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A Non-Local, Energy-Optimized Kernel: Recovering Second-Order Exchange in the

Homogeneous Electron Gas

Jefferson E. Bates,∗ Savio Laricchia,† and Adrienn Ruzsinszky
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States

In order to remedy some of the shortcomings of the Random Phase Approximation (RPA) within
Adiabatic Connection Fluctuation-Dissipation (ACFD) Density Functional Theory we introduce a
short-ranged, exchange-like kernel that is one-electron self-correlation free and exact for two-electron
systems in the high density limit. By tuning a free parameter in our model to recover an exact limit
of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel
that reduces the errors of RPA for both homogeneous and inhomogeneous solids. Using wave-
vector symmetrization for the kernel, we also implement RPA renormalized perturbation theory
for extended systems, and demonstrate its capability to describe the dominant correlation effects
with a low-order expansion in both metallic and non-metallic systems. The comparison of ACFD
structural properties with experiment is also shown to be limited by the choice of norm conserving
pseudopotential.

I. INTRODUCTION

Local and semi-local density functional theory1–5 is an
efficient and useful tool for studying the electronic struc-
ture of molecules and materials. Its accuracy is limited,
however, and has not reached the accuracy criteria of
the chemical and semiconductor industries. Famous fail-
ures of semi-local density functional theory (DFT) in-
clude self-interaction errors6,7, the absence of long-range
van der Waals interactions8, and the missing derivative
discontinuity9 with respect to changes in particle num-
ber. New methods must therefore be developed that over-
come the known problems of standard functionals, with-
out drastically increasing the computational cost. There
has been a growing interest in the direct random phase
approximation (RPA) as a possible solution to many of
these problems.10–12 RPA stands on the fifth and highest
rung of Jacob’s ladder13 of density functional approxi-
mations, employing the unoccupied as well as the occu-
pied Kohn-Sham orbitals in a fully non-local way. Since
the RPA energy includes the exact-exchange energy, self-
interaction error is greatly reduced, and the correlation
contribution naturally includes long-range van der Waals
interactions.14–19

Nevertheless, direct RPA is limited by the neglect
of short-ranged correlation described by an exchange-
correlation (xc) kernel within the adiabatic-connection
fluctuation-dissipation (ACFD) DFT framework20. The
lack of a proper description of the short-ranged corre-
lation within RPA results in inaccurate total, ioniza-
tion, atomization and cohesive energies21–23, and in cer-
tain inaccurate structural phase transition pressures24.
Even though the RPA short-ranged correlation is actu-
ally an overestimate25,26, this error largely cancels out
of energy differences at constant electron number22, but
less so for energy differences that change the number of
electron-pairs.12,20,26,27 While kernels such as the exact-
exchange (EXX) kernel28,29 provide greatly improved ac-
curacy for total energies they simultaneously degrade the
computational efficiency of RPA making their broad ap-

plicability a challenge. Electron gas model kernels30–33

have recently been tested for applications in inhomoge-
neous systems, showing some moderate improvements
over RPA34,35.

Here we propose a non-local, energy-optimized36

(NEO) meta-generalized gradient approximation
(MGGA) xc kernel in order to address some of the
challenges facing semi-local DFT. This kernel contains
one free parameter that can be used to modify its
range, but remains one-electron self-correlation free and
exact for two-electron systems in the high density limit
regardless of this freedom. We test the behavior of
the NEO kernel with variations in this parameter, and
determine a constraint on its value from the second-order
exchange energy of the uniform electron gas.

In addition to the choice of the kernel, the approach
used to compute the interacting density-density response
function, χ(r, r′;ω), as well as the choice of reference de-
terminant and pseudopotential play an important role
in determining the overall performance of an ACFD-
DFT approach. For a given reference, the traditional
ACFD method solves the Dyson-like equation for the re-
sponse function by inversion of an effective dielectric ma-
trix which can become unstable even for kernels such as
EXX in systems as simple as the electron gas or stretched
diatomics.29 Low-order perturbation theories avoid the
instability, but are not broadly applicable due to diver-
gences for zero-gap systems such as metals.37 A renor-
malization approach based on RPA has been reported38

that suggests a low-order expansion of the Dyson equa-
tion in powers of the RPA response function remains fi-
nite for small-gap systems, is sufficiently accurate, and
also avoids instabilities. This approach allows for a nat-
ural decomposition of the correlation energy into RPA
and beyond-RPA contributions, facilitating the analysis
of the kernel’s behavior in combination with different ap-
proximate response functions.

We also find that choosing an LDA or GGA norm-
conserving pseudopotential makes the largest impact in
the comparison of ACFD structural results to experi-
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ment, but that the impact of correlation is analogous for
both references. We explore the behavior of RPA renor-
malization below for both homogeneous and inhomege-
nous systems, as well as the impact of the reference pseu-
dopotential.

II. ADIABATIC CONNECTION

FLUCTUATION-DISSIPATION DFT AND THE

NEO KERNEL

Within the ACFD framework, the exact correlation
energy can be expressed as

Ec =−
1

2π

∫

dr dr′ V (r, r′)

×

∫ ∞

0

dω

∫ 1

0

dλ Im [χλ(r, r
′;ω)− χ0(r, r

′;ω)] ,

(1)

where V (r, r′) = 1/|r−r′| is the Coulomb interaction, Im
indicates the imaginary part and atomic units are used
unless otherwise specified. The total energy is computed
as E = EEXX + Ec, where EEXX is the Hartree-Fock
exact-exchange energy evaluated using KS orbitals. The
density-density response functions χλ and χ0 satisfy the
Dyson-like equation

χλ(r, r
′;ω) =χ0(r, r

′;ω) +

∫

dr1dr2 χ0(r, r1;ω)

×
[

Vλ(r1, r2) + fλ
xc(r1, r2;ω)

]

χλ(r2, r
′;ω) ,

(2)

where χ0(ω) is the Kohn-Sham (KS) response function,
and fxc(ω) is the exact, frequency-dependent exchange-
correlation (xc) kernel.39 The coupling-strength depen-
dence of the Coulomb interaction is Vλ = λV , and that
of fλ

xc can be deduced from uniform coordinate scaling,
Eqs. (17) and (18) in Ref 40. Once the kernel and the
KS response function have been specified, the interacting
response function can be obtained from Eq. (2) and the
correlation energy computed from Eq. (1).
Under periodic boundary conditions, the Fourier trans-

form of Eq. (1) can be represented as a sum of weighted
contributions from wave-vectors q inside the first Bril-
louin zone

Ec =−
1

2π

∑

q

∫ ∞

0

du

∫ 1

0

dλ

× Re 〈V (q) [χλ(q; iu)− χ0(q; iu)]〉 , (3)

where 〈A〉 indicates the trace of matrix A, the two-point
functions V and χ are now replaced by two-index ma-
trices in the reciprocal lattice vector basis, and the fre-
quency integration has been changed to the imaginary
axis (ω → iu, Im → Re). For uniform systems, only the
“head” (G = G′ = 0) of these matrices is required and

after some algebra the correlation energy per electron re-
duces to40

ǫc =−
1

π2n

∫ ∞

0

dq

∫ ∞

0

du

∫ 1

0

dλ

× χ0(q; iu)
[

Vλ(q) + fλ
xc(q; iu)

]

χλ(q; iu) , (4)

where χ0(q; iu) is the Lindhard function. The choice
fλ
xc = 0 with χλ = χ̂λ = (1 − χ0Vλ)

−1χ0 defines the
RPA response function and correlation energy11

ERPA
c =

1

2π

∑

q

∫ ∞

0

du

× 〈ln [1− χ0(q; iu)V (q)] + χ0(q; iu)V (q)〉 .
(5)

Going beyond RPA, our NEO kernel approximation
has the following non-local40, but short-ranged form for
a homogeneous system

fNEO
x [n, z](r, r′) = − V (r, r′)

∑

σ

(nσ

n

)2

× erfc

(

|r− r′|
√

c̃(1− z2σ)k
2
Fσ

)

,

(6)

where erfc is the complementary error function, nσ and
n are the σ-spin and total density, respectively, zσ =
τWσ /τσ is a common meta-GGA ingredient41,42, τWσ =
|∇nσ|

2/(8nσ) is the von Weizsäcker kinetic energy den-
sity, and τσ is the Kohn-Sham kinetic energy density

τσ(r) =
1

2

occ
∑

j

|∇φjσ(r)|
2 . (7)

The overall coupling-strength dependence is exchange-
like such that fλ,NEO

x = λfNEO
x .

By construction this kernel yields correlation energies
that are one-electron self-correlation free for zσ = 1. In
this limit erfc(0) = 1, thus for one-electron densities
(n↑ = n;n↓ = 0) fNEO

x [n↑, 1] = −V . For two electrons
in a spin-singlet (n↑ = n↓ = n/2) fNEO

x [2n↑, 1] = −V/2,
recovering the EXX kernel, which is exact in the high-
density limit. For a uniform system, the Fourier trans-
form of Eq. (6) to momentum space is also analytic re-
sulting in

fNEO
x [n, z](q) =−

4π

q2

∑

σ

(nσ

n

)2

×

(

1− exp

(

−
q2

4c̃(1− z2σ)k
2
Fσ

))

. (8)

Instead of satisfying known constraints of the xc kernel
for the q and ω behavior for the electron gas, we follow
the energy-optimization idea of Dobson and Wang36, and
Jung et al.43 Similarly to the kernel of Ref. 43 and in con-
trast to the purely local form used by Dobson and Wang,
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the NEO kernel is of short, but non-zero range. We in-
tentionally substitute the complicated momentum and
frequency dependence of the xc kernel with a parameter
that can be tied to an integrated property such as the cor-
relation energy. The NEO kernel tends to a constant as
q → 0, however, and will therefore approximately satisfy
the exact, adiabatic LDA exchange limit for the electron
gas kernel31,35, but we do not expect to satisfy any other
known constraints on the momentum and frequency de-
pendence of fxc. Instead the c̃ parameter in NEO can be
used to uniquely fit the exact second-order exchange con-
tribution to the correlation energy for the electron gas,
which is known analytically for all spin polarizations44,

ǫ
(2,x)
c = 0.02418 a.u. Therefore we have the constraint
that

ǫ(2,x)c [fNEO
x ] =−

1

2π2n

∫ ∞

0

dq

∫ ∞

0

du

× χ0(q; iu)f
NEO
x (q)χ0(q; iu) , (9)

must equal the analytic result. Since c̃ determines fNEO
x

and the kernel determines ǫ
(2,x)
c , we can find a value of c̃

that satisfies this constraint for a given spin-polarization.
Using the expressions given in the literature45,46 to eval-
uate the RPA and beyond RPA correlation energy, the

value c̃ = 0.264 results in ǫ
(2,x)
c [fNEO

x ] = 0.02418 a.u.
for both the fully spin-polarized and unpolarized elec-
tron gas; for intermediate spin polarizations the error is
less than 1.5 mH. In Sec. V we explore the behavior of
NEO with respect to changes in c̃ to determine if this
constraint produces a useful value of the parameter.

III. RPA RENORMALIZATION

Together with the kernel, the method used to deter-
mine the response function defines an ACFD approach.
Ref 38 suggested that rather than using a non-interacting
reference to compute the interacting response function as
(suppressing momentum and frequency dependence)

χλ =
[

1− χ0

(

Vλ + fλ
xc

)]−1
χ0 , (10)

the RPA response function could be used directly instead.
Within such a framework, the density-density response
function can be exactly reformulated as

χλ = (1 − χ̂λf
λ
xc)

−1χ̂λ = χ̂λ + χ̂λf
λ
xcχλ , (11)

where fλ
xc is the exact, frequency-dependent exchange-

correlation (xc) kernel and χ̂λ is the RPA response func-
tion.
If Eq. (11) is expanded in powers of χ̂λf

λ
xc this ap-

proach avoids divergences of single-reference perturba-
tion theory due to small non-interacting gaps, as well
as those from instabilities in the response function, and
does not significantly increase the computational cost
in comparison to RPA29,38. Below we show that the

first-order approximation recovers the dominant contri-
butions of the infinite-order method, Eq. (10). Using
Eqs. (11) and (1), the exact correlation energy can be
decomposed into the RPA contribution plus a beyond-
RPA (bRPA) correction that is a functional of the kernel,
Ec = ERPA

c +∆EbRPA
c [fxc] , where

∆EbRPA
c [fxc] =−

1

2π

∑

q

∫ ∞

0

du

∫ 1

0

dλ

×
〈

V (q)χ̂λ(q; iu)f
λ
xc(q; iu)χλ(q; iu)

〉

.

(12)

While this expression requires more work than the orig-
inal ACFD formulation in Eq. (1) because both χ̂λ and
χλ must be computed, we can approximate χλ in order
to reduce the cost to roughly that of RPA when using
exchange-like kernels.
Rather than compute the infinite-order response func-

tion in Eq. (12), RPA renormalization effectively replaces
it with a lower order approximation. The expansion of
Eq. (11) to linear-order in fxc defines RPA renormalized
perturbation theory to first-order (RPAr1)

χRPAr1
λ = χ̂λ + χ̂λf

λ
xcχ̂λ . (13)

This approach proved to be an accurate and robust ap-
proximation when combined with an approximate ex-
change kernel (AXK), producing a systematic correc-
tion to RPA for ionization, atomization, barrier heights,
and reaction energies.38 While the method discussed in
Ref. 38 was called AXK, this name referred to the com-
bination of RPAr1 with a particular kernel. Likewise in
Ref. 29, the combination of the EXX kernel with RPAr1
was called t’RPAx. Instead of creating a new name, we
append the kernel name to RPAr1 to indicate which ker-
nel is being used in Eq. (13).
Another alternative approximation to the infinite-

order method is obtained by replacing one of the χ̂λ with
χ0 in Eq. (13)

χ̃λ = χ̂λ + χ0f
λ
xcχ̂λ . (14)

Using the approximate exchange kernel suggested in
Ref 38 with such a response function is equivalent to
ACSOSEX47, a method that is also one-electron self-
correlation free. The original ACSOSEX is more or less
equivalent to the SOSEX48,49 correction proposed within
a coupled cluster formalism. We will refer to Eq. (14)
as ACSOSEX to avoid creating new terminology, and
because the form of the resulting pair-density is equiv-
alent to the original method. Both RPAr1 and ACSO-
SEX yield the exact second-order, unscreened perturba-
tive correlation energy when the exact first-order kernel
is used, but differ in their higher-order contributions.38,47

Below we demonstrate that these two approximations be-
have systematically leading to an underestimation and
overestimation, respectively, of the infinte-order bRPA
correction. This trend is a direct consequence of replac-
ing χλ in Eq. (12) with χ̂λ or χ0.
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IV. IMPLEMENTATION FOR

INHOMOGENEOUS SYSTEMS

While the exact xc-kernel is naturally symmetric with
respect to the interchange of r and r′, model kernels
are generally not and must be explicitly symmetrized.
For an implementation in inhomogeneous systems us-
ing Gaussian basis sets these problems do not arise be-
cause one can work in terms of |r − r′| and evaluate
each of the densities in Eq. (6) at the electronic cen-
ter of mass, R = (r+ r′)/2, to preserve the symmetry.50

For periodic boundary conditions, however, the kernel-
symmetrization approach determines the spatial depen-
dence of the densities.34,35,51,52

Recently Patrick and Thygesen35 discussed the behav-
ior of several variants of symmetrization, highlighting for
each method the behavior of the “wings” (matrix ele-
ments with G 6= G′ = 0) in the limit q → 0 for different
kernels. The correct behavior of this limit is different for
metallic53 and non-metallic systems54. We have imple-
mented the wave-vector symmetrization approach to ex-
tend our model kernel to inhomogeneous systems because
it is more efficient than other real-space approaches, re-
quiring integration only over the unit-cell and not the
entire crystal volume.35 Furthermore structural proper-
ties obtained with the wave-vector symmetrization ex-
hibited smaller errors with respect to experiment com-
pared to the two-point density symmetrization scheme
in real space35 utlizing the HEG-like renormalized adia-
batic LDA (rALDA) kernel.32

Within this approach, a general MGGA xc-kernel is
represented in reciprocal space as

fGG′

xc (q;ω) =
1

Ω

∫

Ω

dr e−i(G−G′)·r

× fxc[n(r), τ(r)](
√

|q+G||q+G′|;ω) ,
(15)

where Ω is the unit-cell volume. Since construction of
each matrix element of the kernel via Fast Fourier Trans-
form (FFT) is independent, we parallelize the construc-
tion of fxc by distributing the rows of the matrix such
that each core performs approximately the same number
of FFTs. Since the kernel is Hermitian, we can also re-
duce the expense by computing the corresponding trian-
gular matrix. After constructing the kernel in reciprocal
space, the infinite-order response function is constructed
by inverting the dielectric matrix

ǫλ(q; iu) = 1− χ0(q; iu)
[

Vλ(q) + fλ
xc(q; iu)

]

, (16)

obtaining the interacting response function as
χλ(q; iu) = ǫ−1

λ (q; iu)χ0(q; iu), and the correlation
energy from Eq. (3).
For the renormalized methods using exchange-like ker-

nels, the coupling-strength integration can be done ana-
lytically for RPAr1 and ACSOSEX. Introducing the Her-
mitian matrices Q = V

1

2χ0V
1

2 , Q̃ = 1 − Q, and trans-

formed kernel f̃x = V − 1

2 fxV
− 1

2 , the resulting bRPA cor-
relation energies are

∆ERPAr1
c [fx] =−

1

2π

∑

q

∫ ∞

0

du
〈

f̃x(q; iu)

×

[

[

Q̃(q; iu)
]−1

Q(q; iu)

−ln
[

Q̃(q; iu)
]]〉

, (17a)

∆EACSOSEX
c [fx] =−

1

2π

∑

q

∫ ∞

0

du
〈

f̃x(q; iu)

×
[

Q(q; iu)− ln
[

Q̃(q; iu)
]]〉

.

(17b)

Once the kernel has been computed, RPA, RPAr1, and
ACSOSEX correlation energies can be computed simul-
taneously since they can all be expressed as functions
of the matrix Q. The coupling strength integral can be
performed analytically for the infinite-order method11,29,
however an inversion of χ0 is required which may be-
come numerically unstable at certain frequencies.32 We
stress that since ACSOSEX and RPAr1 have analytic
λ-integrations with exchange-like kernels, and only the
matrix Q must be diagonalized, the additional expense
of a numerical coupling strength integration or inversion
of χ0 required for the infinite-order method compared to
RPA is entirely avoided. Thus given an efficient algo-
rithm to compute χ0

55 and one for the kernel, there is no
major increase in expense compared to RPA to evaluate
the ACSOSEX and RPAr1 corrections.
In order to avoid numerical issues related to the q → 0

limit of the Coulomb interaction we neglect the contri-
butions from the head and wings at the Γ-point.56 As
discussed in Ref. 56, including these contributions in the
evaluation of the EXX and correlation energies can cause
kinks in the energy-volume curves and slows the con-
vergence with respect to the k-point sampling, but does
not alter the converged results. Since we converged the
EXX and correlation energies separately for each system
we also expect this approximation to have a negligible
impact on the final results. We have implemented the
working equations above into a modified version of the
abinit software,57 which was used for the calculations
of inhomogenous systems. Results for the homogeneous
electron gas (HEG) have been computed with an inde-
pendent fortran code.

V. RESULTS

In order to distinguish between the various methods
introduced above we use the following nomenclature: the
kernel name alone will refer to the infinite-order method
for χλ, Eq. (10), RPAr1 to Eq. (13), and ACSOSEX to
Eq. (14), each evaluated with the NEO kernel. When one
method is used but with different values of c̃, the value of
the parameter is appended to the name of the method.
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A. Homogeneous Electron Gas

The NEO correlation energy for the spin-unpolarized
HEG as a function of c̃ and the Seitz radius, rs =
(3/4πn)1/3, is illustrated in Fig. 1. The dashed, vertical
line indicates c̃ = 0.264 which is the value determined
by the constraint on the second-order exchange energy,
Eq. (9). For rs between 1 and 20, c̃ = 0.264 produces a

0.0 0.5 1.0 1.5 2.0
c̃

−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

E
c(N

EO
) -

 E
c(P

W
92

) (
a.

u.
)

rs-1.0
rs-2.0
rs-4.0
rs-8.0
rs-12.0
rs-20.0

0.1 0.2 0.3 0.4 0.5

−0.006

−0.005

−0.004

−0.003

FIG. 1. Variation of the total correlation energy difference
Ec(NEO) − Ec(PW92) with respect to changes in c̃. The
vertical, dashed line indicates c̃ = 0.264. Compared to the
constrained value, c̃ = 0.4 yields a smaller distribution of er-
rors, but a larger absolute error. The inset shows an enhanced
view for c̃ between 0.1 and 0.5.

distribution of errors compared to PW9258 between ap-
proximately 3 and 5 mH, with the error increasing until
about rs = 12 whereafter it remains essentially constant.
The width of the error distribution is approximately 2
mH and the error for all rs is systematically an underes-
timate.
Increasing c̃ to 0.4 results in a narrower distribution

of errors, approximately 0.5 mH in width for 1 ≤ rs ≤
20, but increases the error for all rs in comparison to
c̃ = 0.264. Beyond c̃ = 0.4 the errors in the low-density
regime become smaller than those in the high-density
regime and the difference in errors grows as well; by c̃ = 1
the width of the distribution of errors is nearly 5 mH.
Decreasing c̃ below 0.264 leads to smaller errors for the
high-density limit, but the error distribution width be-
comes much larger (almost 15 mH for c̃ ≈ 0). Moreover,
for c̃ less than approximately 0.2, NEO is no longer a sys-
tematic underestimate for smaller values of rs. Thus we
find the constraint on c̃ through Eq. (9) to be useful for
the HEG since it produces a kernel that delivers errors
of approximately 4± 1 mH over a wide range of densities
and is a systematic underestimate with respect to the
exact result. Further support for this conclusion can be
found by analyzing the q-dependence of the correlation
energy.
The wave-vector decomposition40 of the total and

bRPA correlation energy per particle at rs = 4 for NEO

with three particular values of c̃, RPA, and the exact
curve are shown in Fig. 2. The total correlation en-
ergy plot implies that NEO decays too quickly for larger
q and does not fully cancel RPA, while the agreement
for small to intermediate q can be tuned by changing
c̃. For spin-unpolarized systems, in the limit q → ∞,
fNEO
x (q) ≈ −V (q)/2, which is essentially a factor of two
too small. There is a price for the improved agreement
of the wave-vector decomposition, however, since as c̃ in-
creases so does the magnitude of the correlation energy
(the integral of ǫc(q)). For rs = 4 the integrated errors
of the NEO correlation energy compared to PW92 are 20
µH, 1.6 mH, and 2.2 mH for c̃ = 0.0375, 0.264, and 0.4,
respectively.
Looking at the bRPA contribution, the rapid decay

of the NEO correction for larger q is explicitly demon-
strated. The smallest value of c̃ mimics the overall shape
and area of the exact curve, but contributions at small
q are largely overestimated. For c̃ = 0.264 and 0.4
the agreement with the exact curve is greatly improved
for small q, but the maximum contribution is underesti-
mated. Since c̃ = 0.264 provides a balance in the can-
cellation of errors of the wave-vector decomposition for
small and large q and the total integrated error compared
to PW92 we find the second-order exchange constraint
sufficient to determine the value of c̃.

B. RPA Renormalization for the Electron Gas

Rather than empirically tuning c̃ to adjust the range of
the kernel, the contributions to the wave-vector decom-
position and subsequently to the total correlation energy
can be naturally modulated through approximations for
χλ. Using the constrained value of c̃, ACSOSEX and
RPAr1 were computed in combination with the NEO ker-
nel and the errors compared to PW92 for the correlation
energy per particle are shown in Fig. 3. ACSOSEX per-
forms quite well, lowering the error compared to NEO
by 2.5 mH on average, whereas RPAr1 increases the er-
ror compared to NEO by approximately 0.6 mH. The
good performance of ACSOSEX is somewhat surprising
since it is a method intended to be accurate for one- and
two-electron like systems, so why does it perform so well?

Plots of the beyond-RPA contributions to the correla-
tion energy, Eq. (12) and Eq. (17), are shown in Fig. 4.
ACSOSEX, RPAr1, and NEO all contain some level of
long-range screening due to the different re-summations
(replacing χ0 with χ̂λ or χλ in Eq. (9)), so the small q be-
havior is naturally modulated by the approximations for
the response function. The short-ranged (large q) behav-
ior is, however, dominated by the behavior of the kernel
since all three methods approach the same value in the
tail of ∆ǫc(q).
Apart from a rigid shift to smaller q, the ACSOSEX

curve mimics the exact curve in both the maximum con-
tribution and overall shape. Much like changing c̃ to
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FIG. 2. Wave-vector decomposition of the total (left) and bRPA (right) correlation energy per particle, Eqs. (4) and (12), for
the spin-unpolarized HEG at rs = 4. The “exact” curve is the Fourier transform of the pair-density model of Ref 59.60 The
small, negative region of the exact bRPA curve is most likely an artifact of the fitting procedures used to construct the real
space pair-density model. Increasing the value of c̃ to 0.4 improves the agreement of NEO with the exact curve for small to
moderate q, but leads to a larger integrated error.
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FIG. 3. The error, ǫc(Method)−ǫc(PW92), as a function of rs
for c̃ = 0.264. ACSOSEX yields a systematic overestimate of
the NEO correction, while RPAr1 a systematic underestimate.

smaller values for the infinite-order NEO method, AC-
SOSEX benefits from the cancellation of errors that for
smaller q the bRPA correction is an overestimate, but for
larger q an underestimate compared to the exact curve.
The additional screening in RPAr1 and NEO compared
to ACSOSEX reduces the error for small q, but the max-
imum contribution is simultaneously reduced. Thus AC-
SOSEX, with the replacement χλ → χ0 in Eq. (12),
combined with the NEO kernel yields a balance of non-
locality and screening in the electron gas that results in
an accurate method due to cancellation of errors.

In essence the renormalized approaches are limited in
their accuracy by the infinite-order method. For kernels
which overestimate the bRPA correction in comparison
to some exact reference, RPAr1 would reduce the error

0.0 0.5 1.0 1.5 2.0
q (a.u.)

0.000

0.005

0.010

0.015

0.020
∆
ǫ c
(q
) (
a.
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FIG. 4. Beyond RPA correlation energy per particle for rs = 4
using three different approximations for χλ. For a fixed c̃,
ACSOSEX mimics the impact of decreasing c̃ on the infinite-
order method, while RPAr1 mimics the behavior of increasing
c̃.

while ACSOSEX would exaggerate it, and vice versa for
kernels which underestimate compared to an exact refer-
ence. The good fortune of ACSOSEX-NEO for the HEG
is not general, and we demonstrate this for non-metallic
inhomogeneous systems where RPAr1-NEO yields supe-
rior results.
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C. RPA Renormalization for Inhomogeneous

Systems

The lattice constants and bulk moduli of diamond C
and Si, zinc blende AlN, and fcc Al were computed using
both a PBE61 and LDA based Troullier-Martins norm-
conserving (NC) pseudopotential62, and the results are
gathered in Tables II and III. We include the results
from Ref. 35 for rALDAx, another exchange-like kernel32,
for comparison. Large cutoff energies and tight conver-
gence parameters were used to avoid excessive testing,
and these parameters have been gathered in the sup-
porting information.63 The correlation energies were ex-
trapolated using two cutoffs according to the Harl-Kresse
procedure,16,56 except for Al where we used a convergent
cutoff. Shifted n×n×n Monkhorst-Pack k-meshes with
n = 4 were used for the correlation energy and at least
n = 6 for the EXX energy. We found the differences in
non-metallic structural properties for n = 4 and n = 2
for the PBE reference to be negligible (see supporting
information) so only n = 2 meshes were used to compute
the ACFD@LDA results for C, Si, and AlN. At least six
volume points close to the minimum were used to fit the
Birch-Murnaghan equation of state for each system.

a0 (Å) RPA ACSOSEX RPAr1 NEO

HEG rs = 2 –0.06180 –0.04566 –0.04925 –0.04852

C (A4) 3.595 –0.52210 –0.34984 –0.38796 –0.37497

Si (A4) 5.420 –0.44858 –0.29370 –0.32886 –0.31622

AlN (B3) 4.376 –0.49587 –0.28471 –0.33543 –0.31974

Al (A1) 4.053 –0.18179 –0.13138 –0.14324 –0.14064

TABLE I. Extrapolated total correlation energies (a.u.) for
C, Si, AlN, and Al using a PBE reference, and correlation
energy per particle for the HEG. The structure is indicated
in parenthases. The three kernel corrected methods were all
evaluated with the NEO kernel using c̃ = 0.264. RPAr1 un-
derestimates the NEO correlation energy by 2-5%.

Before discussing the structural properties it is useful
to analyze the trends in total correlation energies. The
correlation energies for PBE based RPA and the three
NEO-based methods for a fixed volume are given in Ta-
ble I. ACSOSEX-NEO is approximately 6-11%more pos-
itive and RPAr1-NEO 2-5% more negative than NEO for
the systems studied here. The relative magnitudes of
ACSOSEX and RPAr1 for the HEG at rs = 2 are quite
close to those for Al (rs = 2.07), indicating these low-
order RPA renormalized methods are robust perturba-
tion theories for model and real metallic systems. This is
particularly remarkable since traditional low-order many-
body perturbation theory diverges for metals.37,64–66 The
fact that the first order in RPA renormalization recovers
at least 95% of the infinite-order result is indicative of a
rapidly converging perturbative expansion, but this re-
mains to be proven in general. Unpublished tests with
other model kernels for the HEG show this relative per-
formance persists regardless of the choice in kernel im-

plying this is truly a feature of the method.
The consistent behavior of the renormalized methods

directly translates to shifted structural properties in com-
parison to the infinite-order NEO results. Based on the
PBE reference results in Table II, the NEO kernel does
improve upon the already accurate RPA by maintain-
ing the 0.01 Å deviation of the lattice constants and
slightly reducing the errors for the bulk moduli. The
lattice constants are subsequently shorter and bulk mod-
uli larger for ACSOSEX compared to NEO because the
bRPA correction is overestimated, while for RPAr1 a0
and B are larger and smaller than NEO because the cor-
rection is underestimated. ACSOSEX-NEO appeared to
be a promising method based on the smaller errors in
the HEG correlation energies, but RPAr1-NEO leads to
smaller errors for structural properties compared to both
experiment and the infinite-order method for the non-
metallic cases. For aluminum all three methods yield es-
sentially equivalent results. NEO with a PBE reference
appears to perform slightly better compared to experi-
ment than rALDAx with an LDA reference, but given
the dependence on the reference discussed below we hes-
itate to make any direct, in-depth comparisons.

D. Pseudopotential and Reference Dependence

While some aspects of the ACFD results are sensitive
to the reference, others are typically insensitive. For C,
Si, and AlN with either reference, addition of the ker-
nel tends to reduce the lattice constant and increase the
bulk modulus in comparison to RPA. This is somewhat
expected since RPA is known to underbind, so adding a
kernel correction should increase the bond strength and
reduce the lattice constant.49 In Al, however, addition
of the NEO kernel to RPA increases the lattice constant
and decreases the bulk modulus. This trend for Al was
also seen for a number of other kernels in Ref 35. The
relative magnitudes of the kernel corrections discussed
in Table I were also found to be insensitive to the ref-
erence. Unfortunately the structural properties show a
direct dependence on the reference.
The PBE based ACFD results (Table II) generally

show small errors in comparison to experiment, but er-
ror cancellation plays a role since using an LDA reference
leads to an entirely different trend, Table III. We use the
notation Method@DFT to indicate the reference used to
evaluate the Method energy. The difference in our results
for a given method with each reference stems primar-
ily from the differences in the EXX total energies. Evi-
dence of this behavior was obscured previously as the NC
RPA@LDA results of Ref 34 differ noticeably from the
PAW results of Refs 35 and 56 for silicon, but the EXX
results were not always explicitly discussed. In fact our
RPA@LDA result for Si is in good agreement with that
of Ref. 34 indicating the similar performance of our pseu-
dopotentials for EXX@LDA. In contrast, the PAW-based
RPA structures obtained with a PBE or LDA reference
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for C, Si, and Cu reported in Ref 56 do not show a large
difference since the EXX properties are equivalent and
the impact of correlation is the same for both references.
ACFD atomization energies for small molecules have also
been evaluated with PAW or Gaussian basis set imple-
mentations using different references and the EXX con-
tributions reported to be insensitive to the reference.32,38

The discrepancy in our results is likely due to the dif-
ficulty of capturing the fully non-local EXX energy and
core-valence interaction67–70 with a simple NC pseudopo-
tential that has been parametrized for a semi-local func-
tional.
Such a dependence on the reference and NC pseudopo-

tential complicates the comparison of structural proper-
ties to experiment for ACFD methods as the accuracy
will be limited by that of EXX@DFT. The RPA re-
sults we obtained with a PBE reference show much bet-
ter agreement with experiment than those obtained with
the LDA reference for precisely this reason; the errors of
EXX@PBE are reduced by addition of RPA correlation,
while the errors of EXX@LDA are too large to be over-
come by the addition of correlation. In fact RPA@LDA
yields larger errors than EXX@LDA and addition of the
kernel yields even larger errors. Thus the performance of
a kernel corrected method depends to some extent on the
error cancellation between EXX and RPA. If the RPA
error compared to experiment is due to its underbind-
ing then addition of a kernel correction should reduce
the errors, but if the major source of error compared to
experiment stems from the performance of EXX@DFT,
then adding a kernel correction can exaggerate the errors
further as seen in Table III.

VI. CONCLUSION

We have introduced a non-local, energy optimized,
exchange-like kernel that is constrained to recover the

exact second-order exchange correlation energy of the ho-
mogeneous electron gas. Based on a PBE reference, the
NEO kernel produces accurate structural properties for
the inhomogeneous systems we tested compared to ex-
periment, reducing the underbinding of RPA. RPA renor-
malization was also explored for solids in the form of the
ACSOSEX and RPAr1 approximations for the response
function. Both approaches produce systematic correla-
tion energies that over and underestimate, respectively,
the infinite-order method, but do not significantly in-
crease the computational cost in comparison to RPA for
exchange-like kernels. Furthermore, these methods are
robust perturbation theories that can be directly applied
to metallic systems, eliminating the divergence for zero-
gap systems of standard perturbative approaches. The
impact of the reference and norm-conserving pseudopo-
tential on ACFD structural properties was also explored
and found to play a large role in comparisons of the re-
sults to experiment.
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and J. F. Dobson, Phys. Rev. Lett. 105, 196401 (2010).
18 H.-V. Nguyen and G. Galli, J. Chem. Phys. 132, 044109

(2010).



9

19 H. Eshuis and F. Furche, J. Phys. Chem. Lett. 2, 983
(2011).

20 F. Furche and T. Van Voorhis, J. Chem. Phys. 122, 164106
(2005).

21 F. Furche, Phys. Rev. B 64, 195120 (2001).
22 Z. Yan, J. P. Perdew, and S. Kurth, Phys. Rev. B 61,

16430 (2000).
23 A. Ruzsinszky, J. P. Perdew, and G. I. Csonka, J. Chem.

Theory Comput. 6, 127 (2010).
24 B. Xiao, J. Sun, A. Ruzsinszky, J. Feng, and J. P. Perdew,

Phys. Rev. B 86, 094109 (2012).
25 D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952).
26 H. Jiang and E. Engel, J. Chem. Phys. 127, 184108 (2007).
27 J. Paier, X. Ren, P. Rinke, G. Scuseria, A. Grüneis,

G. Kresse, and M. Scheffler, New. J. of Phys. 14, 043002
(2012).

28 A. Hesselmann and A. Görling, Phys. Rev. Lett. 106,
093001 (2011).

29 N. Colonna, M. Hellgren, and S. de Gironcoli, Phys. Rev.
B 90, 125150 (2014).

30 M. Corradini, R. Del Sole, G. Onida, and M. Palummo,
Phys. Rev. B 57, 14569 (1998).

31 L. A. Constantin and J. M. Pitarke, Phys. Rev. B 75,
245127 (2007).

32 T. Olsen and K. S. Thygesen, Phys. Rev. B 86, 081103(R)
(2012).

33 P. E. Trevisanutto, A. Terentjevs, L. A. Constantin, V. Ol-
evano, and F. D. Sala, Phys. Rev. B 87, 205143 (2013).

34 D. Lu, J. Chem. Phys. 140, 18A520 (2014).
35 C. E. Patrick and K. S. Thygesen, J. Chem. Phys. 143,

102802 (2015).
36 J. F. Dobson and J. Wang, Phys. Rev. B 62, 10038 (2000).
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133, 154106 (2010).

48 D. L. Freeman, Phys. Rev. B 15, 5512 (1977).
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PBE EXX EXXa RPA RPAa ACSOSEX-NEO RPAr1-NEO NEO Expt

C a0 3.561 3.546 3.540 3.573 3.572 3.546 3.568 3.560 3.553

B 433 494 512 425 441 457 432 440 443

Si a0 5.455 5.474 5.482 5.413 5.432 5.399 5.417 5.406 5.421

B 90 106 108 96 99 104 98 100 99

AlN a0 4.396 4.346 4.346 4.384 4.394 4.345 4.379 4.370 4.368

B 188 232 240 206 200 219 204 207 202

Al a0 4.046 4.094 4.104 4.022 4.037 4.037 4.043 4.042 4.018

B 76 64 61 74 77 72 70 71 79

MD a0 0.025 0.025 0.028 0.008 0.019 –0.008 0.012 0.004

B –9 18 24 –6 –2 7 –5 –1

MAD a0 0.025 0.040 0.046 0.012 0.019 0.018 0.014 0.012

B 9 26 34 8 2 11 6 4

a PAW PBE reference results from Ref. 56

TABLE II. PBE reference results for each method. MD and MAD are the mean deviation and mean absolute deviation with
respect to experiment. The EXX@PBE a0 and B are typically larger than the experiment so that addition of ACFD correlation
reduces the error. ACSOSEX-NEO and RPAr1-NEO are systematically an overestimate and an underestimate, respectively,
in comparison to NEO for the magnitude of the bRPA correction. Corrected experimental values for a0, but not for B, were
taken from Ref 56 and references therein. The lattice constants are reported in Å and the bulk moduli in GPa.

LDA EXX RPA RPAa ACSOSEX-NEO RPAr1-NEO NEO rALDAxb

C a0 3.518 3.515 3.537 3.566 3.518 3.534 3.526 3.563

B 466 512 435 435 483 447 459 435

Si a0 5.380 5.405 5.345 5.449 5.333 5.350 5.340 5.456

B 96 111 106 95 111 106 108 95

AlN a0 4.302 4.261 4.258 – 4.219 4.252 4.244 –

B 208 244 208 – 231 212 216 –

Al a0 3.962 3.999 3.931 4.042 3.946 3.951 3.95 4.053

B 84 78 85 78 83 81 82 78

MD a0 –0.050 –0.045 –0.072 0.022 –0.086 –0.068 –0.075 0.027

B 8 31 3 –4 21 6 11 –4

MAD a0 0.050 0.045 0.072 0.022 0.086 0.068 0.075 0.027

B 9 31 7 4 21 6 11 4

a PAW RPA@LDA from Ref. 35
b PAW rALDAx@LDA from Ref. 35

TABLE III. LDA reference results for each method. MD and MAD are the mean deviation and mean absolute deviation with
respect to experiment. The EXX@LDA lattice constants are already too small compared to experiment, and as a result the
correlated methods largely underestimate a0. The bulk moduli are simultaneously overestimated. The lattice constants are
reported in Å and the bulk moduli in GPa.


