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ABSTRACT: A two-dimensional finite element formulation for imbricate non
local strain-softening continuum is presented and numerically demonstrated. 
The only difference from the usual, local finite element codes is that certain 
finite elements are imbricated, i.e., they regularly overlap while skipping the 
intermediate mesh nodes. The element imbrication is characterized by gener
ating proper integer matrices that give the numbers of the nodes for each finite 
element and the numbers of the imbricate elements overlapping each local ele
ment. The number of unknown displacements remains the same as for a local 
finite element code, while the number of finite elements approximately dou
bles. Numerical results show that stable two-dimensional strain-softening zones 
of multiple-element width can be obtained, and that the solution exhibits proper 
convergence as the mesh is refined. The convergence is demonstrated for the 
load-displacement diagrams, for the strain profiles across the strain-softening 
band, and for the total energy dissipated by cracking. It is also shown that the 
local formulations exhibit incorrect convergence; they converge to solutions for 
which the energy dissipation dlde to failure is zero, which is physically unac
ceptable. Stability problems due to strain-softening are avoided by making the 
loading steps so small that no two mutually nonoverlapping elements may en
ter the strain-softening regime within the same load step. 

INTRODUCTION 

Distributed damage, such as distributed cracking, can be macroscop
ically described as strain-softening, a situation in which the matrix of 
tangential elastic moduli ceases to be positive definite. Beginning with 
Hadamard in 1903, many investigators have demonstrated various dif
ficulties which this phenomenon introduces in structural analysis 
(6,8,9,28,29,33). These difficulties, which are caused by material insta
bility of the strain-localization type, lead to physically unreasonable re
sults for which energy dissipation in the material is confined to zones 
of zero volume (surfaces, lines or points) (8). If such complete strain 
localization is prevented by assuming smooth macroscopic strain distri
butions, problems are encountered with uniqueness (28-30). 

The difficulties disappear (9,22,23), however, when the material is de
scribed as a nonlocal continuum, in which the macroscopic (homoge
nized) stress at a point depends not only on the macroscopic (homog
enized) strain at the same point but also on the entire strain field in a 
certain neighborhood of the point. The classical nonlocal continuum for
mulation (19,22-25) was shown to be appropriate for elastic statistically 
heterogeneous materials. However, the classical formulation was found 
unworkable for strain-softening, and a new special type of nonlocal con-
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tinuum, called the imbricate continuum, was formulated and its appli
cability demonstrated (5,9,15). This continuum, which represents the limit 
of a system of imbricated (regularly overlapping) elements of a fixed size, 
mathematically differs from the classical nonlocal continuum models in 
that the field operator is self-adjoint. This is because the gradient av
eraging operator is applied not only to the strains, but also to the stresses 
obtained from the strains. In contrast to the classical local continuum 
models, one obtains a symmetric structural stiffness matrix if the ma
terial stiffness matrix is symmetric. As another difference from the clas
sical nonlocal formulations, it was found necessary to overlay the non
local continuum with a local one in order to assure stability of discrete 
finite element approximations (9,12,15). 

Finite element formulations based on the idea of imbricate nonlocal 
continuum have been formulated and shown to converge as the finite 
element mesh is refined (9,15). The convergence of the explicit time-step 
algorithm for dynamic problems was found to be quadratic (15). For the 
special case of a strain-softening local continuum, the finite element so
lution was shown to converge to the exact solution of a strain-softening 
wave propagation problem for a one-dimensional local continuum (8). 
These solutions, however, have so far been confined to one-dimensional 
problems of linear, cylindrical, and spherical geometries (4,9,15). Al
though a multidimensional imbricate finite element formulation was 
proposed (5), it has not yet been numerically implemented. This is the 
objective of the present study. 

It should be mentioned that various alternative models have been re
cently proposed for the description of progressive distributed cracking; 
see, e.g. Refs. 6, 26-27, 31, 32. However, examination of the relative 
merits of various models as well as experimental verification is beyond 
the scope of this paper and can be found elsewhere; e.g. Ref. 6. 

REVIEW OF IMBRICATE NON LOCAL CONTINUUM 

The imbricate nonlocal continuum is described by the following rela

tions (5,9): 

e(x) = ..!. f E(X') a(x') dV' ...................................... (1) 
V V(x) 

u(x) = F[e(x)]; T(X) = G[E(X)] ................................... (2) 

fr(x) = ..!. f u(x') a(x') dV' ...................................... (3) 
V V(x) 

S(x) = (1 - c) a-(x) + CT(X) ........................................ (4) 

5ij,j = p iii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. (5) 

in which E is the strain tensor, e is the mean strain tensor, T is the local 
stress, u is the broad range stress, F and G are the constitutive opera
tors, of which only F may exhibit strain-softening, fr is the mean broad
range stress, S is the total stress with cartesian components 5 ij (i, j = 
1,2,3), V(x) is the characteristic volume (of volume V) centered at point 
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x, a(x) is the empirical weighting function (normally a = 1), p = mass 
density, Ui = cartesian displacement components, and c is an empirical 
participation factor for the local behavior. 

There are two essential diff.,-ences from the classical nonlocal contin
uum theory: (a) The averaging operator appears not only in Eq. 1 de
fining the mean strain, but again in Eq. 3 defining the stress that is sub
stituted into the continuum equation of motion (Eq. 5); and (b) a local 
continuum must be imagined to be overlaid over (or coupled in series 
with) the nonlocal continuum, i.e., coefficient c cannot be zero. For c = 

a the continuum would be unstable, which is manifested by an unre
sisted periodic strain field of zero energy (9,12). Theoretically, any value 
c > a suffices for stability, but for very small values, such as c = 0.0l, 
excessive noise is obtained in numerical simulation; in practice, c = 0.1 
usually suffices to suppress the noise. 

The representative volume V may be imagined in two dimensions as 
a circle of diameter f or a square of side f where f is a characteristic 
length of the medium. This characteristic length may be considered to 
be approximately the same as the size of the fracture process zone which 
can be determined experimentally on the basis of fracture tests (1,3,7,13). 
The most indicative are the tests of geometrically similar fracture spec
imens of different sizes. The characteristic length f appears to be ap
proximately related to the maximum size of the inhomogeneities within 
the material, such as the maximum aggregate size in concrete or the 
maximum grain size in rocks or sea ice. 

The foregoing field equations represent the continuum limit of an im
bricated (regularly overlapping) finite element system as the mesh size 
is refined to zero (5,9) and, conversely, the discrete approximation of 
the foregoing field equations is represented by such an imbricated finite 
element system. We restrict our attention to two-dimensional finite ele
ment analysis using rectangular meshes. In this case, the side of the 
nonlocal finite elements cannot be smaller than the given characteristic 
length f. This means that if the mesh size is smaller than f, the finite 
element must span over several meshes and be connected only to the 
mesh nodes at the element boundary but not to the mesh nodes within 
the element area. This leads to an imbricate arrangement of nonlocal 
finite elements; see Fig. 1 which shows the imagined cross section of 
the element system and a view of the plane of finite elements in which 
the square imbricate elements are slightly rotated out of alignment so as 
to permit their visual distinction. Although the element system is pic
tured by means of several layers of imbricated elements, the imbrication 
is fictitious. There is actually no third dimension and, mathematically, 
all elements are laid out in the same plane. 

In a regular square mesh of imbricated square elements representing 
a continuum of thickness 1 in the third dimension, each point other than 
the nodes is overlapped by one local square element of thickness c and 
by n2 imbricated square elements; n is the number of meshes spanned 
by the imbricate element of size f and n = fjh. The mesh size h should 
be chosen so that n is an integer. Since the thicknesses of all overlapping 
elements must add up to 1, each of the imbricate elements has the thick
ness (1 - c)jn2

• 
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FIG. 1.-(a) Expanded Cross Section of Imbricate Finite Element Meshes at In
creasing Mesh Refinements (Actual Thickness Is Zero); (b) Plan View of Imbricate 
Elements Slightly Rotated Out of Alignment for Purpose of Illustration 

The boundaries are most easily handled by laying out a regular im
bricate element mesh imagining at first the imbricate elements to pro
trude outside the boundary. Then the protruding parts of the elements 
are imagined to be chopped away and the element nodes outside the 
boundary are moved onto the boundary and made to coincide with ap-
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propriate nodes .of other elements lying at this boundary. Thus, many 
of the boundary elements are smaller than the interior elements and dD 
nDt meet the restrictiDn that the element size should nDt be smaller than 
£; hDwever, this is inevitable and acceptable since a nDnlocal continuum 
.obviously involves a boundary layer of thickness £ which requires spe
cial treatment and has in fact different governing field equations in the 
continuum limit. Imagining the protruding parts of the imbricate ele
ments to be ch.opped .off is a cDnvenient way t.o m.odel the b.oundary 
layer, and is SImpler than determining first the field equati.ons for the 
b.oundary layer .and then attempting t.o f.ormulate their discrete apprDx
imati.on. 

This handling .of the b.oundary is .of c.ourse intended .only fDr rectan
gular f.our-node elements. The use .of higher-Drder imbricate ~lements 
would intr.oduce additi.onal questi.ons bey.ond the sc.ope .of thIS paper. 
Note, h.owever, that the n.onlocal imbricate aspect .of the mesh is im7 
portant .only in the regi.ons .of strain-Iocalizati.on with strain-s.oftening, 
i.e. at and near the fracture pr9Cess zone, while elsewhere regular (n.on
imbricated) elements can be used with little effect .on the results. 

Any available finite element c.ode based .on the usual, local c.ontinuum 
c.oncept can easily be generalized f.or n.onl.ocal analysis by intr.oducing 
the element imbricati.on. All that needs t.o be changed is: (1) T.o generate 
a n.odal c.onnectivity matrix, i.e., the integer matrix which specifies the 
nodal numbers f.or each finite element number; and (2) t.o generate an
.other integer matrix which specifies f.or each square .of the mesh the 
numbers .of all elements that .overlap that mesh. The fDrmer integer ma
trix is used in the usual manner t.o determine h.ow the stiffness cDeffi

cients .of the imbricate n.onl.ocal elements and the l.ocal elements sh.ould 
be assembled int.o the structural stiffness matrix, while the latter integer 
matrix is used t.o determine h.ow the stresses fr.om all .overlapping ele
ments (i.e., the imbricate and l.ocal elements) sh.ould be added t.o .obtain 
the t.otal stress in the imbricate n.onl.ocal c.ontinuum. 

The stiffness matrix .of the structure is assembled in the usual manner 
from the stiffness matrices .of the imbricate n.onlDcal elements and the 
l.ocal elements; it may be expressed as: 

I 1 - C I 

K = 2: -' 2- kim + 2: ckfOC ......•...........•...............•... (6) 
;=1 n j=1 

in which I and J are the numbers .of all imbricate and all l.ocal finite 
elements, and k:m and kfoc are their stiffness matrices written in the gl.obal 
numbering system. N.ote that the t.otal number .of finite elements is n.ot 
substantially increased by element imbricati.on; for domains much larger 
than the size .of the imbricate elements, the number .of imbricate ele
ments is appr.oximately the same as the number .of the l.ocal elements. 
The element imbricati.on, h.owever~ increases the band width .of the 
structural stiffness matrix. F.or a rectangular d.omain and a rectangular 
mesh with nx and ny elements in the x- and y-directi.ons, the minimum 
half-band width is 

nb :: 2[n(nl + 2) + 1]; nl = min (nx, ny) 
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SIMPLE CONSTITUTIVE RELATION WITH STRAIN-SOFTENING 

We assume the material t.o behave in a time-independent manner and, 
f.or the purpose of numerical studies, we c.onsider a rather simple c.on
stitutive relati.on with strain-s.oftening which was intr.oduced in Ref. 13, 
althDugh m.ore s.ophisticated c.onstitutive relati.ons (6,14) c.ould be als.o 
used. 

We assume that the material is linearly elastic, and characterized by 
Y.oung's elastic m.odulus and Poiss.on's rati.o v, until the maximum prin
cipal tensile stress 0"1 reaches the tensile ~trength li~t It. A~er the strength 
limit is reached, we assume a pr.ogressIve f.ormatIDn .of mIcr.ocracks such 
that a unique stress-strain relati.on exists and the uniaxial tensile stress
strain diagram in the strain-s.oftening p.ortibn is given by a straight line 
.of negative sl.ope Et (the strain-s.oftening m.odulus). After the tensile s~ess 
dr.ops t.o zer.o, the material has n.o resistance t.o further tensile extenSIOn. 
If c.ontracti.on (negative strain increment) .occurs, the material resp.onse 
is always elastic. FDr the sake .of simplicity we assume that all the mi
cr.ocracks, assumed t.o be c.ontinu.ously distributed (smeared), have the 
same directi.on, which remains c.onstant even if the directi.on .of the max
imum principal stress r.otates. The directi.on .of the microcracks f.or each 
integrati.on p.oint .of each finite element is fixed .once and f.or all at the 
m.oment when the tensile strength I; is reached. This directi.on is de
n.oted as y' and the n.ormal directi.on as x'. After the start .of pr.ogressive 
microcracking, i.e., during the strain-s.oftening, the material is described 
by the incremental c.onstitutive relati.on 

{dE;} = [E;l -VE1-l]{~0";} . ............. ' ................... (7) dE; -vE- 1 E- dO"; 

in which d den.otes increments, and' E;, E;, &; and 0"; are the n.ormal 
c.omp.onents .of the strains and stresses in c.o.ordinates x' ~nd y'. ~he 
c.ompliance matrix in Eq. 7 iSc.onstant through.out the stram-s.oftenmg 
range, and Et < O. Since the principal stress directi.ons may rotate, but 
the axes x' and y' must be kept fixed at each p.oint ~f the ,material,. Eq. 
7 needs t.o be generalized t.o all.ow f.or shear stresses Try t.o be transmItted 
across the microcracks. The capability t.o transmit shear stresses due t.o 
crack roughness and aggregate interl.ock is a well-kn.own pr.operty .of 
CDncrete. T.o m.odel it, Eq. 7 may be inverted and the shear stress expres
si.on then superimpDsed: 

{
dO";} [ E! vEt O]{ dE;} !:t = v~; E + /E; J3~ :~ ............................ (8) 

in which Et = EtE/(E - V2Et); 'Y!ry = shear angle in c.o.ordinates x' and y'; 
and J3 is an empirical shear retenti.on.iact.or, as previ.ously introduced by 
Schn.obrich and .others (34). In element coordinates, the incremental stress
strain relati.on in the strain-s.oftening range is given as do-, = C t dE, in 
which 0- = (o"x, O"y, Try)T, E = (Ex, Ey , 'Yry)T, Ct :; TT C' T, where C' is 
the stiffness matrix frDm Eq. 8 and T is a 3 x 3 transfDrmati.on matrix 
the elements .of which are Tn = T22 = c.os2 6, T12 = T21 = sin2 6, T32 = 
-T31 = 2T13 :: -2T23 = sin 26, T33 = CDS 26, in which 6 is the inclinati.on 
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angle of the axis x' with regard to the element coordinate axis x. 
After the maximum total tensile stress at any point drops to zero, the 

tangential elastic modulus is considered as zero, Et = O. For unloading, 
defined as a reversal of sign-of .1E;, the initial elastic stiffness matrix is 
used. The same matrix is also used for reloading until E; exceeds its pre
vious maximum, the record of which must be kept for each integration 
point throughout the computation. 

The most important consequence of cracking is energy dissipation. The 
energy dissipated per small volume .1 V of the material during the rth 
loading step may be calculated as 

.1W = ~ (0";-1 C-
1 

O"r-l - 0"; c-1 
O"r).1V ............................ (9) 

in which O"r-l and O"r are the column matrices of stress components at 
the beginning and the end of the rth loading step. 

The foregoing constitutive relation with strain-softening can be ap
plied only for the imbricate nonlocal elements, i.e., the elements the size 
of which is at least £. For reasons of stability and convergence, the local 
elements, which can be refined to zero with the mesh, must not exhibit 
any strain-softening. They can exhibit elastic behavior or plastic behavior 
without softening (i.e., hardening-plastic or ideal-plastic). Thus, if the 
strain-softening law terminates with zero stress, the normal component 

a) Local Formulation 

.. 
£ 

b) Imbricate Formulation 

c T 6 __ C?=Lo_c_a_1 _BI_e_m_en_t_"_ 

i .. 

(i-c) U 
Imbricate Blements 

s 
Total (for i = .) 

FIG. 2.-Uniaxlal Stress-Strain Diagrams ConSidered for Local and Imbricate 
Nonlocal Elements (Eu = Eo = E) 
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of total stress S in the direction normal to cracking does not actually 
become zero when strain-softening is terminated in the imbricate non
local elements. To make the total stress component vanish at a suffi
ciently large strain, one must introduce for the imbricate nonlocal ele
ments a constitutive law with over-softening; as shown in Fig. 2. The 
strain-softening portion dips below the horizontal axis until, at strain Ef' 

it reaches a constant negative value which exactly cancels the positive 
yield stress in the local elements, with yielding assumed to begin at the 
same strain. 

When the mesh size is equal to or larger than £, the imbricate and 
local elements are identical and can be fused into a single element. The 
strain-softening constitutive law shown in Fig. 2(a) can then be used 
directly. 

NUMERICAL STUDIES 

As an example, consider the rectangular panel shown in Fig. 3. The 
panel has a sliding support at the base and free boundaries on both 
sides. On the top side, the nodes are free to move horizontally while 
their vertical displacements are increased monotonically in small steps 
.1u which are the same for all nodes. If the material were perfectly uni
form, the strain and stress fields would be also uniform in the hardening 
range. To obtain strain concentrations that trigger strain localization and 
ultimately lead to fracture, we assume that in small regions around the 
mid length points of the specimen sides the tensile strength is 3% lower 
than in the rest of the panel, in which the strength is uniformly distrib
uted. The small difference in strength suffices to nucleate a zone of strain
localization propagating from the specimen sides inward. 

The material properties are defined (non dimensionally) as follows: 
Tensile strength t: 1.0, Eo = 100, Et = -10, except for the weaker 

a) Mesh I 

B = 30 

b) Mesh II 
prescribed 

f--------il u dhplacoment 

I ~u 

T ....L 
h - H/7 -4- = H/21 
...L 

o~ ~I H = 7 

1 
T ! 

=h 1=3h 
....L -L 

// <:»'/,«' //~ 'i'! 

c) Mesh III 

h = H/35 

.L 
T 

T 
1= 5h 

...L 

FIG. 3.-Mesh Refinement for Rectangular Panel with Weaker Elements at Sides 
(Shaded) 
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element for which f: = 0.97 and Ef is chosen so that the declining portion 
of the stress-strain diagram terminates at the same point s as it does for 
the stronger elements. Also, C = 0.1 and Poisson's ratio v = 0.2. 

Convergence with mesh refinement is a crucial question with strain
softening models. To study convergence, we select the three square 
meshes shown in Fig. 3, with mesh sizes in the ratio 1: 1/3: 1/5. In each 
mesh only one element on each panel side, shaded in Fig. 3, is assumed 
to have the lower strength limit. The numbers of local (square) elements 
for the three meshes (1, 2, and 3) are 21, 189, and 525, respectively, and 
the total numbers of the imbricate elements are 21, 253, and 741 re
spectively. The numbers of the nodal points for the three meshe; are 
32, 220, and 576. Th~ number of imbricate elements which overlap each 
square of t~e mes~ IS 1, 9, and 25 for meshes 1, 2, and 3, respectively. 
The panel, ItS loadmg, and the meshes are symmetric with regard to the 
symmetry axes of the rectangle. 

For comparison, solutions with the medium and finest meshes (II and 
III) have been also obtained u~ing the usual, local finite elements. 

Assuming the weaker regions at mid-sides of the panel to be smaller 
than the elements of mesh III, the weak region is modeled for each mesh 
by a single weaker element at each side of the panel. If we assumed the 
weaker regions to have the size of the elements of mesh I, then the weak 
regions for meshes II and III would consist of more than one element 
at each side, and the weak regions for all three meshes would then have 
identical dimensions. This would cause the convergence for mesh re
finement to be even better than for the present example, and so this 
case would be a less demanding test for our theory. 

Due to the bilinear form of the stress-strain relation, it seems most 
effective to use for the loading steps the tangential stiffness algorithm, 
except for those steps in which. the sta.te of the finite element is getting 
over th: peak o! the stres~-~tram relation or beyond the terminal point 
of stram-softenmg. All fImte elements are four-node quadrilaterals 
(squares) ~ith four ~umerical integration points per element. However, 
the matenal properties are not evaluated separately for the individual 
integration points; rather, the incremental material properties are as
sumed to be uniform for the entire element and are determined from 
the strain components at that numerical integration point for which the 
maximum principal strain is maximum among all integration points. When 
the. maximum p~incipal strains are the same in two integration points, 
whIch happens m ~)llr problem due to symmetry, all strain components 
~rom these t~o pomts are then averaged. The computational algorithm 
m each loadmg step can be briefly described as follows. 

1. DO loop on iterations of the current loading step. 
2. DO loop over all imbricate elements. 

3: Based on the pr~ncipal st~ain at the beginning of the load step, the 
~axlmum. of the P~~VlOUs strams at that point and the loading-unload
l?-g-reloadmg condItion from the previous load step (for the first itera
tion) or from the previous iteration (for the second and further itera
tions), choose the proper tangent material stiffness matrix for the element 
i.e., Eq. 7 or Eq. 8 [or Eq. 8 with Ef = 0, for the horizontal segment of 
u(e) diagram in Fig. 2(b)]. 
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4. For the second and further iterations: If the final stress state from 
the previous iteration is not on the stress-strain diagram (which happens 
if the material state passed through the peak stress point during the 
previous iteration), calculate the initial stress du" that needs to be added 
in order to put the final stress state on the stress-strain diagram (the 
vertical stress drop in Fig. 4). 

5. Calculate the element stiffness matrix and the residual nodal force 
equivalent to dd', and assemble them into the structural stiffness matrix 
and the load vector in the usual manner. 

6. Last element?-if not, go to step 2. 
7. Check how many elements have passed through the peak stress 

point during this load step, and print this number, N p • 

8. DO loop over all local elements. 
9. Same as steps 2-6, except that after reaching the plastic limit in 

Fig. 2(b) the perfectly plastic tangential stiffness matrix for the local ele
ments is used. 

10. Solve the linear equation system, and determine the increments 
of nodal displacements, stresses and strains. 

11. Check the given convergence criterion, e.g., the condition that the 
sum of the absolute values of the latest changes of all residual nodal 
forces, divided by the sum of the absolute total values of all nodal forces 
must be less than a certain small positive number chosen by experience, 
such as 0.0001. If not, return to step 1 and repeat the iterations. If the 
convergence is slow, reduce the loading step duo Then increment the 
values of displacements, stresses and strains and start the next loading 
step. 

The most difficult problem is to detect all possible instabilities for equi
librium path bifurcations due to strain-softening. Stability criteria for strain
softening (2,6) are needed when more than one finite element enters the 
strain-softening regime during the same loading step. Thus, the stability 
checks may be avoided for the local formulation if the loading step is SO 

small than no more than one finite element (in the present case, one 
element per quadrant, due to the symmetry of the rectangular domain) 
is permitted to enter the strain-softening regime during the loading step. 

a 

E OL-________________________________ _ 

FIG. 4.-lnitial Stress for Step ~E that Crosses Stress Peak 
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With the coarse mesh I, in which only local finite elements are used, 
the foregoing condition of no more than one element per quadrant to 
enter softening is satisfied by using boundary node displacement incre
ments ~u = O.OO5uo where uo)s the displacement corresponding to a 
uniform deformation over the rectangle with the strain equal to that for 
the peak stress. For the finer meshes II and III, for which nonlocal im
bricate elements are used, the foregoing condition requires an imprac
ticably small loading step and appears unnecessarily stringent. Numer
ical experience showed that loading steps ~u = O.0005uo for the medium 
mesh (II), and ~u = O.OOOluo for the finest mesh (III), are sufficient (i.e., 
give results that do not differ appreciably from those for smaller loading 
steps), even though more than one element may enter softening during 
one loading step. But this does not appear to cause a problem because 
the overlapping of the imbricated elements tends to stabilize the soft
ening domain. It appears necessary, though, to make the loading step 
so small that no two nonoverlapping elements may enter the strain-soft
ening regime within the same loading step. 

For those loading steps in wh'ich no finite element passes through the 
peak point of the stress-strain diagrams-a case which occurs at the be-
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FIG. 5.-Diagrams of Load Versus Displacement at Top Boundary Obtained for 
Various Meshes with Local and Imbricate Formulations 
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ginning of the analysis and again after the initiation of the complete 
crack band-one can of course use much larger loading steps. Then the 
use of the tangential stiffness matrix, as opposed to other methods such 
as the initial stress method, brings about considerable savings of com-

puter time. . 
Comparisons between the local and imbricate finite element solutIOns 

are shown in Figs. 5, 6, and 7 in which the response diagrams of load 
versus boundary displacement, the profiles of vertical normal strain across 
the strain-softening zone, and the values of energy W dissipated (con
sumed) due to strain-softening (cracking) are given. It is seen that in
correct convergence occurs when the local continuum is used. The soft
ening slopes change greatly (Fig. 5) as the mesh wit~ local ele~e~ts is 
refined. In fact, for meshes finer than III, the softemng slope In FIg. 5 
(top) would revert to a positive slope, in which case the system becomes 
unstable under displacement control. 

The strain profiles across the cracking band in local analysis are seen 
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to lo~alize (Fig .. 6, top) into progressively sharper spikes, apparently con
ve~gtng to a Dirac delta function. Since the dissipation of energy per 
umt volume of material is finite, and the strain-softening zone within 
the local continuum model appears to converge to a line, the total en
ergy dissipation must converge to zero. This is confirmed in Fig. 7 (top) 
where, for the local finite elements, the dissipated energy W decreases 
with the increasing number of finite elements. This also agrees with what 
is. seen from Fig. 5 (top), in which the area under the load-displacement 
diagram represents the total energy dissipated by cracking; this area is 
also seen to converge to zero. 

From the foregoing results (Figs. 5-7), it is clear that the local finite 
element model converges to a physically unreasonable solution, for which 
the failure is obtained at zero energy dissipation. This conclusion is sim
ilar to that made previously for the exact solution of wave propagation 
in a one-dimensional strain-softening bar (28), and agrees with the spu
rious mesh sensitivity of local finite element solutions (6,10,13,28). 

For the imbricate elements, by contrast, good convergence is apparent 
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from Figs. 5, 6 (bottom) and 7. This again agrees with what has been 
previously demonstrated for one-dimensional problems (9,15). The ex
tent of the strain-softening zone (cracking zone) is seen in Fig. 8, in 
which the dots represent the centers of the elements that have passed 
through the peak point of the stress-strain diagram. For meshes II and 
III, these dots represent the centers of the imbricate elements. For the 
finest mesh we see that the strain-softening zone can have the width of 
several finite elements while remaining stable. It is also seen that the 
strain-softening zone in imbricate elements may have non-softening en
claves; note the uncracked (blank) element surrounded by strain-soft
ening elements in Fig. 8, mesh III. Also note that the front of strain
softening may be either pointed (mesh II) or blunt (mesh III). 
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CONCLUSIONS 

1. A finite element program based on imbricate nonlocal continuum 
can be easily obtained by modifying a local finite element program. The 
principal modification required is the generation of the integer matrices 
giving the numbers of all nodes that correspond to each element num
ber, and the numbers of all imbricate elements that overlap each local 
element. Compared to a local finite element program with the same mesh, 
the number of finite elements is approximately doubled while the num
ber of nodal displacements remains the same. For mesh sizes not smaller 
than the characteristic length of the continuum, the nonlocal imbricate 
finite element formulation is identical to the local finite element for
mulation. 

2. Generalization of the present formulation to irregular meshes is 
possible, however the mesh must be regular in the region where the 
elements are imbricated, i.e., where the element size is less than C. The 
regular elements may be squares, but they could also be regular triangles 
or hexagons. 

3. The two-dimensional imbricate finite element program is capable of 
modeling stable strain-softening zones of multiple-element width. 

4. Numerical studies confirm that the solution of strain-softening 
problems converges as the mesh is refined. The convergence is dem
onstrated for the load-displacement diagrams, for the strain profiles across 
the strain-softening band, and for the total energy dissipated by cracking 
(strain-softening) . 

5. The local finite element formulation exhibits incorrect convergence 
with mesh refinement. It converges to a physically meaningless and un
acceptable solution for which the area of the strain-softening zone and 
the energy dissipated due to failure are zero and the strains within this 
zone are infinite. 

6. As the numerical demonstration of convergence confirms, stability 
problems due to strain-softening are avoided by imposing, for the local 
finite element formulation, the condition that no more than one finite 
element may enter the strain-softening regime in a single loading step. 
For the nonlocal formulation with a finer mesh, this condition may ap
parently be relaxed due to the stabilizing nature of the imbricate ele
ments; however, the loading steps may not be larger than those for the 
local finite element program with the mesh size equal to the character
istic length of the continuum. Also, the load step should be so small 
that no two finite elements that do not overlap each other may enter 
the strain-softening regime within the same loading step. 
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