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1. Introduction

Many proposals for modified gravity have been invoked in the hope of finding new

insights in the open issues of the standard cosmological model. Among them, theories

with pseudo-differential operators have been favoured with particular attention. A

reason is that non-local theories can have very different ultraviolet properties with

respect to ordinary second- or higher-order actions (including popular Gauss–Bonnet

extensions) and, hence, could play a role near the big bang and as spacetime effective

formulations of non-perturbative quantum gravity. String field theory (SFT) is a

concrete realization of this notion where pseudo-differential operators of the form

er∗� (1.1)

decorate the effective target action of the fields, where r∗ is a constant and � is

the spacetime d’Alembertian. The imprint of non-local dynamics in the history

of the early universe, or even as dark energy models, has motivated the study of

cosmological models inspired by open SFT [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19], the p-adic string [14, 15, 20, 21, 22, 23, 24], or other
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nonlocal effective actions featuring the operators (1.1) [25, 26] or inverse powers of

the d’Alembertian [27, 28, 29, 30, 31, 32, 33]. When non-locality is of the type (1.1),

it can be conveniently manipulated with the diffusion equation approach, which has

been developed and employed, in analytic and numerical fashion, under different

formulations [10, 11, 12, 14, 15, 18, 23, 34, 35, 36, 37, 38, 39, 40, 41].

A rather common assumption in the literature of non-local fields in cosmology

is that non-locality is confined only to one sector of the model, while the others are

local. In the case of SFT-motivated actions, the non-local sector is matter (a scalar

field) and gravity is local and with Einstein–Hilbert action:

S = Snon−loc(φ) +
1

2κ2

∫

dDx
√−g R , (1.2)

where D is the topological dimension of spacetime, g is the determinant of the metric

gµν , µ = 0, . . . , D − 1, κ2 = 8πG is Newton’s constant and R is the Ricci curvature

scalar. This Ansatz has been dictated mainly by the urgency of understanding, in the

broadest sense, (i) the dynamics of the yet-unclear non-local scalar field theories, (ii)

the combined effect of curvature and nonlocality, and (iii) its possible consequences

for phenomenology, in particular in relation with cosmology (inflation, dark energy)

and the modification of flat open SFT solutions (can cosmological friction damp the

wild oscillations of the OSFT solution with marginal deformations? [4, 14, 16, 18,

35]).

Now that robust analytical and numerical methods have been established to solve

non-local equations of motion, it would be highly desirable to address the conceptual

inconsistency subjacent to Eq. (1.2). Not only would we like to define a model with

non-locality implemented in all sectors (and reproducing standard general relativity

in the limit of weak non-locality), but we want also to find non-trivial cosmological

solutions. Such is the twofold objective of this paper.

The problem of non-local gravity can be faced under three independent perspec-

tives, one motivated by string field theory, one purely phenomenological and another

a hybrid approach. In the first case, the Einstein–Hilbert action in eq. (1.2) is intro-

duced by hand as an educated guess on ‘how the effective SFT action of tachyon might

look like in the presence of gravity’. The latter is minimally coupled with a tachyon-

type or p-adic scalar field whose action is dictated or inspired by concrete Minkowski

calculations. Obviously, a fully consistent effective tachyonic action should be de-

rived from first principles in all its sectors. As far as gravity is concerned, the natural

framework is closed SFT [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56],

which features the same non-local operator (1.1) of open SFT. The subject is rather

intricate and, unfortunately, effective gravitational non-local actions are known only

at linear level [45, 56].1

1On the other hand, the local low-energy effective field theory of the closed string tachyon-

dilaton-graviton system is well understood also in its cosmological properties [57, 58].
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Instead of facing the rigors of closed SFT some toy models have been considered,

in particular the open-closed p-adic tachyonic action [59, 60, 61] and a closed SFT-

inspired tachyon-tachyon model [62]. However, the graviton is not included, thus

leaving the possibility to consider phenomenological actions where the matter sector

be as close as possible to SFT or the p-adic string, while a non-local gravitational

sector is built from reasonable requirements (mainly, that it contains the same type

of pseudo-differential operators as the matter sector). Here we shall follow the third

path.

Non-local gravity sectors have been constructed with inverse powers of the �

operator [27, 28, 29, 30, 31, 32, 33] or more general kinetic functions [26], while

keeping matter local. In [25] a non-local total action has been proposed with non-

minimal coupling between gravity and a scalar field, but the dynamical analysis

therein does not go beyond cosmological solutions when the matter sector is switched

off.

In section 2 we adopt the diffusion equation method to infer the form of a solvable

scalar-tensor non-local action with pseudo-differential operators of exponential type,

eq. (1.1). This approach is chosen by virtue of its non-perturbative character, which

does not require to truncate the theory in order to find solutions, exact or asymptotic.

Exact non-vacuum solutions of the equations of motion of a p-adic like system will be

found in section 3 for cosmological backgrounds; their classical stability is checked.

The exact solutions are stationary along the diffusion flow (i.e., the diffusion equation

is trivially satisfied) but the scalar and Hubble profiles as well as their dynamics are

non-trivial. Notably, there exist de Sitter and power-law solutions with negative

intrinsic curvature (section 3.2), as well as a most general class of explicit solutions

for actions with conformal operators (section 3.3).

We make some general remarks on non-stationary asymptotic solutions in section

3.4, showing that, for natural choices of the potential, the system realizes spontaneous

symmetry breaking. In section 4 the analysis is extended to another action with

kinetic operator similar to the one of the SFT tachyon; de Sitter and power-law

exact solutions are found. Section 5 is devoted to discussion. In the appendix we

recall flat and curved de Sitter and power-law solutions in standard general relativity.

2. Definition and dynamics

2.1 p-adic-like action

Let us begin for simplicity with the p-adic action in Minkowski spacetime,

S =

∫

dDx
[

1
2
φer∗�φ− V (φ)

]

, (2.1)

where V is the field potential and we used dimensionless units (a mass factor M−2

is hidden in �, where M is the characteristic energy scale of the system). In the
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diffusion equation method [38, 41], one introduces an auxiliary direction r along

which the scalar field diffuses according to the equation

(�+ ∂r)φ(r, x) = 0 . (2.2)

Since

[�, ∂r] = 0 , (2.3)

the action of the operators (1.1) is simply a translation along r:

er∗�φ(r, x) = e−r∗∂rφ(r, x) = φ(r − r∗, x) . (2.4)

As a consequence, the system becomes localized in spacetime, it has a well-defined

Cauchy problem [38] and the equation of motion can be solved by choosing an ap-

propriate initial field configuration φ(0, x). Examples are the exact solution for the

p-adic string [23] and approximate solutions for open string and superstring field

theory [37, 40, 41].

When introducing a non-trivial metric gµν , we have to include also a non-local

action for it. As far as the diffusion method is concerned, so far this has not been

done, and discussions have been limited to systems of the form (1.2) [10] or with more

general local gravitational actions [18]. The reason was mainly technical. Suppose

to decorate the gravitational action with the exponential operators (1.1). If we

hope to solve the system analytically or semi-analytically, it is reasonable to expect

that a metric-derived field obey the diffusion equation. For instance, this could

be the metric itself gµν(r, x) or one of the Riemann invariants R(g) ≡ Rµν···(r, x);

different choices are physically inequivalent. Whatever the choice, the fundamental

commutation property (2.3) is no longer valid, because now the d’Alembertian is

coordinate dependent and the diffusion equation for the metric or Riemann invariant

R(g) is essentially non-linear :

∇σ(g)∇σ(g)R(g) = −∂rR(g) , (2.5)

where ∇σ is the covariant derivative. Accordingly,

�
2R(g) = −�∂rR(g) 6= −∂r�R(g)

6= ∂2
rR(g)

· · ·
�

nR(g) 6= (−1)n∂n
r R(g) ,

and the translation property (2.4) breaks down for R(g).

However, our main goal is not really to impose the diffusion equation in all sec-

tors, but rather (i) to include an infinite number of derivatives of the metric field for

consistency with the matter sector, and (ii) do it in while preserving the translation
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property wherever and whenever required. Therefore, we can look towards another

direction: namely, give up diffusion in metric fields,

∂rR(g) = 0 , (2.6)

and modify the diffusion equation with an extra curvature term. Here we take for

simplicity a term depending only on the Ricci scalar:

[�+ f(R) + ∂r]φ = 0 , (2.7)

where f is a function. Equation (2.1) is modified as

S =

∫

dDx
√
−g
[

1
2
φer∗[�+f(R)]φ− V (φ)

]

. (2.8)

The role of the f(R) term is to realize non-locality in the gravity sector: an infinite

number of derivatives act on metric fields via the Baker–Campbell–Hausdorff for-

mula. This way the same exponential operator act on both sectors and one can still

solve the equations of motion non-perturbatively and analytically, either exactly or

approximately.

Equation (2.8) is the total action for our scalar-tensor model. The scalar sector

diffuses while the metric sector does not, but both sectors are non-local as desired.

The resulting equations of motion can be localized (φ translates, er∗[�+f(R)]φ(r, x) =

φ(r − r∗, x)) and solved for a given fixed metric. We denote as

φ(1, x) = φ(x) (2.9)

the scalar field in the action, that is, φ evaluated at the end of the diffusion flow.

Equation (2.8) has well-defined limits as a pure scalar field or gravitational the-

ory. Let f(0) = 0. In the Minkowski limit, eq. (2.8) reduces to eq. (2.1). On

the other hand, when φ relaxes to a constant φ0 (local minimum of the potential,

V0 ≡ V (φ0) ≡ φ2
0Λ) one has, up to an overall constant,

S ∼
∫

dDx
√
−g
{

er∗[�+f(R)] − 2Λ
}

, (2.10)

which becomes an ordinary f(R) theory in the small r∗ limit. In the same limit but

keeping φ dynamical,

S ∼
∫

dDx
√−g

{

1
2
φ[r∗�+ r∗f(R)]φ− V (φ)

}

. (2.11)

Later on we will find solutions of the full non-local action for the linear case f(R) =

αR, where α is a constant which will be often set to a negative value. To recover

general relativity in eq. (2.11), it will be sufficient to choose r∗ < 0. Then, the kinetic

term for the scalar field has the wrong sign but this does not correspond to a ghost,
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since eq. (2.11) is only an effective action. The full action (2.8) is not plagued by

any such instability, and in fact there are no physical poles at all. Notice also that

restoring mass units, factorizing R/M2 and looking at the weak-non-locality limit

(2.11), one has

|α| = M2

8πG
=

(

M

MPl

)2

< 1 , (2.12)

where MPl is the reduced Planck mass. The stable solutions we shall find nicely

satisfy this condition; therefore, their energy scale is naturally below the Planck

scale.2

Although the motivations underlying our Ansatz (2.8) differ from those of [25],

we eventually got a very similar result. This is not completely unexpected because

both the diffusion equation and the ultraviolet properties invoked in the construction

of [25] (absence of ghosts and asymptotic freedom) rely on eq. (1.1). The diffusion

equation encodes some of the gauge symmetries of SFT at spacetime level [41] and,

as such, gives rise to rather rigid physical properties.

2.2 Equations of motion

To find the equations of motion we need the variations

δ
√
−g = −1

2
gµν

√
−g δgµν , (2.13)

δR = (Rµν + gµν �−∇µ∇ν) δg
µν , (2.14)

where ∇νVµ ≡ ∂νVµ−Γσ
µνVσ is the covariant derivative of a vector Vµ and the curved

d’Alembertian on a scalar φ is

�φ =
1√−g

∂µ(
√
−g∂µφ) . (2.15)

We will make use of the operator identity [63]

δer∗X =

∫ r∗

0

ds esX(δX)e(r∗−s)X , (2.16)

for a (differential) operator X .

Also, for two scalars Φ1 and Φ2 (→ indicates integration by parts),

√−gΦ1
δ�

δgµν
Φ2 = Φ1∂µ(

√−g∂νΦ2)− 1
2

√−gΦ1(∂
σgµν)∂σΦ2

→
√
−g
[

1
2
gµν(Φ1�Φ2 + ∂σΦ1∂

σΦ2)− (∂µΦ1)(∂νΦ2)
]

, (2.17)

2The only exception is eq. (3.23) for p near 0 or 2/D. However, solutions with these fine-tuned

p’s do not inflate.
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and

√−gΦ1Φ2
δf(R)

δgµν
=

√−gΦ1Φ2f
′(R)

δR

δgµν

→
√
−g {Φ1Φ2f

′(R)Rµν + (gµν�−∇µ∇ν)[Φ1Φ2f
′(R)]} ,

(2.18)

where we have discarded boundary terms.

The scalar equation of motion δS/δφ = 0 is

φ(1− r∗, x) = V ′[φ(1, x)] . (2.19)

The Einstein equations are (coordinate dependence of the fields implicit)

0 =
2√−g

δS

δgµν

= − gµν

{

1

2
φ(1)φ(1− r∗)− V [φ(1)]

}

+
1√−g

∫ r∗

0

ds

∫

dDx
√
−g φ(1− s)

[

δ�

δgµν
+

δf(R)

δgµν

]

φ(1− r∗ + s)

= −gµν

{

1

2
φ(1)φ(1− r∗)− V [φ(1)]

}

+

∫ r∗

0

dsΣµν(s) , (2.20)

Σµν(s) =
1
2
gµν [φ(1− s)�φ(1− r∗ + s) + ∂σφ(1− s)∂σφ(1− r∗ + s)]

−∂µφ(1− s)∂νφ(1− r∗ + s) + φ(1− s)φ(1− r∗ + s)f ′(R)Rµν

+(gµν�−∇µ∇ν)[φ(1− s)φ(1− r∗ + s)f ′(R)] . (2.21)

Taking the trace,

0 = −D

{

1

2
φ(1)φ(1− r∗)− V [φ(1)]

}

+

∫ r∗

0

dsΣ(s) , (2.22)

Σ(s) =
D

2
φ(1− s)�φ(1− r∗ + s) +

(

D

2
− 1

)

∂σφ(1− s)∂σφ(1− r∗ + s)

+φ(1− s)φ(1− r∗ + s)f ′(R)R + (D − 1)�[φ(1− s)φ(1− r∗ + s)f ′(R)] .

(2.23)

3. p-adic-like cosmology

A natural background whereon to study the model is Friedmann–Robertson–Walker

(FRW), defined by the line element

ds2 = gµνdx
µdxν = −dt2 + a(t)2g̃ijdx

idxj , (3.1)

where t is synchronous time, a(t) is the scale factor and

g̃ijdx
idxj =

d̺2

1− k ̺2
+ ̺2dΩ2

D−2 (3.2)
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is the line element of the maximally symmetric (D − 1)-dimensional space Σ̃ of

constant sectional curvature k (equal to −1 for an open universe, 0 for a flat universe

and +1 for a closed universe with radius a).

3.1 Friedmann equations

On an FRW background,

R00 = −(D − 1)(H2 + Ḣ) , (3.3)

Rij = R̃gij ≡
[

2k

a2
+ (D − 1)H2 + Ḣ

]

gij , (3.4)

R = (D − 1)

(

2k

a2
+DH2 + 2Ḣ

)

, (3.5)

where

H ≡ ȧ

a
(3.6)

is the Hubble parameter. The 00 component of Einstein’s equations is

0 =
1

2
φ(1)φ(1− r∗)− V [φ(1)] +

∫ r∗

0

dsΣ00(s) , (3.7)

Σ00(s) = −1
2
φ(1− s)�φ(1− r∗ + s)− 1

2
φ̇(1− s)φ̇(1− r∗ + s)

+φ(1− s)φ(1− r∗ + s)f ′(R)R00

+(D − 1)H∂t[φ(1− s)φ(1− r∗ + s)f ′(R)]. (3.8)

We specialize to the case

f(R) = αR , (3.9)

where α is a dimensionless constant. In the Friedmann equations (3.8) and (2.23)

one has

Σ00(s) = −1
2
φ(1− s)�φ(1− r∗ + s)− 1

2
φ̇(1− s)φ̇(1− r∗ + s)

−α(D − 1)(H2 + Ḣ)φ(1− s)φ(1− r∗ + s)

+α(D − 1)H∂t[φ(1− s)φ(1− r∗ + s)] , (3.10)

and

Σ(s) =
D

2
φ(1− s)�φ(1− r∗ + s)−

(

D

2
− 1

)

φ̇(1− s)φ̇(1− r∗ + s)

+αφ(1− s)φ(1− r∗ + s)R + α(D − 1)�[φ(1− s)φ(1− r∗ + s)]. (3.11)

3.2 ‘Stationary’ solutions with quadratic potential

Although the diffusion method allows one to find asymptotic solutions for any given

background, it is not necessary to resort to all its machinery in order to get some
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interesting results. In particular, one can look for simple solutions which are trivial

along the diffusion flow, i.e.,

φ(r, t) = eβrϕ(t) , (3.12)

where β is a constant and ϕ is a stationary solution of the diffusion equation.3 Since

β only changes the normalization of the field and its potential, we can set β = 0

without loss of generality:

(�+ αR)ϕ = 0 . (3.13)

Later on we will actually see that most of the solutions do require β = 0.

Although the r-dependence is trivial, eq. (3.13) contains a class of full-fledged

dynamical solutions which are non-trivial in time and, from eq. (2.19), have

V =
ϕ2

2
. (3.14)

The sign of the effective potential depends on the sign of r∗αR:

W (ϕ) =
(

1− er∗αR
) ϕ2

2
. (3.15)

Unless indicated otherwise, we will choose the sign of r∗ so that W is bounded from

below. Since the interaction is quadratic, we regard this case as perturbative in a

quantum field theory sense, although it is still fully non-local.

The Einstein equations on stationary solutions are very simple. For any back-

ground, Σµν = 0:

0 =
(

1
2
+ 2α

)

gµν
(

ϕ�ϕ− ϕ̇2
)

− (1 + 2α)∂µϕ∂νϕ + αϕ2Rµν − 2αϕ∇µ∇νϕ , (3.16)

where we used eqs. (2.20), (3.14) and �(ϕ2) = 2ϕ�ϕ− 2ϕ̇2. After using eq. (3.13),

the Friedmann (00 and trace) equations become

0 =

[

k

a2
+

(

D

2
− 1

)

H2

]

ϕ2 − 1

2α(D − 1)
ϕ̇2 + 2Hϕϕ̇ , (3.17)

0 = [4α(D − 1) +D − 2]
(

ϕ̇2 + αRϕ2
)

. (3.18)

The second equation is automatically satisfied for

α = −α∗ ≡ −1

4

D − 2

D − 1
. (3.19)

For the time being we assume α 6= α∗ and present solutions to the Einstein’s equations

with non-trivial ϕ(t) and a(t) profiles.

We start with de Sitter metric,

a(t) = eHt , H = const. (3.20)

3The ‘Wick-rotated’ diffusion equation (r → ir) is a Schrödinger equation, so β is the analogue

of the energy eigenvalue of stationary solutions.
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For a flat background k = 0, one finds

ϕ(t) = e−
1

2
(D−1)Ht , α = −D − 1

4D
. (3.21)

The scalar field rolls down its potential towards its minimum, reaching it asymptot-

ically. This feature is similar to what found in [18] (where, however, the Einstein

equations were not solved) and is typical of non-local models where the cosmological

friction is enhanced by non-local operators. This is determined by the form of the

non-local equations of motion, and it happens even in this case where the non-local

operators are trivialized on stationary solutions.

Another class of solutions is power law:

a(t) = tp , (3.22a)

ϕ(t) = tq . (3.22b)

Inflation (ä > 0) happens when p > 1. When k = 0, the solution is

α = − (Dp− p− 1)2

4(D − 1)(Dp− 2)p
, p 6= 1 , q = −1

2
(Dp− p− 1) . (3.23)

In four dimensions and for p > 1/3, q < 0 and the field rolls down towards the

minimum.

We now check the classical stability of these solutions in synchronous time for-

malism.4 A background solution (H(t), ϕ(t)) is perturbed homogeneously,

H(t) → H(t) + δH(t) , ϕ(t) → ϕ(t) + δϕ(t) , (3.24)

and the equations of motion (3.13), (3.17) and (3.18) are linearized (the scalar equa-

tion of motion is an identity). The system can be written in a matrix form:

˙δX = M δX , (3.25)

where

δX ≡
(

δH

δϕ

)

, (3.26)

4For an introduction to phase space analysis, see [64]. Here it is worth mentioning a caveat

about the choice of clocks. In general, time t is an unphysical parameter and one has to choose an

internal physical clock. This can be one of the matter fields in the total action, e.g., a scalar field or

a barotropic fluid. Failure to do so can sometimes lead to inconsistencies in the stability analysis.

The reason [65] is that perturbations in synchronous time discriminate between trajectories differing

only by a shift in time, which are actually physically equivalent and should be identified. On the

other hand, in the presence of an internal clock time shifts can be physically distinguished. In the

analysis below, this turns out not to be the case. One can convince oneself by noticing that an

extra dust component in the system would leave the perturbed equations unchanged.
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and the entries mij = (M)ij of the 2× 2 matrix M are calculated on the background

solution. The characteristic equation

det(M − λI) = 0 (3.27)

determines the eigenvalues λ and a solution is stable provided Re(λ) ≤ 0. In general,

the eigenvalues are time dependent, in which case they are interpreted as evaluated

at a given time t [66].

For all the solutions above m12 = 0, so that λ1 = m11 and λ2 = m22. For the de

Sitter solution (3.21),

λ1 = 0 , λ2 = −1

2
(D − 1)H < 0 , (3.28)

thus implying stability. For the power-law solution (3.23) (t > 0),

λ1 = −2

t
, λ2 = −(D − 1)p+ 1

2t
, (3.29)

the latter being negative when

p > − 1

D − 1
, (3.30)

which is true for an expanding universe (p > 0).

3.3 General solutions with quadratic potential in conformal gravity

The flat de Sitter solution can be generalized straightforwardly to any f(R) theory.

In fact, it is sufficient to make the replacement

α → αeff ≡ f ′(RdS) (3.31)

in eq. (3.21), where RdS = D(D − 1)H2. Depending on the form of f , the value of

the Hubble constant is determined by αeff .

Another generalization is based on the fact that the most general solution with

α = −α∗ can be found for any FRW background via the following shortcut.

The critical value eq. (3.19) is well known in conformal gravity models [67]. In

four dimensions, α = −1/6. Consider a metric gµν and the conformal transformation

ḡµν ≡ Ω2gµν , (3.32)

φ̄ ≡ Ω1−D
2 φ , (3.33)

for some r-independent Ω = Ω(x). The Christoffel symbols transform as

Γλ
µν = Γ̄λ

µν −
[

2δλ(µOν) − ḡµνOλ
]

, (3.34)
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where

Oµ ≡ ∇̄µ ln Ω, O ≡ ∇̄µOµ = �̄ ln Ω . (3.35)

Noting that

Ω−2R = R̄ + 2(D − 1)O − (D − 1)(D − 2)OµOµ , (3.36)

Ω−2
� = �̄− (D − 2)Oµ∇̄µ , (3.37)

one can see that the combination (� + αR)φ has a well-defined conformal weight

only if α = −α∗:

(�− α∗R)φ = Ω2(�̄− α∗R̄)φ̄ .

On a background where R̄ = R0 = const, the diffusion equation is equivalent to

Ω2(�̄− α∗R0 + Ω
D
2
−3∂r)φ̄ = 0 . (3.38)

We specialize now to FRW backgrounds, where the metric can be written in confor-

mal time

τ ≡
∫

dt

a(t)
, (3.39)

so that Ω = a−1, �̄ = −∂2
τ and R0 = 2(D − 1)k. For stationary solutions, the

diffusion equation reduces to eq. (3.38):

ϕ̄′′ + sgn(k)γ2ϕ̄ = 0 , (3.40)

where

γ2 ≡
(

D

2
− 1

)

|k| , (3.41)

and primes denote derivatives with respect to τ . Just solving this equation, one

obtains a very wide class of solutions from eq. (3.33),

ϕ(τ) = [a(τ)]1−
D
2 ϕ̄(τ) . (3.42)

In fact, the whole dynamics reduces to one equation, encoding both eq. (3.40) and

a constraint on ϕ̄′ and the curvature. To show this, instead of the trace equation

(3.18) one takes the ii-component equation Σii = 0,

0 = −
(

1
2
+ 2α

) (

ϕ̇2 + αRϕ2
)

+ αϕ2R̃ + 2αHϕϕ̇ . (3.43)

Replacing eq. (3.42) in eqs. (3.17) and (3.43) with α = −α∗, one obtains

(ϕ̄′)2 + sgn(k)γ2ϕ̄2 = 0 , (3.44)

which can be solved only if k = 0 or k = −1. There are no closed universe solutions.

Differentiation of eq. (3.44) in conformal time yields eq. (3.40), so for the critical

value (3.19) the stationary problem is drastically simplified. This is possible only for
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stationary solutions, where geometry is factorized out of the equations of motion.

Let us consider a few concrete examples.

Flat universe (k = 0). The ḡ frame is Minkowski and ϕ̄ = 1 is solution of the

free equation ϕ̄′′ = 0.5 Then, the general solution is

ϕ(τ) = [a(τ)]1−
D
2 . (3.45)

For the de Sitter background (3.20) in synchronous time,

ϕ(t) = e−(
D
2
−1)Ht , (3.46)

and the evolution of the scalar field is qualitatively the same as for eq. (3.21).

For the power-law profile (3.22), the solution has

q = −
(

D

2
− 1

)

p , (3.47)

Since the algorithm given by eqs. (3.40) and (3.42) is valid for any choice of

the scale factor, there is an infinite set of solutions without big bang singularity. A

D = 4 bouncing solution with zero intrinsic curvature is (r∗ > 0)

a(t) =
1

ϕ(t)
= cosh t ,

H = tanh t , R = 6[1 + (tanh t)2] . (3.48)

In the contracting phase the scalar field rolls from its minimum up to a maximum

value. At the inversion point the universe bounces and starts expanding, while ϕ roll

back towards the global minimum. This solution is the scalar-tensor analogue, in the

sense of eq. (2.8), of the bouncing solution of [25]. The fact that the scale factor a is

non-singular, however, is to be ascribed more to the choice of a conformal operator

rather than to the good ultraviolet properties of non-local theories.

Another bouncing profile is the super-accelerating cosmology

a(t) = exp
(

1
2
H0t

2
)

, H = H0t , (3.49)

which is plotted in figure 1 for D = 4. The scalar field evolves from the global

minimum up to the inversion point ϕ = 1 at the bounce. Then, cosmological friction

drags it back to the minimum.

Open universe (k = −1). In the open case, eq. (3.40) is solved by exponentials

and there are two general dynamical solutions which read

ϕ±(τ) = [a(τ)]−γ2

e∓γτ . (3.50)

5Also ϕ̄ = τ solves the diffusion equation, but it does not solve eq. (3.44).
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Figure 1: Bouncing k = 0 solution (3.49) with D = 4 and H0 = 2. Thin line: scale

factor a(t); thick line: scalar profile ϕ(t) = 1/a(t).

Therefore, and somehow surprisingly, there are also two de Sitter solutions for an

open universe:

ϕ±(t) = e−γ2Ht exp
(

± γ

H
e−Ht

)

, (3.51)

where we used τ = −e−Ht/H . The profile ϕ+ has the same features as the flat

solutions and rolls towards the global minimum. The solution ϕ− climbs from the

minimum up to some maximum value, then rolls back down (figure 2).

For the power-law profiles (3.22), when p = 1 (linear scale factor) the solutions

have

q± = −
√

D

2
− 1

(

√

D

2
− 1± 1

)

. (3.52)

In four dimensions, only the positive root is non-trivial, q = −2. For arbitrary p, the

solutions are

ϕ±(t) = t−γ2pe±
γ

p−1
t1−p

. (3.53)

The typical plot of, say, ϕ− is shown in figure 3 and is similar to the previous one.

For comparison, the exact de Sitter and power-law solutions in standard general

relativity are reported in the appendix.

For the bouncing solution eq. (3.49), the conformal time is

τ =

√

π

2H0
erf

(

√

H0

2
t

)

, (3.54)

thus leading to the asymmetric lump ϕ−(t) shown in figure 4. The evolution is similar

to the flat case, except that now open geometry helps the scalar field to climb up to a

higher inversion point before being dragged back by cosmic super-friction. The lump
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Figure 2: de Sitter k = −1 solutions ϕ±(t) (eq. (3.51)) with D = 4.
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Figure 3: Power-law k = −1 solution ϕ−(t) (eq. (3.53)) with D = 4 and p = 3.

ϕ+(t) has its maximum at t < 0. This corresponds to a solution with a different

initial condition for the scalar field: ϕ+ rapidly reaches the (higher) inversion point
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before the bounce.
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4

Figure 4: Asymmetric bouncing solution given by eqs. (3.50) and (3.54), with D = 4

and H0 = 2. Thin line: scale factor a(t); thick line: scalar profile ϕ−(t).

Still in an open universe, we sketch some other solutions in four dimensions

which well illustrate the exotic properties which can emerge in a non-local conformal

setting. The first case is periodic in time, so we restrict it to half a period with

positive scale factor (r∗ < 0):

a(t) = sin t , t ∈ [0, π] ,

k = −1 , R = −12 , (3.55)

ϕ(t) =
1

1− cos t
,

which is shown in the upper panel of figure 5. Despite being open, the universe

recollapses onto itself while the scalar field rolls towards the global minimum ϕ = 0.

Eventually one hits a future big crunch singularity at finite times. Another solution

consists in a ‘Wick rotation’ of the former (r∗ > 0):

a(t) = sinh t ,

k = −1 , R = 12 , (3.56)

ϕ(t) =
1

cosh t− 1
,

depicted in the bottom panel of figure 5.

The usual stability analysis does not apply to the above solutions because a(t)

is factorized out of the equations of motion. Thus, all points in the phase space

plane (ȧ, ϕ̇) are fixed points and there are no attractors. This is a rather bizarre

situation in cosmology. Typically, a solution of the background dynamics is probed

by perturbing it slightly in all sectors, inclusive gravity, as done previously. Thus
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Figure 5: Upper panel: scale factor 10a(t) (thin line) and scalar profile ϕ(t) (thick line)

for the recollapsing solution eq. (3.55). Bottom panel: scale factor a(t) (thin line) and

scalar profile ϕ(t) (thick line) for the expanding solution eq. (3.56).

one checks whether one will hit the same solution after evolving the system from

slightly different initial conditions. In the conformal system with α = −α∗, on the

other hand, this operation is ill defined because a(t) is a fixed input.

Can we conclude that the scale factor is non-dynamical and, thus, the conformal

solutions of this section are not physically sensible? We argue in favour of a negative

answer. Non-local models are notoriously rigid and the choice of initial conditions is

much more restricted with respect to local theories with a standard Cauchy problem

[4, 10, 68]. Here we see this property in action, with a further restriction of the

background choice. Moreover, the scale factor factorizes out only because we have

assumed trivial diffusion, eq. (3.40). A realistic stability analysis should go beyond

the homogeneous level, where the solutions are no longer stationary in the diffusion

sense; this would correspond to look at semi-classical (inhomogeneous) perturbations.
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3.4 Asymptotic solutions and spontaneous symmetry breaking

We have found exact, cosmologically non-trivial solutions which are constant along

the diffusion direction but one might ask whether there exist also non-stationary

diffusing profiles. This is a rather difficult question to answer because there is no

systematic method to solve the equations of motion starting from a solution of the

diffusion equation. In this paper we will limit ourselves to some general remarks for

f(R) = αR.

The diffusion equation transfers the non-local degrees of freedom into the extra

direction [38, 41] and one can study the system locally in spacetime coordinates

without risk of falling into the contradictory situations typical of non-local dynamics.

In particular, it is possible to expand field profiles and equations in series and look

for asymptotic solutions.

The static potential felt by the scalar particle is, according to eq. (2.8),

W (φ) = V (φ)− 1

2
er∗αRφ2 . (3.57)

The curvature term matches a possible quadratic termm2φ2/2 in V and the net result

is a dynamical rescaling of the squared mass, which may be even negative (tachyon).

A particularly important situation is when V has a minimum at the origin with a

power higher than 2 (e.g., V ∼ φ4 but it could be of any other form). In this case,

the dynamical term of the potential always converts the minimum φ = 0 of V into

a local maximum of W , and the minima are located at φ0 6= 0. Classically, stable

solutions should tend to these minima,

φ
t→∞−→ φ0 . (3.58)

Quantum mechanically, the scalar field is expected to undergo spontaneous symmetry

breaking and take a non-vanishing expectation value on the vacuum, 〈φ〉0 = φ0. In

this case the system relaxes to pure gravity, eq. (2.10), the expectation value of the

scalar field playing the role of Newton’s constant. This is precisely the same kind of

mechanism that happens in string theory with the dilaton field.

If the scalar field potential is to be determined a posteriori, in the presence of

gravity a convenient approach is to factorize V out and consider the equation of

motion

0 =

∫ r∗

0

ds(DΣ00 + Σ) , (3.59)

which can be solved for given FRW profiles. In turn, this determines the scalar

field profile in the diffusion equation. Looking for asymptotically (non-vanishing)

constant solutions for the matter field in eq. (3.59), one gets DR00 +R = 0, that is,

a2Ḣ =
2k

D − 2
. (3.60)
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This constrains the asymptotic geometry of spacetime. When k = 0, the only

solution is de Sitter. For k = ±1 and D = 4 the scale factor is, respectively,

a = (cosh bt)/b and a = (sinh bt)/b, where b is an arbitrary constant.6 The curvature

is always a positive constant, R0 = 12b2. In the limit b → 0, the k = −1 solution

reduces to the linear case a = t. This is the only nontrivial solution of eq. (3.60)

with asymptotically vanishing curvature R0. Whatever the full solutions are, they

can only be constructed by considering the above scale factors either as exact or

asymptotic profiles.

We conclude this part by determining the relations between the constants defin-

ing the spacetime geometry (Λ and G) and those coming from matter (V0 = V (φ0)

and φ0). This can be achieved in two independent ways, either by looking at the

action eq. (2.8) or at the the equation of motion, eqs. (2.20) and (2.21). Taking the

weak non-local limit of the action (r∗ ≪ 1), we get the standard Einstein–Hilbert

action with cosmological and Newton constants given by

Λφ =
1

2r∗α

(

2V0

φ2
0

− 1

)

, 8πGφ =
1

r∗αφ2
0

. (3.61)

By consistency, we expect eqs. (2.20) and (2.21) to reproduce the Einstein equations

in vacuum with the values (3.61). To this aim, it is important to note that the

asymptotic value of the scalar field depends on r∗. The potential W is explicitly

r∗-dependent and, as a consequence, so are its local minima.

Once again, we can appeal to the diffusion equation governing the flow in the r∗
variable. In fact,

φ(r−r∗, x) = φ(r, x)−r∗∂rφ(r, x)+O(r2∗) = [1+r∗�+r∗αR+O(r2∗)]φ(r, x) . (3.62)

One could have just ignored the diffusion picture and consider a small r∗ expansion

in φ(1− r∗, x) = er∗(�+αR)φ(1, x),

φ(1− r∗, x) = [1 + r∗�+ r∗αR +O(r2∗,�
2)]φ(1, x) . (3.63)

However, in the latter expression it is not clear whether we are entitled to safely

take an asymptotic limit φasymp for φ, as we have to know the contribution of all

the derivatives of the field. On the other hand, the diffusion method regards φ(r, x)

as a local field with two arguments, and the small r∗ expansion is a genuine local

expansion. In other words, the diffusion picture justifies manipulations of asymptotic

solutions in the non-local model.

Taking the asymptotic limit x → ∞ of eq. (3.62), we get

lim
x→∞

φ(1− r∗, x) = [1 + r∗αR0 +O(r2∗)]φ0 . (3.64)

6Clearly, the symmetry breaking argument does not apply to the corresponding exact stationary

solutions with quadratic potential, eqs. (3.21), (3.48) and (3.56)).
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Performing the asymptotic limit in the equations of motion (2.20) and (2.21), ex-

panding in r∗ up to the first order, and taking eq. (3.64) into account one easily gets

the standard Einstein equations in vacuum, with Newton and cosmological constants

as in eq. (3.61).

Another interesting avenue to explore for non-stationary cosmological solutions

is the conformal case α = −α∗. Then, the diffusion equation becomes

φ̄′′ + sgn(k)γ2φ̄− a3−
D
2 ∂rφ̄ = 0 . (3.65)

Interestingly, in six dimensions this is the usual homogeneous diffusion equation

in conformal time, of which we know the solutions. For example, on a de Sitter

background the Gaussian profile φ̄(r, τ) becomes an asymmetric kink in synchronous

time, while for the power-law expansion it is a very flat lump. One should check,

however, if the profiles φ solve, even asymptotically, the Einstein equations for a given

potential. This is not guaranteed. In fact, unlike the case of stationary solutions the

system is not trivialized to Minkowski. The reason is simple. Let

φn ≡ (�− α∗R)nφ . (3.66)

The field φn is conformal with weight a−2n when n = (D/2 − 1)/2. Hence, none of

the φn is conformal (except possibly one if D = 6 + 2k, k ∈ N) and the object

e�−α∗Rφ =

∞
∑

n=0

φn

n!
(3.67)

contains an infinite number of a factors, which survive in Σµν .

4. String-like action and cosmology

The model studied so-far is based on a gravity extension of a p-adic like scalar field

action, which has a trivial local limit r∗ → 0 (no dynamical degrees of freedom).

We can now make a slight but crucial modification of the kinetic operator eK into a

transcendental expression of the form eKK:

S =

∫

dDx
√
−g
[

1
2
φer∗[�+f(R)]φ̃− V (φ)

]

, (4.1)

where

φ̃ ≡ [�+ f(R)]φ . (4.2)

The linear case f(R) = αR is important for several reasons already illustrated in

[25]. First, when r∗ < 0 one formally recovers the effective spacetime action of the

tachyon and the graviton in closed SFT. When gravity is switched off, eq. (4.1) reads

S ∼
∫

dDx
[

1
2
φe−|r∗|��φ − V (φ)

]

, (4.3)
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where φ is (up to a φφ̃ negative mass term) the tachyon field ‘dressed’ with an

exponential operator (see, e.g., [40] for details) and V is a polynomial potential. On

the other hand, when φ = 1 we get

S ∼
∫

dDx
√−g

[

e−|r∗|(�+αR)R− 2Λ
]

. (4.4)

This is an effective non-local gravitational action in terms of Riemann invariants.

In closed SFT we do not have any such thing because the effective level-truncated

action for gµν is obtained in a non-diffeomorphism-invariant form [45, 56].7 However,

by expanding eq. (4.4) at linear order around Minkowski spacetime, one indeed gets

the correct propagator G̃(k) in momentum space for the graviton, as shown in [25]:

G̃(k) ∼ −e−|r∗|k2

k2
. (4.5)

This propagator is ghost free and realizes asymptotic safety at large momenta, two

properties expected in a ultraviolet-finite non-perturbative theory of quantum gravity

[4, 23, 25]. Therefore, eq. (4.1) is interesting both as a toy model for the spacetime

effective dynamics of gravity in closed SFT and as a non-perturbative Ansatz for the

gravitational action at high energies/large curvature, which can play a major role

during the very early universe.

From eq. (4.1), the scalar equation of motion δS/δφ = 0 is

φ̃(1− r∗, x) = V ′[φ(1, x)] , (4.6)

while the Einstein equations read

0 = −gµν

{

1

2
φ(1)φ̃(1− r∗)− V [φ(1)]

}

+ Σµν(0) +

∫ r∗

0

ds Σ̃µν(s) , (4.7)

where Σ̃µν is Σµν with φ(1 − r∗ + s) replaced by φ̃(1 − r∗ + s) (or the symmetrized

expression). With obvious notation, the trace equation is

0 = −D

{

1

2
φ(1)φ̃(1− r∗)− V [φ(1)]

}

+ Σ(0) +

∫ r∗

0

ds Σ̃(s) . (4.8)

The equations of motion could have been obtained also by replacing V → r∗V in

the equations of the p-adic-like case, eqs. (2.19) and (2.20), and differentiating with

respect to r∗. One notices, in fact, that ∂r∗φ(1 − r∗ + s) = φ̃(1 − r∗ + s) and that

the contribution of the upper extremum of the integral, Σµν(r∗), is equal to Σµν(0)

upon symmetrization (i.e., splitting
∫

Σ in two and replacing s → r∗ − s in one of

the pieces).

7Nonetheless, diffeomorphisms are still part of the symmetry group of the theory [45].
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To get stationary solutions with f(R) = αR, it is necessary to reinstate the

normalization constant β in the diffusion equation,

ϕ̃+ βϕ = 0 , (4.9)

which is fixed by eq. (4.6):

V =
m2

2
e2βϕ2 , β = −m2eβr∗ . (4.10)

The equations of motion are still Σµν = 0 but with 0 6= β 6= 1. The Friedmann

equations read

0 =

[

k

a2
+

(

D

2
− 1

)

H2 +
β

2α(D − 1)

]

ϕ2 − 1

2α(D − 1)
ϕ̇2 + 2Hϕ̇ϕ , (4.11)

0 = [4α(D − 1) +D − 2]
(

ϕ̇2 + αRϕ2
)

+ [4α(D − 1) +D]βϕ2 . (4.12)

The requirement β 6= 0 is very stringent, α 6= −α∗ and the only exact solution in

common with the ‘p-adic’ case is the flat (k = 0) de Sitter profile (3.20) and (3.21)

with

β = −α(4Dα+D − 1)[4α(D − 1) +D − 2]

(4α+ 1)2
H2 , (4.13)

ϕ(t) = exp

(

2αH

4α + 1
t

)

. (4.14)

The solution is stable only for certain values of α. In fact, the eigenvalues of the

characteristic equation for the linearized system (3.25) are

λ1 =

(

1

4α + 1
−D

)

H , λ2 =
2αH

4α + 1
. (4.15)

The solution is stable for

−D − 1

4D
< α < 0. (4.16)

5. Discussion

In this paper we have constructed and solved, on cosmological backgrounds, an

effective non-local model of gravity non-minimally coupled with a scalar field. The

actions (2.8) and (4.1) are non-perturbative both in the order of curvature invariants,

eR ∼ 1 +R + 1
2
R2 + . . . , (5.1)

and in the number of derivatives acting on the metric,

e�R ∼ R +�R + 1
2
�

2R + . . . . (5.2)
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Non-local cosmology is radically different from higher-order cosmological models of

f(R), Gauss–Bonnet or f(Gauss–Bonnet) gravity. This is because truncation of

a non-local model in spacetime derivatives produces an order n Ostrogradski-like

problem with altogether different physical properties. The well-known fact that

theories with an infinite number of derivatives are not the large n limit of finite-order

actions has been also invoked to question the relevance of higher-order cosmologies

in the early universe [69]. Rather than a finite-order truncation of the gravitational

action, near the big bang curvature effects should be consistently taken into account

only within a fully non-perturbative framework in the sense of the left-hand side of

eqs. (5.1) and (5.2). The right-hand side of eq. (5.2) might not be even well-defined

on a general non-local solution of the system [10]. The diffusion equation method

allows one to deal with the full non-local operators and bypass the problems of a

series expansion.

The diffusion structure we have explored is asymmetric in the gravity and scalar

sector, in fact the former does not diffuse at all. The only solutions we have been

able to find do not diffuse even in the matter sector (more precisely, they are station-

ary along the diffusion flow), but in general a non-stationary diffusion structure is

necessary to solve the system with a self-interacting (higher-order potential) scalar

field. For the purpose of finding analytic solutions, this should exclude the a priori

assumption that, preferring a ‘symmetric’ formulation of the model, also the scalar

sector does not diffuse. In this case, geometry through the curvature term f(R)

would replace diffusion along r. Therefore, the theory of diffusion associated with

non-local actions would be simply defined differently: Diffusion always takes place

through geometry, but in the case of trivial geometry (Minkowski background), this

is realized by an auxiliary higher-dimensional structure. If this was really the case,

however, it would be probably difficult to find analytic or semi-analytic solutions

with non-linear self-interaction (non-quadratic V ).

The actions we have studied are structurally similar to the one advanced in [25]

for the following reason. On one hand, the proposal of [25] aimed at an ultravio-

let finite action for quantum gravity which would address the big bang singularity

problem. On the other hand, we wanted an action which would be non-local in both

matter and gravity sectors and be endowed with a diffusion structure allowing one

to reduce the dynamics to a set of local equations with both a second-order differ-

ential structure (in spacetime) and an algebraic structure (in the diffusion direction

[10, 38, 40]). These questions, however, are implicitly related: ghost and asymp-

totic freedom are determined by the specific choice of pseudo-differential operators,

in this case one with a natural diffusion structure. So diffusion and good ultraviolet

properties are tied together, as expected in string field theory [41].

There is, anyway, a caveat in this comparison. Not only we stressed the impor-

tance of solving a fully non-local action with both gravity and matter cosmological

non-trivial profiles, but in doing so it was also shown how these profiles can differ,
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even considerably, with respect to local scenarios.8 The simplest cosmological pro-

files (de Sitter and power law) are exact solutions of the non-local dynamics. There

are a couple of remarkable facts associated with that. First, we needed only to look

at stationary solutions along the diffusion flow. Second, contrary to standard gen-

eral relativity these profiles correspond to exact dynamics even when the intrinsic

curvature k is negative definite. In particular, de Sitter is an exact solution for a

non-constant scalar field profile, also in an open universe. When the non-local op-

erators are chosen to be conformal, for models with f(R) = −α∗R we have found

the general solution for any flat or open FRW background, embodied by eq. (3.42).

Within this class there are solutions without big bang singularity, but there also

exist an infinite number of solutions with big bang. Therefore we incline not to link

non-singular solutions with the ultraviolet structure of the non-local action.

At any rate, the space of solutions is likely to be much larger than the portion we

have explored here. All our exact solutions have a quadratic potential. Highly non-

linear equations of motion are of great interest, especially in string theory, but the

exact solutions can give some indication of the behaviour for general potentials near

a local minimum. Cosmological friction modifies the dynamics of non-local scalars

with respect to Minkowski and, in particular, should drastically change the rolling

of the tachyon in string field theory.
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A. de Sitter and power-law solutions in standard local cos-

mology

Consider a D-dimensional universe filled only with a scalar field with potential V

and Λ = 0. The standard Friedmann and continuity equations are

(

D

2
− 1

)

H2 =
κ2

D − 1

(

φ̇2

2
+ V

)

− k

a2
, (A.1)

H2 + Ḣ =
κ2

D − 1

[

2

D − 2
V − φ̇2

]

, (A.2)

0 = φ̈+ (D − 1)Hφ̇+ V ′ . (A.3)

8Deviations from local cosmology is not limited to background solutions. It would be interesting

to study the inflationary spectra stemming from the inhomogeneous perturbation of the Einstein

equations.

– 24 –



In de Sitter, eq. (3.20), for a flat universe the exact solution is just a cosmological

constant,

φ(t) = φ0 , V (φ) =
(D − 1)(D − 2)H2

2κ2
, k = 0 . (A.4)

The Friedmann equations show that there is no solution if k = −1, while there is

one for a closed universe, but only in D = 4:

φ±(t) = ±
√

2

κ2H2
e−Ht , k = 1 .

The continuity equation fixes the potential:

V (φ) =
3H2

κ2
+H2φ2 . (A.5)

The scalar field φ± rolls down its potential from t = −∞ and climbs it again after

passing the global minimum. The solution is actually unique, since cosmological

equations of motion are invariant under time reversal, and it does not matter the

direction of the rolling in a symmetric potential.

For a power-law expansion,

a(t) = tp , H(t) =
p

t
, (A.6)

one can try the profile φ(t) = (φ0/q)t
q in the (sum of the) Friedmann equations, but

one soon finds that it must be q = 0. This suggests to consider the limit q → 0,

which is a logarithmic profile:

φ(t) = φ0 ln t . (A.7)

This gives

V (φ) =
(D − 1)p− 1

2
φ2
0 e

−2φ/φ0 . (A.8)

If the universe is flat,

φ0 = ±
√

(D − 2)p

κ2
, k = 0 , (A.9)

while for a curved universe only the case p = 1 is solution:

φ0 = ±
√

D − 2 + 2k

κ2
, p = 1 . (A.10)

This solution is real ifD > 2(1−k). Therefore, it is always valid for a closed universe,

while for an open universe it exists only in D > 4.

In the great majority of applications in the literature, the curvature is ignored

because its contribution is washed away by inflation. However, it is interesting to

note that the only curved solution in de Sitter is a closed four-dimensional universe,

while for a power-law expansion both signs of the curvature are allowed but for

D ≥ 5. In D = 4, only the closed solution is allowed.
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The non-local cosmologies described in the main body of the paper, on the other

hand, only allow flat and open solutions, but without constraints on the dimension-

ality of spacetime. In this sense, non-local cosmologies are ‘complementary’ to the

usual ones!
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