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Abstract
Although the small-scale effect and the material nonlinearity signi�cantly impact the mechanical
properties of nanobeams, their combined effects have not attracted researchers’ attention. In the present
paper, we propose two new nonlinear nonlocal Euler-Bernoulli theories to model nanobeam’s mechanical
properties corresponding to extensible or inextensible locus. Two new theories consider the material
nonlinearity and the small-scale effect induced by the nonlocal effect. The new models are used to
analyze the static bending and the forced vibration for single-walled carbon nanotubes (SWCNTs). The
results indicate that the material nonlinearity and the nonlocal effect signi�cantly impact SWCNT’s
mechanical properties. Therefore, neglecting the two factors may cause qualitative mistakes.

1. Introduction
Nanobeams have immense potential applications in nanoelectromechanical systems (NEMS), for
example, nanotube sensors [1] and resonators [2]. However, it is still an open question to model precisely
nanobeams’ mechanical properties [3–4]. There are two crucial characteristics in the mechanical
properties of nanostructures. One of them is the small-scale effect that reveals that the mechanical
properties and the geometric size are strongly related when a structure’s size is down to the nanometer
scale [5–11]. Another is the nonlinear elastic property determining the beam’s overall mechanical
behaviors [12–16]. The nonlinearity includes geometrical and material nonlinearity. There are many
studies on the small-scale effect of nanobeams [17–21]. However, researchers have rarely paid attention
to the material nonlinearity of nanobeams [22]. Nanobeam’s nonlinearity in the thermal–electro-
mechanical coupling also is a required �eld [23–24]. Researchers have usually modi�ed the classical
continuum mechanics to capture the small-scale effect through three different paths: the nonlocal stress

gradient model 1 − e0a 2∇2 σij = �σij [7], the strain gradient model �σij = 1 − e0a 2∇2 �εij [9,

25–26], and the surface stress model [27]. Here �σij and �εij are the local stress and strain; σij is the non-
local stress; e0 is a small-scale parameter; and is the material characteristic length which is the Carbon-
Carbon bonding length for SWCNTs. The stress or strain gradient models have been widely used to study
carbon nanotubes (CNTs) and graphene [28–30]. Since the mechanical properties of graphene and CNTs
have lacked thorough understanding based on quantum mechanics [32], determining the scale parameter
e0 is still a controversial open question [5, 31]. Researchers calculated nonlinear elastic parameters for
some materials through molecular dynamics (MD) and density functional theory (DFT), for example,
CNTs [16], graphene [14], and silicon nanowires [13]. Because the material nonlinearity may cause
complicated mechanical models, it has been neglected in exciting studies. Nonetheless, few existing
studies of graphene and SWCNTs have shown that the stain’s cubic terms in the potential energy
(corresponding to the quadratic terms in the stress-strain relationship) signi�cantly affect their
mechanical properties [22, 33]. The accurate understanding of nanostructure’s mechanical properties is
the basis of applications. Therefore, it is necessary to consider both the small-scale effect and the
material nonlinearity comprehensively. Under the Euler-Bernoulli assumption of displacements, the
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present paper will propose two theories including the nonlocal effect and the material nonlinearity, to
accurately characterize the nanobeam's mechanical properties for different boundary conditions.

2. Mathematical Modes
We restrict our attention to slender beams in the present research. Hence the Euler-Bernoulli hypothesis is
employed [34]: the cross-sections perpendicular to the centroid locus before deformation remain plane
and perpendicular to the deformed locus and suffer no strain in their planes. Under this hypothesis, only
the beam’s longitudinal (-direction) strain component, �εxx, is considered, as shown in Fig. 1. Existing
atomic calculations show that the potential energies of graphene and silicon materials contain at least
the strain’s cubic nonlinear terms [12–13]. Geometrical, y,an SWCNT can be viewed as a graphene sheet
that has been rolled into a tube. Thus the stress-strain relationship of big diameter SWCNTs may be
consistent with graphene. This was con�rmed by MD simulations [16]. For simplicity, we assume that the
beam’s strain is �nite but small, so only cubic nonlinear terms of the potential energy are kept, and the

local longitudinal stress can be expressed as �σxx = �σ0
xx + E�εxx + D�ε2

xx [12, 15–16, 22]. Here, �σ0
xx is the

initial prestress, and are the second-order and third-order elastic coe�cients, respectively. Following the
nonlocal differential constitutive relationship, the nanobeam’s nonlocal constitutive relationship with the
material nonlinearity can write as

1 − μ2∇2 σxx = �σxx = �σ0
xx + E�εxx + D�ε2

xx

1
,

here μ = e0a. For establishing theories of nanobeams, it is necessary to give the beam’s strain-

displacement relation according to different boundary constraints [34–36]. We consider two conditions in
this paper. First, if the two ends of beams are immovable along the direction, such as clamped-clamped
or hinged-hinged beams, the effect of axial elongation needs to be considered at this point. Second,
beams are inextensional, such as simply supported or clamped-free beams. The present paper will
establish motion equations for two conditions, respectively.

2.1. Model with axial extensional effect
If the two ends of a beam cannot move along the -axis, such as hinged-hinged or clamped-clamped
beams, the bending deformations may induce the axial extension. So the axial strain is [34]

�εxx =
∂u
∂x +

1
2

∂w
∂x

2
− y

∂2w
∂x2

2
.
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Here, and are axial displacements of the beam in the and directions respectively, as shown in Fig. 1.

Substituting Eq. (2) into the expression of local stress, �σxx = �σ0
xx + E�εxx + D�ε2

xx, has the local axial

force and bending moment as

�N = ∫
A

�σxxdA = − N0 + EA
∂u
∂x +

1
2

∂w
∂x

2

+ID
∂2w
∂x2

2
+ DA

∂u
∂x +

1
2

∂w
∂x

2 2
,

3

�M = ∫
A

yE �σxxdA = − EI
∂2w
∂x2 − 2ID

∂u
∂x +

1
2

∂w
∂x

2 ∂2w
∂x2 .

4

Here, A = πdh and I = πd3h/8 are the beam’s cross-sectional area and the inertia moment of SWCNTs.

is the SWCNT’s diameter, and is the thickness; N0 = ∫
A

�σ0
xxdA is the initial axial load at the ends, as

shown in Fig. 1. The quartic terms of can neglect for slender beams [34], and notices 
∂u/∂x = O(∂w/∂x)2 [35], the force reduces to

�N = ∫
A

�σxxdA = − N0 + EA
∂u
∂x +

1
2

∂w
∂x

2
+ ID

∂2w
∂x2

2
.

5

The equations of motion with the extensional effect are [34]

∂N
∂x = m

∂2u
∂t2 ,

6

∂2M
∂x2 + N

∂2w
∂x2 = m

∂2w
∂t2 + �F(x, t).

7
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Here is the beam’s mass per unit length, and are the nonlocal axial force and the nonlocal moment.
Taking into account Eq. (4) and Eq. (5), the non-local constitutive Eq. (1) transforms into

M − μ2∂2M
∂x2 = − EI

∂2w
∂x2 − 2ID

∂u
∂x +

1
2

∂w
∂x

2 ∂2w
∂x2 ,

8

N − μ2∂2N
∂x2 = − N0 + ID

∂2w
∂x2

2
+ EA

∂u
∂x +

1
2

∂w
∂x

2
.

9

Substituting Eq. (6) and Eq. (7) into Eq. (8) and Eq. (9), gets

M − μ2 m
∂2w
∂t2 − N

∂2w
∂x2 + �F = − EI

∂2w
∂x2 − 2ID

∂u
∂x +

1
2

∂w
∂x

2 ∂2w
∂x2 ,

10

N − μ2 ∂
∂x m

∂2u
∂t2 = − N0 + ID

∂2w
∂x2

2
+ EA

∂u
∂x +

1
2

∂w
∂x

2
.

11

Differentiates Eq. (10) twice with respect to , then substitutes it into the Eq. (7), gets

−EI
∂4w
∂x4 + N

∂2w
∂x2 − 2ID

∂2

∂x2
∂u
∂x +

1
2

∂w
∂x

2 ∂2w
∂x2

+μ2 ∂2

∂x2 m
∂2w
∂t2 − N

∂2w
∂x2 + �F = m

∂2w
∂t2 + �F(x, t).

12

From Eq. (11), has

N = μ2 ∂
∂x m

∂2u
∂t2 − N0 + ID

∂2w
∂x2

2
+ EA

∂u
∂x +

1
2

∂w
∂x

2
.

[ ( ) ]
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13

Substituting Eq. (13) into Eq. (12), and ignoring the inertia term ∂2u/∂t2, gets the lateral motion equation
as follows.

−EI
∂4w
∂x4 + −N0 + ID

∂2w
∂x2

2
+ EA

∂u
∂x +

1
2

∂w
∂x

2 ∂2w
∂x2

−2ID
∂2

∂x2
∂u
∂x +

1
2

∂w
∂x

2 ∂2w
∂x2 − μ2 ∂2

∂x2 −N0 + ID
∂2w
∂x2

2

+EA
∂u
∂x +

1
2

∂w
∂x

2 ∂2w
∂x2 = m

∂2w
∂t2 − μ2 ∂4w

∂t2∂x2 + �F − μ2∂2 �F
∂x2 .

14

Differentiates Eq. (13) with respect to , then substitutes it into Eq. (6), gets

ID
∂
∂x

∂2w
∂x2

2
+ EA

∂
∂x

∂u
∂x +

1
2

∂w
∂x

2
= m

∂2u
∂t2 − μ2m

∂4u
∂t2∂x2 .

15

Eq. (14) and Eq. (15) are the nanobeam’s plane motion equations with the nonlocal nonlinear constitutive
and the extensional effect. Their boundary conditions of displacements are the same as the classical
beam theory. If we considered only bending motion, the inertia terms of Eq. (15) can be ignored [35–36],
then Eq. (15) simpli�es as

∂2u
∂x2 = −

∂
∂x

1
2

∂w
∂x

2
+ λ

∂2w
∂x2

2

16
,

here λ = DI/EA. Integrating Eq. (16) with respect to , gets

{ ( ) [ ( ) ]}
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∂u
∂x= −

1
2

∂w
∂x

2
− λ

∂2w
∂x2

2
+ C1(t),

u = −
1
2

x

∫
0

∂w
∂s

2
+ 2λ

∂2w
∂s2

2
ds + C1(t)x + C2(t).

17

Where C1 and C2 are functions of time , which can be determined by imposing boundary conditions on .
For a beam with two unmovable ends, gets [35–36]

C1(t) =
1
2l

l

∫
0

∂w
∂x

2
+ 2λ

∂2w
∂x2

2
dx, C2 = 0.

18

Substituting Eq. (17) into Eq. (14) and omitting the quartic terms of , gets

m
∂2w
∂t2 − μ2 ∂4w

∂t2∂x2 + C
∂w
∂t + EI

∂4w
∂x4 + N0

∂2w
∂x2

−μ2∂4w
∂x4 − 2λID

∂2

∂x2
∂2w
∂x2

3
−

EA
2l

∂2w
∂x2 − 2λ + μ2 ∂4w

∂x4

l

∫
0

∂w
∂x

2
+ 2λ

∂2w
∂x2

2
dx = �F + μ2∂2 �F

∂x2 .

19

In Eq. (19), we add a linear damping term C∂w/∂t. For a hinged-hinged beam, the boundary conditions
are [34–36]

w\left( {0,t} \right)=w\left( {l,t} \right)=\frac{{{\partial ^2}w}}{{\partial {x^2}}}\left( {0,t}
\right)=\frac{{{\partial ^2}w}}{{\partial {x^2}}}\left( {l,t} \right)=0.
20

2.2. The model with the inextensional effect

( ) ( )
[ ( ) ( ) ]

[ ( ) ( ) ]

( ) (
) ( ) [ ( ) ]
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If a nanobeam has a �xed or hinged end and another is free or sliding, the beam is inextensional. At this
point, the strain can write as [34–36]

,, (21)

Substituting Eq. (21) into the local nonlinear constitutive equation, {\bar {\sigma }_{xx}}=\bar {\sigma
}_{{xx}}^{0}+E{\bar {\varepsilon }_{xx}}+D\bar {\varepsilon }_{{xx}}^{2}, and noting \int\limits_{A} {{y^3}dA}
=0 for symmetrical cross-sections, the local axial force and the moment are

\bar {N}=\int\limits_{A} {{{\bar {\sigma }}_{xx}}dA} = - {N_0} - ID{\left( {\frac{{{\partial ^2}w}}{{\partial
{x^2}}}} \right)^2}
22
,
\bar {M}=\int\limits_{A} {yE{\varepsilon _{xx}}dA} = - EI\left[ {\frac{{{\partial ^2}w}}{{\partial
{x^2}}}+\frac{1}{2}{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}\left( {\frac{{{\partial ^2}w}}{{\partial
{x^2}}}} \right)} \right].
23

Analogous to the virtual work principle of the classical beam theory [34], has

\frac{{\partial N}}{{\partial x}}=m\frac{{{\kern 1pt} {\partial ^2}u}}{{\partial {t^2}}}
24
,
\begin{gathered} \frac{{{\partial ^2}M}}{{\partial {x^2}}}+\frac{1}{2}\frac{\partial }{{\partial x}}\left[
{\frac{{\partial M}}{{\partial x}}{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}} \right]+N\frac{{{\partial
^2}w}}{{\partial {x^2}}}=m\frac{{{\partial ^2}w}}{{\partial {t^2}}} \h�ll \\ +\frac{m}{2}\frac{\partial }{{\partial
x}}\left\{ {\frac{{\partial w}}{{\partial x}}\int\limits_{l}^{s} {\left[ {\frac{{{\partial ^2}}}{{\partial
{t^2}}}\int\limits_{l}^{s} {{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}ds} } \right]ds} } \right\}+\bar
{F}\left( {x,t} \right). \h�ll \\ \end{gathered}
25

For simplicity, we ignore the ’s nonlinear term in Eq. (25), and gets

\frac{{{\partial ^2}M}}{{\partial {x^2}}} \approx m\frac{{{\partial ^2}w}}{{\partial {t^2}}}+\frac{1}
{2}m\frac{\partial }{{\partial x}}\left\{ {\frac{{\partial w}}{{\partial x}}\int\limits_{l}^{s} {\left[
{\frac{{{\partial ^2}}}{{\partial {t^2}}}\int\limits_{l}^{s} {{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}ds}
} \right]ds} } \right\} - N\frac{{{\partial ^2}w}}{{\partial {x^2}}}+\bar {F}\left( {x,t} \right).
26

Neglecting m{\partial ^2}u/\partial {t^2}, Eq. (24) can be simpli�ed to \partial N/\partial x=0, hence gets

{\partial ^2}N/\partial {x^2}=0
27
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Substituting Eq. (21) into Eq. (1), the nonlocal constitutive relationship is transformed into

M - {\mu ^2}\frac{{{\partial ^2}M}}{{\partial {x^2}}}= - EI\left[ {\frac{{{\partial ^2}w}}{{\partial
{x^2}}}+\frac{1}{2}{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}\left( {\frac{{{\partial ^2}w}}{{\partial
{x^2}}}} \right)} \right]
28
,
N - {\mu ^2}\frac{{{\partial ^2}N}}{{\partial {x^2}}}= - {N_0}+ID{\left( {\frac{{{\partial ^2}w}}{{\partial {x^2}}}}
\right)^2}
29
.

Substituting Eq. (26) and Eq. (27) into Eq. (28) and Eq. (29), gets

\begin{gathered} M= - EI\left[ {\frac{{{\partial ^2}w}}{{\partial {x^2}}}+\frac{1}{2}{{\left( {\frac{{\partial w}}
{{\partial x}}} \right)}^2}\left( {\frac{{{\partial ^2}w}}{{\partial {x^2}}}} \right)} \right] - {\mu
^2}N\frac{{{\partial ^2}w}}{{\partial {x^2}}}+{\mu ^2}\bar {F}\left( {x,t} \right) \h�ll \\ +{\mu ^2}\left\{
{m\frac{{{\partial ^2}w}}{{\partial {t^2}}}+\frac{m}{2}\frac{\partial }{{\partial x}}\left\{ {\frac{{\partial w}}
{{\partial x}}\int\limits_{l}^{s} {\left[ {\frac{{{\partial ^2}}}{{\partial {t^2}}}\int\limits_{l}^{s} {{{\left(
{\frac{{\partial w}}{{\partial x}}} \right)}^2}ds} } \right]ds} } \right\}} \right\}, \h�ll \\ \end{gathered}
30
N= - {N_0}+ID{\left( {\frac{{{\partial ^2}w}}{{\partial {x^2}}}} \right)^2}
31
.

Differentiates Eq. (30) once and twice with respect to , then substitutes the outcomes and Eq. (31) into
Eq. (25), gets

\begin{gathered} - EI\frac{{{\partial ^4}w}}{{\partial {x^4}}} - {N_0}\left( {\frac{{{\partial ^2}w}}{{\partial
{x^2}}} - {\mu ^2}\frac{{{\partial ^4}w}}{{\partial {x^4}}}} \right)+\frac{{{\mu ^2}{N_0}}}{2}\frac{\partial }
{{\partial x}}\left[ {{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}\frac{{{\partial ^3}w}}{{\partial {x^3}}}}
\right] \h�ll \\ \left. { - EI\frac{\partial }{{\partial x}}\left[ {\frac{{\partial w}}{{\partial x}}{{\left(
{\frac{{{\partial ^2}w}}{{\partial {x^2}}}} \right)}^2}} \right.+{{\left( {\frac{{\partial w}}{{\partial x}}}
\right)}^2}\frac{{{\partial ^3}w}}{{\partial {x^3}}}} \right]+ID\left[ {{{\left( {\frac{{{\partial ^2}w}}{{\partial
{x^2}}}} \right)}^3} - {\mu ^2}\frac{{{\partial ^2}}}{{\partial {x^2}}}{{\left( {\frac{{{\partial ^2}w}}{{\partial
{x^2}}}} \right)}^3}} \right] \h�ll \\ =m\frac{{{\partial ^2}w}}{{\partial {t^2}}} - {\mu ^2}m\frac{{{\partial
^4}w}}{{\partial {t^2}\partial {x^4}}} - \frac{{{\mu ^2}m}}{2}\frac{\partial }{{\partial x}}\left[ {\frac{{{\partial
^3}w}}{{\partial {t^2}\partial x}}{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}} \right]+\left( {\frac{m}
{2}\frac{\partial }{{\partial x}} - \frac{{{\mu ^2}m}}{2}\frac{{{\partial ^3}}}{{\partial {x^3}}}} \right) \h�ll \\
\left\{ {\frac{{\partial w}}{{\partial x}}\int\limits_{l}^{s} {\left[ {\frac{{{\partial ^2}}}{{\partial
{t^2}}}\int\limits_{l}^{s} {{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}ds} } \right]ds} } \right\}+\bar {F} -
{\mu ^2}\left\{ {\frac{{{\partial ^2}\bar {F}}}{{\partial {x^2}}}+\frac{1}{2}\frac{\partial }{{\partial x}}\left[
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{\frac{{\partial \bar {F}}}{{\partial x}}{{\left( {\frac{{\partial w}}{{\partial x}}} \right)}^2}} \right]} \right\}.
\h�ll \\ \end{gathered}
32

In Eq. (32), the nonlinear terms of only keep up to cubic terms. Because the nonlinear inertia terms can
omit for slender beams [36], Eq. (32) can simplify as

\begin{gathered} m\left( {\frac{{{\partial ^2}w}}{{\partial {t^2}}} - {\mu ^2}\frac{{{\partial ^4}w}}{{\partial
{t^2}\partial {x^4}}}} \right)+C\frac{{\partial w}}{{\partial t}}+EI\frac{{{\partial ^4}w}}{{\partial {x^4}}}+
{N_0}\left( {\frac{{{\partial ^2}w}}{{\partial {x^2}}} - {\mu ^2}\frac{{{\partial ^4}w}}{{\partial {x^4}}}} \right)
\h�ll \\ - \frac{{{\mu ^2}{N_0}}}{2}\frac{\partial }{{\partial x}}\left[ {{{\left( {\frac{{\partial w}}{{\partial x}}}
\right)}^2}\frac{{{\partial ^3}w}}{{\partial {x^3}}}} \right]+EI\frac{\partial }{{\partial x}}\left[ {\frac{{\partial
w}}{{\partial x}}{{\left( {\frac{{{\partial ^2}w}}{{\partial {x^2}}}} \right)}^2}+{{\left( {\frac{{\partial w}}
{{\partial x}}} \right)}^2}\frac{{{\partial ^3}w}}{{\partial {x^3}}}} \right] \h�ll \\ - ID\left[ {{{\left(
{\frac{{{\partial ^2}w}}{{\partial {x^2}}}} \right)}^3} - {\mu ^2}\frac{{{\partial ^2}}}{{\partial {x^2}}}{{\left(
{\frac{{{\partial ^2}w}}{{\partial {x^2}}}} \right)}^3}} \right]=\bar {F} - {\mu ^2}\left\{ {\frac{{{\partial ^2}\bar
{F}}}{{\partial {x^2}}}+\frac{1}{2}\frac{\partial }{{\partial x}}\left[ {\frac{{\partial \bar {F}}}{{\partial x}}{{\left(
{\frac{{\partial w}}{{\partial x}}} \right)}^2}} \right]} \right\} \h�ll \\ \end{gathered}
33

The displacement boundary conditions of Eq. (33) are the same as those of classical beams. For
example, the conditions of simply supported beams are

w\left( {0,t} \right)=w\left( {l,t} \right)=\frac{{{\partial ^2}w}}{{\partial {x^2}}}\left( {0,t}
\right)=\frac{{{\partial ^2}w}}{{\partial {x^2}}}\left( {l,t} \right)=0.
34

Below we will analyze Eq. (19) and Eq. (33). The above two models can divide into four categories: the
classical nonlinear model (CNM) for D=0and \mu =0, the nonlinear constitutive model (NCM) for D \ne
0and \mu =0, the nonlocal nonlinear model (NNM) for D=0and \mu \ne 0, and the nonlocal nonlinear
constitutive model (NNCM) for D \ne 0and \mu \ne 0.

3. Solutions Of Models
Introducing dimensionless variables in Eq. (19) and Eq. (33) is convenient. Lets \bar {x}=x/l, \bar {w}=w/l,
\bar {x}=x/l, \bar {t}=t/{\omega _0}, and \omega _{0}^{2}={\pi ^4}EI{\left( {{l^4}m} \right)^{ - 1}}. Assumes
the loads are uniform, namely \bar {F}\left( x \right)=\text{c}\text{o}\text{n}\text{s}\text{t}, so {\partial
^2}\bar {F}/\partial {x^2}=0. Eq. (19) for the extensibility effect can rewrite as

\begin{gathered} \frac{{{\partial ^2}}}{{\partial {{\bar {t}}^2}}}\left( {\bar {w} - \frac{{{\mu ^2}}}
{{{l^2}}}\frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar {x}}^2}}}} \right)+\frac{C}{{m{\omega _0}}}\frac{{\partial
\bar {w}}}{{\partial t}}+\frac{1}{{{\pi ^4}}}\frac{{{\partial ^4}\bar {w}}}{{\partial {{\bar {x}}^4}}} \h�ll \\
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+\frac{{{N_0}}}{{m\omega _{0}^{2}{l^2}}}\left( {\frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar {x}}^2}}}\left. { -
\frac{{{\mu ^2}}}{{{l^2}}}\frac{{{\partial ^4}\bar {w}}}{{\partial {{\bar {x}}^4}}}} \right) - \frac{{2\lambda ID}}
{{m\omega _{0}^{2}{l^6}}}\frac{{{\partial ^2}}}{{\partial {{\bar {x}}^2}}}{{\left( {\frac{{{\partial ^2}\bar {w}}}
{{\partial {{\bar {x}}^2}}}} \right)}^3}} \right. \h�ll \\ - \frac{{EA}}{{2m\omega _{0}^{2}{l^2}}}\left(
{\frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar {x}}^2}}}} \right.\left. { - \frac{{2\lambda +{\mu ^2}}}
{{{l^2}}}\frac{{{\partial ^4}\bar {w}}}{{\partial {{\bar {x}}^4}}}} \right)\int\limits_{0}^{1} {\left[ {{{\left(
{\frac{{\partial \bar {w}}}{{\partial \bar {x}}}} \right)}^2}+\frac{{2\lambda }}{{{l^2}}}{{\left( {\frac{{{\partial
^2}\bar {w}}}{{\partial {{\bar {x}}^2}}}} \right)}^2}} \right]d{\kern 1pt} \bar {s}} =\frac{{\bar {F}}}{{m\omega
_{0}^{2}l}}. \h�ll \\ \end{gathered}
35

Eq. (33) for inextensible beams can rewrite as

\begin{gathered} \frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar {t}}^2}}} - \frac{{{\mu ^2}}}
{{{l^2}}}\frac{{{\partial ^4}\bar {w}}}{{\partial {{\bar {t}}^2}\partial {{\bar {x}}^2}}}+\frac{C}{{m{\omega
_0}}}\frac{{\partial \bar {w}}}{{\partial t}}+\frac{1}{{{\pi ^4}}}\frac{{{\partial ^4}\bar {w}}}{{\partial {{\bar
{x}}^4}}}+\frac{{{N_0}}}{{m\omega _{0}^{2}{l^2}}}\left( {\frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar {x}}^2}}} -
\frac{{{\mu ^2}}}{{{l^2}}}\frac{{{\partial ^4}\bar {w}}}{{\partial {{\bar {x}}^4}}}} \right) \h�ll \\ - \frac{{{\mu
^2}{N_0}}}{{2m\omega _{0}^{2}{l^4}}}\frac{\partial }{{\partial \bar {x}}}\left[ {{{\left( {\frac{{\partial \bar
{w}}}{{\partial \bar {x}}}} \right)}^2}\frac{{{\partial ^3}\bar {w}}}{{\partial {{\bar {x}}^3}}}} \right]+\frac{{EI}}
{{2m\omega _{0}^{2}{l^4}}}\frac{\partial }{{\partial \bar {x}}}\left[ {\frac{{\partial \bar {w}}}{{\partial \bar
{x}}}{{\left( {\frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar {x}}^2}}}} \right)}^2}} \right. \h�ll \\ \left. {+{{\left(
{\frac{{\partial \bar {w}}}{{\partial \bar {x}}}} \right)}^2}\frac{{{\partial ^3}\bar {w}}}{{\partial {{\bar {x}}^3}}}}
\right] - \frac{{DI}}{{m\omega _{0}^{2}{l^4}}}\left[ {{{\left( {\frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar
{x}}^2}}}} \right)}^3} - \frac{{{\mu ^2}}}{{{l^2}}}\frac{{{\partial ^2}}}{{\partial {{\bar {x}}^2}}}{{\left(
{\frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar {x}}^2}}}} \right)}^3}} \right]=\frac{{\bar {F}}}{{m\omega
_{0}^{2}l}}. \h�ll \\ \end{gathered}
36

For simplicity, we use hinged-hinged and simply supported beams as examples to discuss the extensible
and inextensible beams correspondingly. Hence their normalized boundary conditions are identical:

\bar {w}\left( {0,\bar {t}} \right)=\bar {w}\left( {1,\bar {t}} \right)=\frac{{{\partial ^2}\bar {w}}}{{\partial
{{\bar {x}}^2}}}\left( {0,\bar {t}} \right)=\frac{{{\partial ^2}\bar {w}}}{{\partial {{\bar {x}}^2}}}\left( {1,\bar {t}}
\right)=0
37
.

It is challenging to solve nonlinear Eq. (35) or Eq. (36) accurately. There are two common approaches to
solving a nonlinear partial differential equation approximately. One of them is that the partial differential
equation is reduced to nonlinear ordinary differential equations through Galerkin method, and then the
equations are solved using perturbation methods [34–37]. The second is to solve the nonlinear partial
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differential equation using perturbation methods directly. The direct multiscale method is an essential
improvement of the classical perturbation methods, and it has been widely used to directly solve
nonlinear partial differential equations more accurately than the �rst methods [37]. Nayfeh [38–40],
Luongo [41, 42], and Lacarbonara [43–46] and their collaborators’ works may be substantial for the direct
multiscale method. We apply the Galerkin and the multi-scale methods to solve the equations for
simplicity. In fact, the two methods have widely applied to nonlinear equations of structures [18, 20–22,
47–50]. Under boundary conditions Eqs. (37), the approximate solutions of Eq. (35) and Eq. (36) can be
written as

\bar {w}=\sum\limits_{{n=1}}^{\infty } {{{\bar {\eta }}_n}\left( {\bar {t}} \right)\sin n\pi \bar {x}}
38
.

A set of ordinary differential equations can obtain through the Galerkin truncation [34, 36]: substitutes
Eq. (38) into Eq. (35) or Eq. (36) respectively, then \sin \left( {n\pi \bar {x}} \right) is multiplied by both
sides of the equations, and integrates in the interval \left[ {0,1} \right]. For simplicity, we only takes the
�rst term of Eq. (38) and let {\bar {\eta }_1}=\eta, get

{m_j}\ddot {\eta }+{c_j}\dot {\eta }+{k_j}\eta +{d_j}{\eta ^3}=f,\quad j=1,2.
39

Here j=1 indicates the hinged-hinged beams, and j=2 indicates the simply supported beams. The
parameters in Eqs. (39) are

\begin{gathered} {m_1}={m_2}=1+\frac{{{\pi ^2}{\mu ^2}}}{{{l^2}}},\quad {c_1}={c_2}=\frac{C}{{m{\omega
_0}}},\quad {k_1}={k_2}=1 - \frac{{{N_0}{\pi ^2}}}{{m\omega _{0}^{2}{l^2}}}\left( {1+\frac{{{\pi ^2}{\mu ^2}}}
{{{l^2}}}} \right), \h�ll \\ {d_1}=\frac{{{\pi ^4}EA}}{{4m\omega _{0}^{2}{l^2}}}{\left( {1+\frac{{2{\pi
^2}\lambda }}{{{l^2}}}} \right)^2} - \frac{{3{\pi ^8}\lambda ID}}{{2m\omega _{0}^{2}{l^6}}}+\frac{{{\pi
^4}EA{\mu ^2}}}{{4m\omega _{0}^{2}{l^4}}}\left( {1+\frac{{2{\pi ^2}\lambda }}{{{l^2}}}} \right), \h�ll \\
{d_2}= - \frac{{3{\pi ^6}{\mu ^2}{N_0}}}{{8m\omega _{0}^{2}{l^4}}}+\frac{{{\pi ^6}EI}}{{6m\omega _{0}^{2}
{l^4}}}+\frac{{3{\pi ^6}DI}}{{4m\omega _{0}^{2}{l^4}}}\left( {1+\frac{{{\pi ^2}{\mu ^2}}}{{{l^2}}}}
\right),\;F=\frac{{4\bar {F}}}{{\pi m\omega _{0}^{2}l}}. \h�ll \\ \end{gathered}
40

Eqs. (40) indicate that the linear coe�cients of the two models are the same, but the nonlinear
coe�cients are different. Moreover, the non-local effect and the material nonlinearity are coupled in
nonlinear terms. {d_1} demonstrates that the in�uence of the material nonlinearity will decrease
accompanying the increase of beam’s length, as hinged-hinged SWCNTs shown in Fig. 2. If we neglect the
nonlocal effect, the material nonlinearity’s in�uence on {d_2} is invariant accompanying the length’s
change due to \omega _{0}^{2}{l^4}={\pi ^4}EI/m, as simply supported SWCNTs shown in Fig. 9.
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The nonlinear terms, which are induced by the �nite deformations and the non-local effect, produce a
hardening effect in two models due to {\mu ^2}>0. On the other hand, the nonlinear terms induced by the
material nonlinearity have a softening effect in two models due to D<0 for SWCNTs. It is interesting for
hinged-hinged SWCNTs that the hardening effect will be smaller than the softening effect for the small-
length tubes, as shown in Fig. 2. The following discussions will show that this competitive relationship
between the softening and the hardening impacts the mechanical behavior of SWCNTs signi�cantly.

Neglecting the inertia and damping terms in Eqs. (39), static bending deformations of the beams’ middle
points are obtained as

{k_j}\eta +{d_j}{\eta ^3}=F,\quad j=1,2.
41

In the following, we will research the mechanical behaviors of hinged-hinged beams and simply
supported beams according to Eq. (39) and Eq. (41), respectively.

We rewrite Eqs. (39) as

\ddot {\eta }+{\bar {c}_j}\dot {\eta }+\bar {\omega }_{j}^{2}\eta +{\bar {d}_j}{\eta ^3}=\bar {f},\quad j=1,2
42
,

here {\bar {c}_j}={c_j}/{m_j}, {\omega ^2}={k_1}/{m_j}, {\bar {d}_j}={d_j}/{m_j}, \bar {f}={\bar {f}_j}=F/{m_j}.
The multiple scale method [36], which is widely used to solve weak nonlinear differential equations for
macro-structures, will be applied to solve Eq. (42). Lets {\bar {c}_j}={\varepsilon ^2}{c_j}, \bar {f}=
{\varepsilon ^3}f\cos \left( {\Omega \bar {t}} \right), gives

\ddot {\eta }+\omega _{j}^{2}\eta +{\varepsilon ^2}{c_j}\dot {\eta }+{\bar {d}_j}{\eta ^3}={\varepsilon
^3}f\cos \left( {\Omega \bar {t}} \right),\quad j=1,2.
43
.

Supposes

\eta \left( {t;\varepsilon } \right)=\varepsilon {\eta _1}\left( {{T_0},{T_2}} \right)+{\varepsilon ^3}{\eta
_3}\left( {{T_0},{T_2}} \right)
44
,

and substitutes it into Eq. (43), then equates the coe�cients of \varepsilon and {\varepsilon ^3} on both
sides, has

\varepsilon :\quad D_{0}^{2}{\eta _1}+\omega _{i}^{2}{\eta _1}=0,
45



Page 14/28

\begin{gathered} {\varepsilon ^3}:\quad D_{0}^{2}{\eta _3}+\omega _{j}^{2}{\eta _3}= - 2{D_0}{D_2}{\eta
_1} \h�ll \\ \quad - 2{c_j}{D_0}{\eta _1} - {{\bar {d}}_j}\eta _{1}^{3}+\frac{1}{2}f\exp \left( {i\Omega {T_0}}
\right), \h�ll \\ \end{gathered}
46

where {D_0}=d/d{T_0}, {D_1}=d/d{T_1} and D_{0}^{2}={d^2}/dT_{0}^{2}. The solution of Eq. (45) is

{\eta _1}=A\left( {{T_2}} \right)\exp \left( {i{\omega _j}{T_0}} \right)+CC
47
,

here, CC means the complex conjugate. Substituting Eq. (47) into Eq. (46), gets

\begin{gathered} D_{0}^{2}{\eta _3}+\omega _{j}^{2}{\eta _3}=\frac{1}{2}f\exp \left( {i{\kern 1pt} \Omega
{T_0}} \right) \h�ll \\ - \left[ {i2\omega \left( {A^{\prime}+{c_j}A} \right)} \right.\left. {+3{{\bar {d}}_j}
{A^2}\bar {A}} \right]\exp \left( {i{\omega _j}{T_0}} \right)+NST. \h�ll \\ \end{gathered}
48

Here the prime denotes the derivative with respect to {T_2}, and NST denotes non-secular terms [36].
When the load’s frequency \Omega approaches the nanobeam’s modal frequency {\omega _j} (primary
resonance), the beam will appear a relatively large amplitude response. Under this condition, lets \Omega
={\omega _j}+{\varepsilon ^2}\sigma, so the solvable condition of Eq. (48) are

- i2{\omega _j}\left( {A^{\prime}+cA} \right) - 3{d_j}{A^2}\bar {A}+\frac{1}{2}f\exp \left( {i\sigma {T_2}}
\right)=0,\quad j=1,2.
49
.

Letting A=\left( {\alpha /2} \right)\exp \left( {i\beta } \right), and substituting it into Eq. (49), then
separating the real part and the imaginary part, gets

\begin{gathered} \alpha ^{\prime}= - {c_j}\alpha +\frac{f}{{2\omega }}\sin \gamma , \h�ll \\ \alpha
\gamma ^{\prime}=\sigma \alpha - \frac{3}{{8{\omega _i}}}{{\bar {d}}_j}{\alpha ^3}+\frac{f}{{2{\omega
_j}}}\cos \gamma , \h�ll \\ \end{gathered}
50

here \gamma =\sigma {T_2} - \beta. Steady-state motions occur when \alpha ^{\prime}=\gamma
^{\prime}=0, which corresponds to the singular points of Eqs. (50). The steady-state solutions can obtain
from the following algebraic equations [36]

\left[ {{c^2}+{{\left( {\sigma - \frac{{3{{\bar {d}}_j}}}{{8\omega _{j}^{2}}}{\alpha ^2}} \right)}^2}} \right]
{\alpha ^2}=\frac{{{f^{{\kern 1pt} 2}}}}{{4\omega _{j}^{2}}},\quad j=1,2
51
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.

The stability of the steady-state solutions is judged by investigating the nature of the singular points of
Eqs. (50). Lets a={a_0}+{a_1} and \gamma ={\gamma _0}+{\gamma _1}, and substitutes them into
Eqs. (50), expands for small {a_1} and {\gamma _1}, and keeps linear terms in {a_1} and {\gamma _1},
then gets

\begin{gathered} {{\alpha ^{\prime}}_1}= - {c_j}{\alpha _1}+\frac{{{\gamma _1}f\cos {\gamma _0}}}
{{2{\omega _j}}}, \h�ll \\ {{\gamma ^{\prime}}_1}= - \left( {\frac{{f\cos {\gamma _0}}}{{2{\omega _j}\alpha
_{0}^{2}}}+\frac{{3{{\bar {d}}_j}{\alpha _0}}}{4}} \right){\alpha _1} - \frac{{{\gamma _1}f\sin {\gamma _0}}}
{{2{\omega _j}{\alpha _0}}}. \h�ll \\ \end{gathered}
52

Here, it is used in Eqs. (52) that {a_0} and {\gamma _0} are the singular points of Eqs. (50). The stability
of steady-state motions depends on the coe�cient matrix’s eigenvalues of Eqs. (52). If the real parts of
eigenvalues are greater than zero, the solutions are unstable [36]. Hence the steady-state motions are
unstable if

c_{j}^{2}+\left( {\frac{{3{d_j}\alpha _{0}^{2}}}{{8{\omega _j}}} - \sigma } \right)\left( {\frac{{9{{\bar
{d}}_j}\alpha _{0}^{2}}}{{8{\omega _j}}} - \sigma } \right)<0
53
.

Eq. (53) indicates that the nonlinear term affects the stability of the steady-state solutions. So both the
nonlocal effect and the material nonlinearity affect the stability of the solutions. In the response curves in
the next section (Fig. 5–7 and Fig. 11–12), the solid line represents the stable solutions and the dashed
line represents the unstable solutions.

4. Results And Discussion
It is necessary to point out that nanobeam's mechanical properties' experiments are challenging, and the
existing experimental results have signi�cant errors [17, 51]. Molecular dynamics (MD) calculations of
SWCNTs show a big gap between the calculated results and the classical models that do not include
scale effects or physical nonlinearity [52, 53]. Furthermore, MD calculations con�rm that the calculations’
results are consistent with the models with the nonlocal effect [9, 31] or physical nonlinearity [16]. The
present theories consider nonlocal effects and physical nonlinearity comprehensively, which provides a
basis to �t the mechanical parameters of carbon nanotubes through experiments or MD calculations.

This section uses \left( {15,15} \right) SWCNTs to demonstrate the differences between the four theories.
So the diameter is d=2.034\;\text{n}\text{m}, and the thickness is taken as h=0.34\;\text{n}\text{m}, the
other physical and geometrical parameters are [15, 22]: E=1\;\text{T}\text{P}\text{a}, D= -
2\;\text{T}\text{P}\text{a}, m=4.86 \times {10^{ - 15}}\;\text{k}\text{g}{\text{m}^{-1}}, I=1.115\;\text{n}
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{\text{m}^4}, A=2.171\;\text{n}{\text{m}^2}, \lambda = - 1.027 \times {10^{ - 18}}\;\text{n}{\text{m}^2},
{\bar {c}_1}={\bar {c}_2}=0.01. As mentioned in the introduction, determining the non-local parameter {e_0}
of SWCNTs is an open problem. This problem may come from ambiguous understandings of one-atom-
thick nanostructure’s mechanical properties [32, 54]. The non-local parameter obtained by atomic
calculations has also shown some confusion [17, 31, 55]. However, if the vibration frequency in CNTs is in
the terahertz range, a conservative estimate is {e_0}a<2\;\text{n}\text{m} [5, 55]. In the present research,
we take the SWCNT’s scale coe�cient \mu ={e_0}a=1\;\text{n}\text{m}. It is bigger than most values in
the existing researches of SWCNTs [5]. Using a big nonlocal coe�cient may help compare the material
nonlinearity and the non-local effect.

4.1. Hinged-hinged SWCNTs
It can �nd from Eqs. (40) that the nonlinear parameter is related to the beam length. We �rst focus the
length’s effect on {d_1}, as shown in Fig. 2. The �gure and Eqs. (40) show that {d_1} in the CNM and the
NNM is positive for \left( {15,15} \right) SWCNTs. This indicates that the geometrical nonlinear terms,
which are induced by �nite deformations and the nonlocal effect, produce a hardening effect for the
SWCNTs. However, when the material nonlinearity appears in the models (NCM and NNCM), {d_1} will
change from positive to negative with the length’s decrease, as shown in Fig. 2. This means that the
nonlinear terms in Eqs. (39) change from a soft spring to a hard spring. Nonlinear springs signi�cantly
in�uence the nonlinear mechanical properties of macrostructures [35–50].

Here we take l=8\text{n}\text{m} and l=6\text{n}\text{m} as examples to study the differences between
four beam theories. Since the nonlinear coe�cients in the four models are all greater than zero for
l=8\text{n}\text{m}, the SWCNT is a hard spring system ({d_1}>0). However, for l=6\text{n}\text{m}, the
models with material nonlinearity (NCM and NNCM) are soft spring systems ({d_1}<0), while other models
(CNM and NNM) are still hard spring systems ({d_1}>0). The static load-deformation curves can be
obtained from Eq. (41) with j=1, as shown in Fig. 3 and Fig. 4. The two �gures show that the softening
effect remarkably increases the deformation amplitudes of the static bending. Further, the material
nonlinearity may signi�cantly impact the SWCNT’s vibrations under the primary resonance, as shown in
Fig. 5 to Fig. 7 obtained from Eq. (51) with j=1. For example, four load-response curves at \sigma =10 are
signi�cantly different between l=8 and l=6, as shown in Fig. 5 and Fig. (6). The two �gures show that the
material nonlinearity in short tubes is more prominent than in long tubes. Therefore ignoring the material
nonlinearity may lead to evident errors for short SWCNTs, as shown in Fig. 7 and Fig. 8. The material
nonlinearity produces the softening effect in the NCM and NNCM for l=6, and the softening effect makes
their frequency-response curves deviate to the left. On the contrary, the nonlinear terms in the CNM and
the NNM are hard springs. This makes the frequency-response curves are skewed to the right, as shown
in Fig. 7. We calculated Eq. (42) numerically through the Runge-Kutta method for \left( {l,\sigma ,f}
\right)=\left( {6,5,5} \right). The results show that ignoring the material nonlinearity may seriously
underestimate the vibration amplitudes, as shown in Fig. 8. The numerical calculations also show the
perturbation solution’s accuracy.
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4.2 Simply supported SWCNTs
Here we will demonstrate the tube length’s in�uence on the nonlinear coe�cients {d_2} for simply
supported SWCNTs, as shown in Fig. 9. It is found in Fig. 9 and Eqs. (40) that the material nonlinearity
makes {d_2}<0 for the NCM and NNCM. This indicates that both the non-local effect and the material
nonlinearity have a stiffness softening effect on SWCNTs. The softening makes static bending
deformations of the NNM and the NNCM signi�cantly larger than these of the CNM and the NNM when
the SWCNTs are subjected to big loads, as shown in Fig. 10 obtained by Eq. (41) with j=2. Furthermore,
the material nonlinearity more signi�cantly affects the dynamic behaviors of SWCNTs under the primary
resonance. For example, the response amplitudes of the NCM and the NNCM have jumps accompanying
excitation amplitude’s change, while the CNM and NNM do not produce amplitude’s jumps for \left(
{l,\sigma } \right)=\left( {6, - 5} \right), as shown in Fig. 11 obtained by Eq. (51) with j=2. Similar to the
hinged-hinged beams, the frequency-response curves of the NCM and the NNCM appear maximum
vibration amplitudes in \Omega <{\omega _2}. In contrast, the maximum vibration amplitudes of the
CNM and the NNM appear in \Omega >{\omega _2}, as shown in Fig. 12 obtained by Eq. (51). The above
results indicate that one may obtain incorrect results if the material nonlinearity or nonlocal effects are
neglected. We implement numerical calculations of Eq. (42) through the Runge-Kutta method to check the
perturbation solutions Eq. (51). The numerical simulations con�rm the accuracy of the analytical
solutions, as shown in Fig. 13.

5. Conclusions
In the present study, we combine the non-local effect and the material nonlinearity to suggest two new
Euler-Bernoulli models for nanobeams. The integral-partial differential equation models the axial
extensional effect. Another partial differential equation models the axial inextensional effect. (15,15)
SWCNTs are used as examples to research the static bending and the forced vibration for the hinged-
hinged and simply supported nanobeams. The results show that the material nonlinearity signi�cantly
softens SWCNT’s stiffness. Both the material nonlinearity and nonlocal effects signi�cantly impact the
mechanical properties of SWCNTs. Noticeable mistakes may appear if one neglects the material
nonlinearity or the nonlocal effect.
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Schematic con�guration of a SWCNT, (a) Front elevation, (b) Plan, (c) Equivalent cross-section
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Figure 3



Page 23/28

See image above for �gure legend

Figure 4
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Figure 8
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Figure 10
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Figure 11
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Figure 13
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