; Ke et al., 2005a, 2005b). Parallel to vibration of single-
nanobeam, the study of vibrating multiple-nanobeam-system is
also relevant for nanosensors and nanoresonators applications. The
recent development of nano-optomechanical systems (NOMS)
necessitates the use of vibrating double-nanobeam-systems.

The employment of double-nanobeam-systems in NOMS has
been reported by various researchers. Frank et al. (2010) presented
a dynamically reconfigurable photonic crystal nanobeam cavity.
There work involved two closely situated parallel vibrating clamped
double-nanobeam-systems. Eichenfield et al. (2009) described the
design, fabrication, and measurement of a cavity nano-
optomechanical system (NOMS). The NOMS consisting of two
closely separated coupled nanobeams. The researchers fabricated the
low dimension double-beam-system by depositing stoichiometric
silicon nitride using low-pressure-chemical-vapour-deposition on
a silicon wafer. Deotare et al. (2009) studied the coupled photonic
crystal nanobeam cavities consisting of two parallel suspended
nanobeams separated by a small gap. The use of vibration properties
in double-nanobeam-system has also been reported by Lin et al.
(2010). The authors studied the coherent mixing of mechanical
excitations in nano-optomechanical structures. Most of the works
reported here are experimental works.

It is understood that controlling every parameter in experiments
at nanoscale is difficult. Further, since molecular dynamics simula-
tions are computationally expensive, analysis of nanostructures had
been carried out by classical continuum theory. Extensive research
over the past decade has shown that classical continuum models
(Timoshenko, 1974) are able to predict the performance of ‘large’
nanostructures reasonably well. Classical continuum models are
scale-free theory and it lacks the accountability of the effects arising
from the size-effects. Experimental (Ruud et al., 1994; Wong et al.,
1997; Sorop and Jongh, 2007; Kasuya et al., 1997; Juhasz et al.,
2004) and atomistic simulations (Chowdhury et al., 2010) have
evidenced a significant ‘size-effect’ in the mechanical properties
when the dimensions of the nanostructures become ‘small’. Size-
effects are related to atoms and molecules that constitute the
materials. The application of classical continuum models thus may
be questionable in the analysis of ‘smaller’ nanostructures. There-
fore, recently there have been research efforts to bring in the scale
effects within the formulation by amending the traditional classical
continuum mechanics. One widely used size-dependant theory is
the nonlocal elasticity theory pioneered by Eringen (Eringen, 1972,
1983, 2002). Nonlocal elasticity accounts for the small-scale effects
arising at the nanoscale level. Recent literature shows that the theory
of nonlocal elasticity is being increasingly used (Peddieson et al.,
2003; Sudak, 2003; Wang, 2005; Wang et al., 2006; Reddy, 2007;
Wang andWang, 2007;Wang and Varadan, 2007; Lu, 2007; Hu et al.,
2008; Heireche et al., 2008; Reddy and Pang, 2008; Artan and Tepe,
2008; Sun and Liu, 2008; Aydogdu, 2009; Murmu and Pradhan,
2009a, 2009b; Pradhan and Murmu, 2010; Murmu and Adhikari,
2010a, 2012, 2011a, 2011b; Hao et al., 2010; Shen, 2010; Xiang
et al., 2010; Murmu et al., 2011) for reliable and quick analysis of
nanostructures viz. nanobeams, nanoplates, nanorings, carbon
nanotubes, graphenes, nanoswitches and microtubules. For double-
nanobeam-system, Murmu and Adhikari (2010b) studied the
nonlocal effects in the longitudinal vibration of double-nanorod
systems. Further using nonlocal elasticity Murmu and Adhikari
(2010c) have proposed nonlocal transverse vibration analysis of
coupled double-nanobeam-systems. The nonlocal elasticity has also
potential in application in wide areas such as nanomaterials with
defects (Pugno and Ruoff, 2004; Pugno, 2006a, 2006b).

In the nonlocal elasticity theory, the small-scale effects are
captured by assuming that the stress at a point is a function of the
strains at all points in the domain (Eringen, 1983). This is unlike
classical elasticity theory. Nonlocal theory considers long-range
inter-atomic interaction and yields results dependent on the size of
a body. Some drawbacks of the classical continuum theory could be
efficiently avoided and the size-dependent phenomena can be
reasonably explained by the nonlocal elasticity theory. The majority
of the existing works on nonlocal elasticity are pertaining to the free
transverse vibration of single nanobeams. Though the mechanical
studies of nanobeams may include vibration of multiple-walled
nanotubes, the study of discrete multiple-nanobeam-system is
particularly limited in literature.

Further it is observed that during the fabrication of nano-
structures, the residual stresses can be developed within the struc-
tures. This initial residual stresses could significantly modify the
mechanical and electrical properties of MEMS or NEMS devices.
Strains are usually developed during the material growth and
temperature relaxation. For a suspended structure, this process-
induced strain may cause the axial residual stress within the struc-
ture. This calls for a deep understanding of its influence on the
performance of the devices for the optimum design.

Therefore, based on the above discussion there is a strong
encouragement to gain an understanding of the entire subject of
vibration of complex-nanobeam-system and the mathematical
modelling of such phenomena. In this paper an investigation is
carried out tounderstand the small-scale effects in the freebending-
vibration of nonlocal double-nanobeam-system (NDNBS) subjected
to initial compressive pre-stressed load. The two nanobeams are
subjected to initially pre-stress compressive loads. Initial pre-
stressed compressive load may arise due to fabrication on nano-
beam (Carr and Wybourne, 2003) or due to external applied
compressive loads. Further, this paper presents a unique yet simple
method of obtaining the exact solution for free vibration of double-
nanobeam system. Equations for free bending-vibration of a pre-
stressed double-nanobeam-system (NDNBS) are formulated
within the framework of Eringen’s nonlocal elasticity. The two
nanobeams are assumed to be attached by distributed vertical
transverse springs. These springs may represent the stiffness of an
enclosed elasticmedium, forcesdue tonano-optomechanical effects
(Eichenfield et al., 2009; Deotare et al., 2009; Lin et al., 2010) or
Vander Waals forces. An exact analytical method is proposed for
solving the nonlocal frequencies of transversely vibrating NDNBS.
The simplification in the computation is achieved based on the
change of variables to decouple the set of two fourth-order partial
differential equations. It is assumed that the two nanobeams in the
NDNBS are identical, and the boundary conditions on the same side
of the system are the same. Simply-supported boundary conditions
are employed in this study. Explicit expressions for the natural
frequencies of NDNBS are derived. The results are obtained for
variousvibration-phasesof theNDNBS. Thevibrationphases include
in-phase (synchronous) and out-of-phase (asynchronous) modes of
vibration. The effects of (i) axial pre-stressed load, (ii) nonlocal
parameteror scale coefficient, (iii) stiffnessof the springs and (iv) the
higher modes, on the frequency of the NDNBS are discussed.



Fig. 1. Schematic diagram of elastically connected double-nanobeam-system subjected
to pre-stressed compressive axial load.
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2. Nonlocal elasticity for nanostructure applications

For completeness, here we provide a brief review of the theory
of nonlocal elasticity. According to nonlocal elasticity, the basic
equations for an isotropic linear homogenous nonlocal elastic body
neglecting the body force are given as (Eringen, 1983)

sij;j ¼ 0;

sijðxÞ ¼
Z
V

fðjx � x0j;aÞtijdVðx0Þ; cx˛V

tij ¼ Hijklεkl;

εij ¼
1
2
�
ui;j þ uj;i

�
(1)

The terms sij, tij, εkl, Hijkl are the nonlocal stress, classical stress,
classical strain and fourth-order elasticity tensors respectively.
The volume integral is over the region V occupied by the body. The
above equation (Eq. (1)) couples the stress due to nonlocal elas-
ticity and the stress due to classical elasticity. The kernel function
fðjx � x0j;aÞ is the nonlocal modulus. The nonlocal modulus acts
as an attenuation function incorporating into constitutive equa-
tions the nonlocal effects at the reference point x produced by
local strain at the source x0. The term jx � x0j represents the
distance in the Euclidean form and a is a material constant that
depends on the internal (e.g. lattice parameter, granular size,
distance between the CeC bonds) and external characteristics
lengths (e.g. crack length, wave length). Material constant a is
defined as a ¼ e0a=[. Here e0 is a constant for calibrating the
model with experimental results and other validated models. The
parameter e0 is estimated such that the relations of the nonlocal
elasticity model could provide satisfactory approximation to the
atomic dispersion curves of the plane waves with those obtained
from the atomistic lattice dynamics. The terms a and [ are the
internal (e.g. lattice parameter, granular size, distance between
CeC bonds) and external characteristics lengths (e.g. crack length,
wave length) of the nanostructure.

Equation (1) is in partial-integral form and generally difficult to
solve analytically. Thus a differential form of nonlocal elasticity
equation is often used. According to Eringen (1983), the expression
of nonlocal modulus can be given as

fðjxj;aÞ ¼
�
2p[2a2

��1
K0

� ffiffiffiffiffiffiffiffi
x$x

p
=[a

�
(2)

where K0 is the modified Bessel function.
The equation of motion in terms of nonlocal elasticity can be

expressed as

sij;j þ fi ¼ r€ui (3)

where fi, r and ui are the components of the body forces, mass
density, and the displacement vector, respectively. The terms i, j
takes up the symbols x, y, and z.

Assuming the kernel function f as the Green’s function, Eringen
(1983) proposed a differential form of the nonlocal constitutive
relation as

sij;j þ L
�
fi � r€ui

�
¼ 0 (4)

where

L ¼
h
1� ðe0aÞ2V2

i
(5)

and V2 is the Laplacian.
Using Eq. (5) the nonlocal constitutive stressestrain relation can
be simplified as�
1� a2[2V2

�
sij ¼ tij (6)

Since we are considering nanobeams, in one dimensional form
the constitutive relation is given by

sðxÞ � ðe0aÞ2s00ðxÞ ¼ tij (7)

For the stress resultant we use
R
A
sdA and Eq. (7). We get

N � ðe0aÞ2N00ðxÞ ¼ EAu0ðx; tÞ (8)

and the stress resultant in nonlocal moment’s relation becomes

M � ðe0aÞ2M00ðxÞ ¼ �EIw00ðx; tÞ (9)

Employing the nonlocal constitutive stressestrain relation, the
one-dimensional equation of motion of a nonlocal Euler-Bernoulli
beam can be written as (Reddy, 2007)

EIw0000ðx; tÞ � qðxÞ þ ðe0aÞ2q00ðxÞ þ Nw00ðx; tÞ � ðe0aÞ2Nw0000ðx; tÞ
þm€wðx; tÞ � ðe0aÞ2m€w00ðx; tÞ ¼ 0 ð10Þ

where w denotes the deflection of the beam. The terms E, I and m
are the Young’s modulus, secondmoment of inertia andmass of the
nonlocal beam, respectively. Term q is the distributed transverse
load on the nonlocal beam. In the next Section we present the
equation of motion of pre-stressed double-nanobeam-system.
3. Formulation of pre-stressed nonlocal
double-nanobeam-systems

Consider a compressive pre-stressed nonlocal double-nanobeam-
system (NDNBS) as shown in Fig. 1. The two nanobeams are denoted
as Nanobeam-1 and Nanobeam-2. Vertically distributed springs
attaches the twonanobeams. The stiffness of the springs is equivalent
to the Winkler constant in a Winkler foundation model (Oniszczuk,
2000a). The springs can be used to substitute elastic medium,
forces due to nano-optomechanical effects (Eichenfield et al., 2009;
Deotare et al., 2009; Lin et al., 2010) or VanderWaals forces between
the two nanobeams. These forces arise when the dimension of
system approaches nanoscale. Generating a potential difference
directly across the nanobeams an attractive electrostatic force can be
inducedbetween the twonanobeams (Franket al., 2010). Thereby the
spring stiffness can be varied between the nanobeams. The springs
are considered to have stiffness, k. The two nanobeams are different
where the length,mass per unit length and bending rigidity of the ith
beam are Li, mi and EiIi (i ¼ 1, 2) respectively. These parameters are
assumed to be constant along each nanobeam. The bending
displacements over the two nanobeams are denoted by w1 (x, t) and
w2 (x, t), respectively (Fig. 1).

The two nanobeams are subjected to initially pre-stress
compressive loads. The initial axial stress effects can occur in
micro/nanobeam-based devices. In the bottom-up or top-down
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fabrication of micro/nanobeam-like structures, the strains can
develop during the material growth and temperature relaxation,
resulting in axial compressive residual stress (Carr and Wybourne,
2003; Heireche et al., 2008; Murmu and Pradhan, 2009a).

Let the nanobeams subjected to initial pre-stress s0x . Then the
initial axial forces are given as

N0
1 ¼ A1s

0
x ; N0

2 ¼ A2s
0
x (11)

Employing the nonlocal elastic theory, the equations of motion
of two pre-stressed nanobeams can be given by

nanobeam-1

E1I1w
0000
1 ðx; tÞ þ k½w1ðx; tÞ �w2ðx; tÞ� � ðe0aÞ2k

�
w00

1ðx; tÞ
�w00

2ðx; tÞ
�þ N0

1w
00
1ðx; tÞ � ðe0aÞ2N0

1w
0000
1 ðx; tÞ

þm1 €w1ðx; tÞ � ðe0aÞ2m1w
€ 00
1ðx; tÞ ¼ 0 ð12Þ

nanobeam-2

E2I2w
0000
2 ðx; tÞ � k½w1ðx; tÞ �w2ðx; tÞ� þ ðe0aÞ2k

�
w00

1ðx; tÞ
�w00

2ðx; tÞ
�þ N0

2w
00
2ðx; tÞ � ðe0aÞ2N0

2w
0000
2 ðx; tÞ

þm2w
€
2ðx; tÞ � ðe0aÞ2m2w

€ 00
2ðx; tÞ ¼ 0 ð13Þ

Dots ($) and primes (0) denote partial derivatives with respect to
time t and position coordinate x, respectively. For the complete
derivation of the equation of motion of a single nonlocal Euler-
Bernoulli beam, one can see Ref. (Reddy, 2007)
4. Simplification of nonlocal double-nanobeam-systems

We assume that both the nanobeams and the forces within
them are identical, that is

E1I1 ¼ ðE2I2Þ ¼ EIhconstant (14)

m1 ¼ m2 ¼ mhconstant (15)

N0
1 ¼ N0

2 ¼ N̂hconstant ðuniformly prestressedÞ (16)

Considering the Eqs. (12) and (13) and assumptions from Eqs.
(14)e(16) we get the individual equations.

nanobeam-1

EIw0000
1 ðx; tÞ þ k½w1ðx; tÞ �w2ðx; tÞ� � ðe0aÞ2k

�
w00

1ðx; tÞ
�w00

2ðx; tÞ
�þ N̂w00

1ðx; tÞ � ðe0aÞ2N̂w0000
1 ðx; tÞ

þmw€ 1ðx; tÞ � ðe0aÞ2m€w00
1ðx; tÞ ¼ 0 (17)

nanobeam-2

EIw0000
2 ðx; tÞ � k½w1ðx; tÞ �w2ðx; tÞ� þ ðe0aÞ2k

�
w00

1ðx; tÞ

�w00
2ðx; tÞ

�þ N̂w00
2ðx; tÞ � ðe0aÞ2N̂w0000

2 ðx; tÞ

þmw€ 2ðx; tÞ � ðe0aÞ2mw€
00
2ðx; tÞ ¼ 0 (18)

For the NDNBSwe propose a change of variables (Vu et al., 2000)

wðx; tÞ ¼ w1ðx; tÞ �w2ðx; tÞ; (19)

such that
w1ðx; tÞ ¼ wðx; tÞ þw2ðx; tÞ (20)

Here w (x, t) is the relative displacement of the main nano beam
with respect to the auxiliary beam.

Subtracting Eqn. (17) from Eqn. (18) gives

EI
�
w0000

1 ðx; tÞ �w0000
2 ðx; tÞ�þ 2k½w1ðx; tÞ �w2ðx; tÞ�

�2ðe0aÞ2k
�
w00

1ðx; tÞ �w00
2ðx; tÞ

�þ N̂
�
w00

1ðx; tÞ

�w00
2ðx; tÞ

�� ðe0aÞ2N̂
�
w0000

1 ðx; tÞ �w0000
2 ðx; tÞ�

þm
h
w€ 1ðx; tÞ �w€ 2ðx; tÞ

i
�mðe0aÞ2

h
w€

00
1ðx; tÞ

�w€
00
2ðx; tÞ

i
¼ 0 (21)

By introducing Eqs. (19) and (20) and using Eq. (21) we get two
equations

EIw0000ðx; tÞ þ 2kwðx; tÞ � 2ðe0aÞ2kw00ðx; tÞ

þN̂w00ðx; tÞ � ðe0aÞ2N̂w0000ðx; tÞ þmw€ ðx; tÞ

�ðe0aÞ2mw€
00ðx; tÞ ¼ 0 (22)

EIw0000
2 ðx; tÞ þ N̂w00

2ðx; tÞ � ðe0aÞ2N̂w0000
2 ðx; tÞ þmw€ 2ðx; tÞ

�ðe0aÞ2mw€
00
2ðx; tÞ ¼ kwðx; tÞ

�ðe0aÞ2kw00ðx; tÞ (23)

It should be noted that when the nonlocal effects are ignored
(e0a¼ 0) and a single nanobeam is considered, the above equations
revert to the equations of classical Euler-Bernoulli beam theory
(Timoshenko, 1974). For the present analysis of coupled NDNBS, we
see the simplicity in using Eq. (22). Here we will be dealing with
Eq. (22) for coupled NDNBS.

5. Exact solutions of governing equations

Now we determine the solution of Eqs. (22) and (23). Let the
solution of Eqn. (22) be

wðx; tÞ ¼ WðxÞeiut (24)

where u is the circular natural frequency and W (x) is the mode
shape. Term i is the conventional imaginary number, i ¼

ffiffiffiffiffiffiffi
�1

p
.

Substituting the Eq. (24) into Eq. (22) yields

A1W
0000ðxÞ þ A2W

00ðxÞ � A3WðxÞ ¼ 0 (25)

where

A1 ¼ EI � ðe0aÞ2N̂;A2 ¼ �mu2ðe0aÞ2þN̂ � 2kðe0aÞ2;
A3 ¼ �mu2 � 2k (26)

The general solution of Eq. (25) is given as

WðxÞ ¼ C1sin axþ C2cos axþ C3sinh bxþ C4cosh bx (27)

Where

a2 ¼ 1
2A1

�
A2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
2 þ 4A1A3

q �
(28)

b2 ¼ 1
2A1

�
A2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
2 þ 4A1A3

q �
(29)
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The terms C1, C2, C3 and C4 are the constants of integrations
determined from the boundary conditions. Here a is not the
nonlocal modulus.

6. Nonlocal boundary conditions of pre-stressed NDNBS

Now we present the mathematical expressions of the boundary
conditions in NDNBS. The boundary conditions of simply supported
conditions are described here. At each end of the nanobeams in
NDNBS the displacement and the nonlocal moments are considered
to be zero (Reddy, 2007). They can be mathematically expressed as

(nanobeam-1): at x [ 0

w1ð0; tÞ ¼ 0; (30)

M1ð0; tÞ ¼ �EIw00
1ð0; tÞ þ ðe0aÞ2mw€ 1ð0; tÞ

þðe0aÞ2k½w1ð0; tÞ �w2ð0; tÞ�
þðe0aÞ2N̂w00

1ð0; tÞ ¼ 0 (31)

(nanobeam-1): at x [ L

w1ðL; tÞ ¼ 0; (32)

M1ðL; tÞ ¼ �EIw00
1ðL; tÞ þ ðe0aÞ2mw€ 1ðL; tÞ þ ðe0aÞ2k½w1ðL; tÞ

�w2ðL; tÞ� þ ðe0aÞ2N̂w00
1ðL; tÞ ¼ 0 (33)

(nanobeam-2): at x [ 0

w2ð0; tÞ ¼ 0; (34)

M2ð0; tÞ ¼ �EIw00
2ð0; tÞ þ ðe0aÞ2mw€ 1 � ðe0aÞ2k½w1ð0; tÞ

�w2ð0; tÞ� þ ðe0aÞ2N̂w00
2ð0; tÞ ¼ 0 (35)

(nanobeam-2): at x [ L

w2ðL; tÞ ¼ 0; (36)

M2ðL; tÞ ¼ �EIw00
2ðL; tÞ þ ðe0aÞ2mw€ 1 � ðe0aÞ2k½w1ðL; tÞ

�w2ðL; tÞ� þ ðe0aÞ2N̂w00
2ð0; tÞ ¼ 0 (37)
Fig. 2. Configuration of (a) out-of-phase vibration and (b) in-phase vibration of pre-stre
nanobeam is fixed.
Now we utilise Eq. (19) and the above boundary condition
simplifies to

NDNBS: at x [ 0

wð0; tÞ ¼ w1ð0; tÞ �w2ð0; tÞ ¼ 0; (38)

M1ð0;tÞ�M2ð0;tÞ¼�EIw00
1ð0;tÞþðe0aÞ2

h
mw€

1
ð0;tÞþk½w1ð0;tÞ

�w2ð0;tÞ�
i
þEIw00

2ð0;tÞ�ðe0aÞ2
h
mw€ 1

�k½w1ð0;tÞ�w2ð0;tÞ�
i
þðe0aÞ2N̂

�
w00

1ð0;tÞ

�w00
2ð0;tÞ

�¼0; (39)

NDNBS: at x [ L

wðL; tÞ ¼ w1ðL; tÞ �w2ðL; tÞ ¼ 0; (40)

M1ðL;tÞ�M2ðL;tÞ ¼�EIw00
1ðL;tÞþðe0aÞ2

h
mw€ 1ðL;tÞþk½w1ðL;tÞ

�w2ðL;tÞ�
i
þEIw00

2ðL;tÞ�ðe0aÞ2
h
mw€ 1

�k½w1ðL;tÞ�w2ðL;tÞ�
i
þðe0aÞ2N̂

�
w00

1ðL;tÞ

�w00
2ðL;tÞ

�¼ 0; (41)

By the use of Eq. (19) and Eqs. (30)e(41); the boundary conditions
effectively reduce to

Wð0Þ ¼ 0 andW 00ð0Þ ¼ 0; WðLÞ ¼ 0 andW 00ðLÞ ¼ 0; (42)

Here it can be seen that the boundary conditions due to local
elasticity and nonlocal elasticity are equivalent.
7. Vibration of NDNBS under pre-stressed condition

7.1. Out-of-phase vibration:(w1 � w2 s 0)

Consider the case of the NDBNS when the both the nanobeams
vibrate in out-of-phase sequence. The NDNBS is subjected to a pres-
stress load. The configuration of the NDNBS with out-of-phase
sequence of vibration (w1 � w2 s 0) is shown in Fig. 2a.

We consider the case when all the ends have simply-supported
boundary conditions (Fig. 2). For simply-supported case, the use of
the boundary conditions in (42) yields
ssed double-nanobeam-system, (c) vibration of double-nanobeam-system when one
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C2 ¼ 0; C4 ¼ 0 (43)

and	
sin aL sinh bL

EIa2sin aL EIb2sinh bL


�
C1
C3

�
¼

�
0
0

�
(44)

For non- trivial solution, the determinant yields

sin aL
�
EIb2sinh bL� EIa2sinh bL

�
¼ 0 (45)

Thus the Eigen equation reduces to

sin aL ¼ 0 (46)

Therefore

aL ¼ np; n ¼ 1;2.:: (47)

From Eq. (28) we have

2A1a
2 ¼ A2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
2 þ 4A1A3

q
(48)

which yields,

A1a
4 � A2a

2 � A3 ¼ 0 (49)

We introduce the following parameters for sake of simplicity and
generality

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu2L4

EI

s
; K ¼ kL4

EI
; m ¼ e0a

L
; F ¼ N̂L2

EI
(50)

Using Eq. (50) the expression of natural frequency of NDNBS is
evaluated as

U¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpÞ4þ2Kþ2KðmÞ2ðnpÞ2�FðnpÞ2�FðmÞ2ðnpÞ4

1þðmÞ2ðnpÞ2

vuut ; n¼ 1;2.

(51)

Note that when the nonlocal parameter m is set to zero we get the
expression of classical double-beam-system (Vu et al., 2000; Zhang
et al., 2008a).

7.2. In-phase vibration: (w1 � w2 ¼ 0)

Next, the in-phase sequence of vibration will be considered
(Fig. 2b). For thepresentNDNBS, the relativedisplacementsbetween
the two nanobeams are absent (w1 �w2 ¼ 0). Herewe solve the Eq.
(23) for the vibration of NDNBS. The vibration of nanobeam-2would
represent the vibration of the coupled vibrating system. We apply
the same procedure for solving Eq. (23).

Using Eqs. (43)e(50) we can obtain the natural frequencies. The
natural frequencies for the NDNBS in this case can be expressed as

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpÞ4�FðnpÞ2�FðmÞ2ðnpÞ4

1þ ðmÞ2ðnpÞ2

vuut ; n ¼ 1;2. (52)

Note that in in-phase mode of vibration, the NDNBS is independent
of stiffness of springs.

7.3. Vibration of nanobeam when one nanobeam is fixed: (w2 ¼ 0)

Consider the case of NDNBS when one of the two nanobeams
(viz. nanobeam-2) is stationary (w2 ¼ 0). The schematic diagram is
shown in Fig. 2c. Like the case of buckling, the NDNBS behaves like
a vibrating beam embedded in an elastic medium .The elastic
medium can be modelled as Winkler elastic foundation.

By following the same procedure as solution of Eq. (22), the
explicit nonlocal frequency of NDNBS can be expressed as

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrpÞ4þKþKðmÞ2ðrpÞ2�FðrpÞ2�FðmÞ2ðrpÞ4

1þðmÞ2ðrpÞ2

vuut ; r ¼ 1;2.

(53)

In fact when one of the nanobeam (viz. nanobeam-2) in
NDNBS is fixed (w2 ¼ 0), the NDNBS vibrates as a beam on elastic
medium.
8. Results and discussion

8.1. Coupled-carbon-nanotube-systems

The nonlocal theory for NDNBS illustrated here is a general-
ised theory and can be applied for the bending-vibration anal-
ysis of coupled carbon nanotubes, double ZnO nanobeam
systems and double-nanobeam-systems for NOMS application;
and in nanocomposites. The applicability of nonlocal elasticity
theory in the analysis of single nanostructures (nanotubes and
graphene sheet) has been established in various previous works.
For the present study we assume two carbon nanotubes being
elastically attached by an elastic medium. The properties of the
nanobeams considered are that of a single-walled carbon
nanotube (SWCNT) (Lu, 1997). An armchair SWCNT with
chirality (5, 5) is considered. The radius of each individual
SWCNT is assumed as 0.34 nm. Young’s modulus, E, is taken as
0.971 TPa (Lu, 1997). Density r is taken as 2300 kg/m3. Length of
both nanotubes is considered as 5 nm. The frequency results of
the NDNBS are presented in terms of the frequency parameters
(Eq. (51)). The nonlocal parameter and the stiffness of the
springs are computed as given in Eq. (50). Spring stiffness
represents the stiffness of the enclosing elastic medium.
Different values of spring parameters, K, are considered. This is
because the elastic medium can be of low as well as of high
stiffness (Liew et al., 2006). The values of K range from 5 to 500.
Both the nanotubes (nanotube-1 and nanotube-2) are assumed
to have the same geometrical and material properties. It should
be noted that the coupled carbon nanotubes system is different
from the conventional double-walled carbon nanotubes.

Thenonlocalparameters aregenerally takenase0¼ 0.39 (Eringen,
1983) and a ¼ 0.142 nm (distance between carbonecarbon atoms).
For carbonnanotubesandgraphenes the rangeofe0a¼0e2.0nmhas
beenwidely used. In the present studywe take the scale coefficientm
or nonlocal parameter in the similar range as m ¼ 0�1.
8.2. Vibration response of coupled-vibrating-systems

This Section presents the vibration response of initially pre-
stressed coupled-carbon-nanotubes-systems using the frame-
work of nonlocal elasticity theory. Here we see the influence of
small-scale (or nonlocality) on the natural frequency of the
coupled-carbon-nanotube-systems. Curves have been plotted for
natural frequencies against scale coefficient (nonlocal parameter)
and depicted in Fig. 3. To signify the small-scale effect we intro-
duce the parameter Frequency Reduction Percent (FRP). FRP is
defined as

FRP ¼
�ULocal Theory � UNonocal Theory

ULocal Theory

�
� 100 (54)



Fig. 3. Effect of scale coefficient (m ¼ e0a/L) on frequency reduction percent (FRP) for higher different values of stiffness of springs in coupled-SWCNT-systems, (a) K ¼ 1; (b) K ¼ 10;
(c) K ¼ 20; (d) K ¼ 30; (e) K ¼ 40; (f) K ¼ 50.
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8.2.1. Small-scale effects
Fig. 4a shows the variation of FRP against scale coefficient (e0a/

L). Both the coupled SWCNT is considered to be subjected to
a constant initial compressive axial pre-load. A constant pre-load
parameter of F ¼ 5 is arbitrarily assumed. The stiffness parameter
of the coupling springs is assumed as K ¼ 1. From the figure it is
observed that as the scale coefficient m increases the FRP
increases. This implies that for increasing scale coefficient the
value of natural frequencies decreases. The reduction in natural
frequency is due to the incorporation of nonlocal effects in the
material properties of the carbon nanotubes.

The nonlocal effect reduces the stiffness of the material and
hence the comparative lower natural frequencies. At a certain value
of scale coefficient m the FRP reaches 100%; and associated natural
frequency has reached its maximum limit. Further increase of scale
coefficient has no effect on the coupled SWCNT system and the
curves become flat (Fig. 3a). This implies that the vibration system
has reached the buckling state of mode. And the vibrating system
cannot be considered to be vibrator any more.

Three cases of vibration response are considered here; case 1:
out-of-phase vibration; case 2: vibrationwith one SWCNT fixed and
case 3: in-phase type of vibration. On comparison of the three cases
of coupled-carbon nanobeam system, the FRP for case 3 (in-phase
vibration) is higher than the FRP for case 1 (out of phase vibration)
and case 2 (one-SWCNT fixed). Though in all three cases the
difference is slight (Fig. 3a). In other words, the scale coefficient



Fig. 4. Effect of scale coefficient (m ¼ e0a/L) on frequency reduction percent (FRP) for
higher natural frequencies of coupled-SWCNT-systems.
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reduces the in-phase natural frequencies (case 3) (thus higher FRP)
compared to other cases considered. The relative higher FRP in
case-3 (Eq. (51)) is due to the absence of coupling effect of the
springs and the two SWCNT. Further we see that the values of the
FRP for the case-2 are larger than the values of the FRP for the case-
1. For Case-2 the coupled carbon nanotubes system becomes
similar to the vibration characteristics of the single SWCNTwith the
effect of elastic medium.

8.2.2. Effect of stiffness of coupling springs
To illustrate the influence of stiffness of the springs on the

natural frequency of the coupled-carbon-nanotube-systems curves
have been plotted for FRP against the scale coefficient. Fig. 3(aef)
depicts the effect of stiffness of the springs on the natural
frequencies of coupled systems. Different values of stiffness
parameter of the coupling springs are considered. Ratio K is
considered in range 1e50. The initial pre-stress load, F is constant
and assumed as 5. As the spring stiffness K of the coupling springs
increases the FRP decreases. Considering all values of K and
comparing the three cases of coupled-carbon nanobeam system, it
is noticed that the FRP for case 3 (in-phase vibration) is larger than
the FRP for case 1 (out of phase vibration) and case 2 (one-SWCNT
fixed). These different changes of FRP with increasing scale coeffi-
cient for the three different cases aremore amplified as the stiffness
parameter (K/F) of the spring’s increases. For case 1(out-of-phase
vibration) and case 2 (one-SWCNT fixed) the FRP reduces with
increasing values of K. This observation implies that case 1(out-of-
phase vibration) and case 2 (one-SWCNT fixed) are less affected by
scale effects. Comparing between case 1 and case 2, it is seen the
FRP is lesser for out-of-phase vibration than for vibration in case 2.
Thus the out-of-phase vibration phenomenon is less affected by
small-scale or nonlocal effects. This phenomenon in out-of-phase
vibration can be attributed to the fact that the coupling springs in
the vibrating system dampens the nonlocal effects.

In-phase vibration of coupled system is unchangeable with
increasing stiffness of springs. This is accounted due to the in-phase
behaviour of vibration. For in-phase type of vibration the coupled
system behaves as if a single SWCNT without the effect of internal
elastic medium. In other words the whole coupled system can be
treated as a single nano element and the coupling internal structure
is effectless.

As discussed in the previous sub Section that at certain value of
scale coefficient m the FRP reaches 100%; and the vibration system
has reached the buckling state of mode (Lu, 2007). By increasing
stiffness parameter of the springs K, the ‘saturation’ of FRP (100%)
happens at higher scale coefficient. This can be observed in the
Fig. 3(aef); that with increasing K the curves shifts towards the
right (Fig. 3). This is significantly prominent in out-of phase
vibration phenomenon; and in vibration with one SWCNT fixed
(the former is highly affected). Thus, coupling medium (springs,
elastic medium, and forces due to nano-optomechanical effects) in
the initially pre-stressed coupled vibration system plays an
important role from being buckled easily. For designing of coupled-
nanobeam-systems the interrelation of coupling medium, nonlocal
effects and the initial pre-stress load thus becomes important. The
in-phase type of vibration here is unaffected by increasing K
because of its independence of coupling medium as discussed
earlier.

8.2.3. Analysis of higher natural frequencies
To see the effect of higher natural frequencies of coupled carbon

nanotubes systems, curves have been plotted for higher natural
frequencies. Fig. 4 shows the effect of scale coefficient (m) on
frequency reduction percent (FRP) for higher natural frequencies of
coupled-SWCNT-systems. We have considered exclusive natural
frequencies. The sequence of higher modes is based accordingly
when nonlocal elasticity is negligible. Three cases of vibration
response are considered (a) out-of-phase vibrations (b) one SWCNT
fixed and (c) in-phase vibration. The coupling springs is chosen
such that the stiffness parameter, K ¼ 30. The initial pre-stress
condition is neglected (F ¼ 0). From Fig. 4 we see that with
increase of higher natural frequencies the FRP for all case of
vibration response increases. This implies that the higher natural
frequencies of the coupled system are significantly reduced due to
the nonlocal effects. Further we see that the small-scale effects are
more pronounced for higher natural frequencies as steeper curves
are found for higher natural frequencies. Further, it is also noticed
that the difference between the in-phase type vibration, out-of-
phase type vibration and vibration with one SWCNT fixed
become less for higher modes of buckling loads. Thus it can be
concluded that although the small-scale effects are more in
prominent higher natural frequencies, the effect of stiffness of
coupling springs reduces the nonlocal effects. Here it should be
noted that the resonance frequency is the natural frequency in first
in-phase type vibration.

8.2.4. Effect of initial compressive pre-stress load on coupled system
To illustrate the influence of initial compressive pre-stress load

on the vibration response of the coupled-carbon-nanotube-
systems, curves have been plotted for FRP against the scale coeffi-
cient. Fig. 5(aef) depicts the effect of compressive pre-stress load F
on the natural frequencies of coupled systems. Constant stiffness of
the springs is considered, i.e. as K ¼ 5. Different values of
compressive pre-stress load F are considered. Preload F is assumed
to be in range 1e6. As the load F increases, the frequency decreases
and the vibrating system is ‘saturated’ at lesser values of scale
coefficient.

At the saturation state, the vibrating system reaches the buck-
ling state of mode (FRP is 100%). By increasing F, the curves shift to
the left (lower scale coefficient). This is unlike the effect of coupling
springs, where by increasing the stiffness parameter the curves
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Fig. 5. Variation of frequency reduction percent (FRP) against scale coefficient (m ¼ e0a/L) for different initial pre-stress load, (a) F ¼ 1; (b) F ¼ 2; (c) F ¼ 3; (d) F ¼ 4; (e) F ¼ 5;
(f) F ¼ 6.
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shift to the right. All the three types of vibration phenomenon (out-
of-phase vibration, vibration with one SWCNT fixed and in-phase
vibration) are equally affected by the increasing pre-load.

8.2.5. Analysis of higher natural frequencies for initial pre-stress
load

To see the effect of higher natural frequencies of initially pre-
stressed coupled carbon nanotubes systems, curves have been
plotted for higher natural frequencies. Fig. 6 completely illustrates
the effect of scale coefficient (m) on frequency reduction percent
(FRP) for higher natural frequencies of coupled-SWCNT-systems.
The coupling springs is chosen such that the stiffness parameter,
K ¼ 30. The initial pre-stress condition is assumed constant and
taken as F ¼ 5. From Fig. 6 we see that with the increase of higher
buckling loads, the FRP for all cases of vibration response
increases. We see that the small-scale effects are more
pronounced for higher natural frequencies as steeper curves are
found for higher natural frequencies. The difference between the
in-phase type vibration, out-of-phase type vibration and vibration
with one SWCNT fixed become less for higher modes of vibration.
With the application of initial pre-stress, the buckled state is
reached at certain scale coefficient values. With increasing natural
frequencies the buckling state is reached at closer range of small-
scale coefficient (Fig. 6). This is also true for in-phase, out-of-phase
and vibration with one SWCNT fixed. Here it should be noted that
the resonance frequency is the natural frequency in first in-phase
type vibration. The buckling state reached at first in-phase type
vibration is referred as critical buckling state (Fig. 6). The critical
buckling state in vibration of NDNBS is reached at approximately
m ¼ 0.33.



Fig. 6. Effect of scale coefficient (m ¼ e0a/L) on frequency reduction percent (FRP) for
higher natural frequencies of initially pre-stressed coupled-SWCNT-systems.
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In the end, we say that this present work can be extended to
triple-nanobeam systems (TNBS). The work on vibration of TNBS is
underway. Further different boundary conditions at the ends will
result in different vibration and buckling behaviour which will be
interesting to study. This would find practical application in the
design of nanosensors, nanoresonators and also for devising better
NOMS structures. The present work could also be useful in the
study of double-nanoplate system for future NOMS studies. In
summary, the present work illustrated here provides an analytical
solution that serves as a benchmark for further investigation of
more complex n-nanobeam systems using scale-based nonlocal
elastic theory.

9. Conclusions

In this paper a theoretical scale-based nonlocal elasticity is
considered for the stability and free bending-vibration of a pre-
stressed double-nanobeam-system (NDNBS). An exact analytical
method is developed for determining the nonlocal frequencies
of transversely vibrating NDNBS. Study of NDNBS is applied to
a twin single-walled carbon nanotube system coupled by elastic
medium. The study shows that nonlocal effects are important in the
transverse vibration. Nonlocal effects reduce the frequencies of the
NDNBS(coupled-nanotube-system). Increasing the stiffness of the
springs in coupled nanosystems reduces the nonlocal effects.
The small-scale effects in coupled nano systems are more prom-
inent with the increasing nonlocal parameter in the in-phase
vibration than in the out-of-phase motion condition. For pre-
stressed double nanobeam system (couple nanotubes) the natural
frequencies is reduced with increasing pre-stressed load. At
a certain value of the scale coefficient the frequency is reduced to
zero and the double nanobeam system considered to be buckled.
The increasing scale effects contribute to the phenomenon of
buckled state for one carbon nanotubes. Finally, this present study
gives physical insights which may be useful for the design and
vibration analysis of nano-optomechanical systems (NOMS),
nanocomposites and sensor applications.
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