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Nonlocal In-Loop Filter: The Future Way
Towards Next-Generation Video Coding?

Siwei Ma, Xinfeng Zhang, Jian Zhang, Chuanmin Jia, Shiqi Wang, and Wen Gao, Fellow, IEEE

Abstract—In-loop filtering has emerged as an essential coding tool since H.264/AVC due to the delicate design in reducing different

kinds of compression artifacts. However, existing in-loop filters only rely on image local correlations, where the nonlocal similarities have

been largely ignored. In this paper, we journey through the design philosophy of in-loop filters and discuss our vision for the future

of in-loop filter research by exploring the potential of non-local similarities. Specifically, the group-based sparse representation, which

jointly exploits image local and nonlocal self-similarities, lays a novel and meaningful groundwork to the in-loop filter design. Hard-

and soft-thresholding filtering operations are further applied to derive the sparse parameters that are appropriate for the compression

artifacts reduction. Experimental results show that such in-loop filter design can significantly improve the compression performance on

top of the High Efficiency Video Coding (HEVC) standard, leading us a new direction to improve the compression efficiency in the future.

Index Terms—HEVC, In-loop filtering, nonlocal similarity, sparse representation.

✦

1 INTRODUCTION

H IGH Efficiency Video Coding (HEVC) [1], which is the
latest video coding standard jointly developed by ITU-

T Video Coding Experts Group (VCEG) and Moving Picture
Experts Group (MPEG), was claimed to achieve potentially
more than 50% coding gain compared to H.264/AVC. Dur-
ing the development of HEVC, the performances of three
kinds of in-loop filters have been intensively investigated,
including deblocking filter (DF) [2], Sample Adaptive Offset
(SAO) [3] and Adaptive Loop Filter (ALF) [4], and among
them DF and SAO were finally adopted. However, these
in-loop filters only take advantage of the image local corre-
lations to reduce compression artifacts, the performance of
which is limited.

Deblocking filter is the first adopted in-loop filter in
video coding standard, i.e. H.264/AVC [5], to reduce the
blocking artifacts caused by coarse quantization and motion
compensated prediction. A typical example of the block
boundary with blocking artifact is shown in Fig. 1. Specif-
ically, H.264/AVC defines a set of low pass filters with
different filtering strengths, which are applied to 4×4 block
boundaries. There are five levels of filtering strength in
H.264/AVC, and the filter strength for every block bound-
ary is jointly determined by the quantization parameters
(QP), correlations of samples on both side of block bound-
aries, and the prediction modes (intra/inter prediction). DF
in HEVC is similar with that of H.264/AVC. However, it
is only applied to 8×8 block boundaries when any of the
criterions that the block boundary lies between coding units
(CU), prediction units (PU) and transform units (TU) is
satisfied. Due to the improvement of the prediction accuracy
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Fig. 1. 1-D example of block boundary with the blocking artifact, where
{pi} and {qi} are pixels in neighboring blocks.

in HEVC, only three filtering strengths are utilized, leading
to the complexity reduction compared to H.264/AVC.

Sample Adaptive Offset (SAO) is a completely new in-
loop filter adopted in HEVC. In contrast to the DF that only
reconstructs the samples on block boundaries, all the sam-
ples are processed in SAO. As the sizes of CU, PU and TU
have been largely extended compared with previous coding
standards (i.e. CU: 8×8 to 64×64, PU: 4×4 to 64×64, TU:
4×4 to 32×32), the compression artifacts inside the coding
blocks can no longer be compensated by DF. Therefore, SAO
is applied to all samples reconstructed from DF by adding
an offset to each sample to reduce the distortion. It has
been proven to be a powerful tool to reduce ringing and
contouring artifacts. In order to adapt the image content,
SAO first divides an reconstructed picture into different
regions, and then an optimal offset is derived for each re-
gion by minimizing the distortion between the original and
reconstructed samples. It can use different offsets sample by
sample in a region, depending on the sample classification
strategy. In HEVC, two SAO types were adopted: edge offset
(EO) and band offset (BO). For EO, the sample classification
is based on comparison between the current and neighbor-
ing samples according to four 1-D neighboring patterns as
shown in Fig. 2. For BO, the sample classification is based
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Fig. 2. Four 1-D directional patterns for EO sample calssification.

on sample values, i.e., the sample value range is equally
divided into 32 bands. These offset values and region indices
are signalled in bitstream, which may impose a relatively
large overhead.

Adaptive Loop Filter (ALF) is a Wiener-based adap-
tive filter and the coefficients of which are derived by
minimizing the mean square errors between original and
reconstructed samples. Numerous recent efforts have been
dedicated in developing high efficiency and low complexity
ALF approaches. In HEVC reference software HM7.0, the
filter shape of ALF is a combination of 9×7-tap cross shape
and 3×3-tap rectangular shape, as illustrated in Fig. 3.
Therefore, only correlations within a local patch are utilized
to reduce the compression artifacts. To adapt the properties
of input frame, up to 16 filters are derived for different
regions of luminance component. Such high adaptability
also creates large overhead that should be signalled into
bitstream. Therefore, these regions need to be merged at
encoder side based on rate-distortion optimization (RDO),
which makes neighboring regions share the same filters to
achieve a good tradeoff between the filter performance and
overheads. In [6], Zhang et al. proposed to reuse the filter
coefficients and regions division in previous encoded frame
to reduce overheads. In [7], Stephan et al. proposed to place
the filter coefficient parameters in a picture-level header
called Adaptation Parameter Set (APS), which makes in-
loop filter parameters reuse more flexible with APS indices.

In this paper, we explore the performance of in-loop
filters for HEVC by taking advantage of image local and
nonlocal correlations. A nonlocal similarity based loop fil-
ter (NLSLF) is incorporated into the HEVC standard by
simultaneously enforcing the intrinsic local sparsity and
the nonlocal self-similarity of each frame in the video se-
quence. For a reconstructed video frame from previous
stage, we firstly divide it into overlapped image patches,
and subsequently classify them into different groups based
on their similarities. Since these image patches in the same
group are with similar structures, they can be represented
sparsely in the unit of group instead of block [8]. The
compression artifacts can be reduced by thresholding the
singular values of image patches group-by-group based on
the sparse property of similar image patches. Two kinds of
thresholding methods, i.e., hard- and soft-thresholding, and
their related adaptive threshold determination methods are
also explored. Extensive experimental results are conducted
on HEVC common test sequences, which demonstrate that
the nonlocal similarity based in-loop filter significantly im-
proves the compression performance of HEVC, and up to
8.1% bitrate savings can be achieved.

The remainder of this paper is organized as follows.
In Section 2, we review related work in image denoising
and in-loop filters based on image nonlocal correlations.

Fig. 3. ALF shape in HM7.0 (each square corresponds to a sample).

Section 3 presents the non-local in-loop filter for HEVC.
Experimental results are reported in Section 4 and Section
5 concludes the paper.

2 NONLOCAL IMAGE FILTER

In existing video coding standards, in-loop filters only fo-
cus on the local correlation within image patches, without
fully consideration of the nonlocal similarities. However,
in image restoration and denoising fields, many methods
based on image nonlocal similarities have been proposed
[9]–[13]. In [9], Buades et al. proposed the famous nonlocal
means filter (NLM) to remove different kinds of noise by
predicting each pixel with a weighted average of nonlocal
pixels, where the weights are determined by the similarity of
image patches located at the source and target coordinates.
The well known denoising filter, BM3D [10], stacks nonlo-
cal similar image patches into 3D matrices, and removes
noise by shrinking coefficients of 3D transform of similar
image patches based on image sparse prior model. Zhang
et al. [11]–[13] utilized the nonlocal similar image patches
to suppress compression artifacts, which are achieved by
adaptively combining the pixels restored by the NLM filter
and reconstructed pixels according to reliability of NLM
prediction and quantization noise in transform domain. In
[8], [14], [15], the authors utilize group of nonlocal similar
image patches to construct image sparse representation,
which can be further applied to image deblurring, denoising
and inpainting. Although these nonlocal methods signifi-
cantly improve the quality of restored images, all of them are
treated as post-processing filters, such that the compression
information has not been fully exploited.

In [16] and [17], Matsumura et al. firstly introduced
the NLM filter to compensate the shortcomings of HEVC
with only image local prior models, and delicately designed
patch shapes, search window shapes and optimizing filter
on/off control modules are utilized to improve the coding
performance. In [18], Han et al. also employed the nonlocal
similar image patches in a quadtree-based Kuan’s filter to
suppress compression artifacts, where the pixels restored
by NLM filter and reconstructed pixels are adaptively com-
bined together according to the variance of image signals
and quantization noise. However, the weights in these filters
are difficult to determine, leading to limited coding perfor-
mance improvement.
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Fig. 4. Framework of the nonlocal similarity based loop filter (NLSLF).

3 THE NONLOCAL SIMILARITY BASED IN-LOOP

FILTER

In our previous work [8], a new sparse representation model
is formulated in terms of a group of similar image patches,
named as group-based sparse representation (GSR), which
is able to exploit the local sparsity and the nonlocal self-
similarity of natural images simultaneously in a unified
framework. In this section, we describe how the nonlocal
similarity based loop filter (NLSLF) is designed based on
the GSR model, which can be divided into the following
stages.

3.1 Patch Grouping

The basic idea of GSR is to adaptively sparsify the natural
image in the domain of group. Thus we first show how
to construct a group. In fact, each group is represented
by the form of matrix, which is composed of nonlocal
patches with similar structures. For a video frame, I , we
first divide it into S overlapped image patches with size of√
Bs×

√
Bs, and each patch is reorganized into a vector, xk,

k = 1, 2, ..., S, as illustrated in Fig. 4. For every image patch,
we find K nearest neighbors according to the Euclidean
distance between different image patches,

d(xi,xj) = ‖xi − xj‖22. (1)

These K similar image patches are stacked into a matrix of
size Bs ×K ,

XGi
= [xGi,1,xGi,2, ...,xGi,K ] . (2)

Here XGi
contains all the image patches with similar struc-

tures, which is termed as a group.

3.2 Group Filtering and Reconstruction

Since the image patches in the same group are very similar,
they are able to be represented sparsely. For each group,
we apply singular value decomposition to it and get image
sparse representation,

XGi
= UGi

ΣGi
V

T
Gi

=
M∑

k=1

ΥGi,k

(
u

Gi,k
v
T
Gi,k

)
, (3)

where ΥGi
= [ΥGi,1; ΥGi,2; ...; ΥGi,M ] is a column vector,

ΣGi
= diag(ΥGi

) is a diagonal matrix with the elements of
ΥGi

as its main diagonal, and u
Gi,k

, v
Gi,k

are the columns of
UGi

and VGi
, respectively. M is the maximum dimension

of matrix XGi

The matrix composed of corresponding compressed
video frame is formulated as,

Y = X+N, (4)

where N is the compression noise, X and Y without any
subscript represent the original frame and reconstructed
frame, respectively. To derive the sparse representation pa-
rameters, we apply the thresholding, which is a widely used
operation for coefficients with sparse property in image
denoising problems. We apply two kinds of the thresholding
methods, i.e., hard- and soft-threholding, to the singular
values in ΥGi

, which is composed of singular values of
matrix Y,

α
(h)
Gi

= hard(ΥGi
, τ) (5)

α
(s)
Gi

= soft(ΥGi
, τ), (6)

where the hard- and soft-thresholding are defined as,

hard(x, τ) = sign(x)⊙ (abs(x)− τ1), (7)
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soft(x, τ) = sign(x)⊙max(abs(x)− τ1,0). (8)

Here ⊙ stands for the element-wise product of two vectors,
sign(·) is the function extracting the sign of every element
of a vector, 1 is a all-ones vector and τ denotes the threshold.
After achieving the shrunk singular values, the restored
group of image patches x̂ is given by,

x̂ =
M∑

k=1

α
Gi,k

(u
Gi,k

v
T
Gi,k

). (9)

Since these image patches are overlapped extracted, we
simply take the average of the overlapped samples as the
final filtered values.

3.3 Threshold Estimation

Based on the above discussion, the filtering strength is de-
termined by the thresholding level parameter τ in Eqns.(5)
and (6). However, in view of the various video content
compressed with different quantization parameters, this
is a non-trivial problem that has not been well resolved.
In essence, the optimal threshold is closely related with
the standard deviation of noise denoted as σn, and larger
thresholds correspond to higher σn values.

In video coding, the compression noise is mainly caused
by quantizing the transform coefficients. Therefore, quan-
tization steps can be utilized to determine the standard
deviation of the compression noise, and a scale factor is
utilized to adapt different prediction modes, including intra
and inter predictions.

For hard-thresholding, the optimal values of σn are de-
rived experimentally based on the sequences BasketballDrive
and FourPeople compressed with different QPs (QP = 27, 32,
38, 45), which are further converted to the quantization step
sizes (Qsteps), as illustrated in Fig. 5. It can be inferred that
different sequences with the same QP or Qstep have similar
optimal values of σn, implying that σn is closely related
with QP or Qstep. Inspired by this, we propose to estimate
the optimal value of σn directly from Qstep by curve fitting
using the following empirical formulation,

σ = a ∗Qstep+ b. (10)

where the Qstep can be easily derived from quantization
parameter based on the following relationship in HEVC,

Qstep = 2
(QP−4)

6 . (11)

The parameters (a, b) for different coding configurations are
illustrated in Table 1.

Based on the filtering performance, we further use the
size and number of similar image patches in one group as a
scale factor,

τ = σn ∗ (Bs +
√
K). (12)

where c is a scale factor according to prediction mode
(intra/inter prediction) and σn is the standard deviation of
compression noise for the whole image, which is estimated
based on Eqn.(10).

For soft-thresholding, based on the filtering perfor-
mance, we take the optimal threshold formulation for Gen-
eralized Gaussian signals,

τ =
cσ2

n

σx

, (13)

Fig. 5. Relationship between Qstep and standard deviation of compres-
sion noise.

where σx is the standard deviation of original signals that
can be estimated by,

σ2
x
= σ2

y
− σ2

n. (14)

As the variance of compression noise, σn , is derived at the
encoder side, we quantize it into the nearest integer range
in [1,16], which are signalled with 4 bits and transmitted
in the bitstream. Therefore, 12 bits are encoded in total for
one frame with three colour components, e.g., YUV. The two
thresholds for both hard- and soft-thresholding operations
increase with the standard deviation of compression noise,
which implies that the frames with more noise should be
filtered with higher strength. Furthermore, the thresholds
decrease with the standard deviation of signals, which can
avoid over-smoothing for smooth areas.

3.4 Filtering On/Off Control

In order to ensure that the NLSLF consistently leads to
distortion reduction, we introduce frame and LCU (Largest
Coding Unit) levels on/off control flags that should be
signalled in the bitstream. Specifically, regarding the frame
level on/off control, three flags, Filtered Y, Filtered U and
Filtered V, are designed for the corresponding color com-
ponent, respectively. When the distortions of the filtered
image decrease, the corresponding flag is signalled as true,
indicating that the image color component is finally filtered.
For LCU level on/off control in luminance component, for
each LCU a flag Filterd LCU[i] is required to transmit. In
picture header syntax structure, three bits are encoded to
signal frame level control flags for each colour component,
respectively. We place the syntax elements of LCU level
control flags in coding tree unit parts, and only one bit is
utilized for each LCU.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we implement the nonlocal similarity based
in-loop filter in HEVC reference software, HM12.0. We
denote the hard-thresholding filtering with threshold in
Eqn.(12) as NLSLF-H, and the soft-thresholding filtering
with threshold in Eqn.(13) as NLSLF-S. In order to better
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TABLE 1
Coefficient for estimate σ for all configurations.

Component AI LDB RA
Type a b a b a b

Y 0.13000 0.7100 0.10450 0.4870 0.10450 0.4870
U 0.06623 0.8617 0.03771 0.8833 0.03771 0.8833
V 0.06623 0.8617 0.03771 0.8833 0.03771 0.8833

analyze the performance of the nonlocal similarity based
in-loop filter, we further integrate the ALF of HM3.0 into
HM12.0, in which the ALF tool has been removed, and
compare the nonlocal similarity based in-loop filter with
ALF.

The test video sequences in our experiments are widely
used in HEVC common test conditions (CTC). There are
20 test sequences, which are classified into six categories,
Class A∼ class F. The resolution of class A is 2560×1600,
class B is 1920×1080, class C is 832×480, class D is 416×240,
and class E is 1280×720. Class F are not natural videos but
screen content videos containing three different resolutions:
1280×720, 1024×768 and 832×480. Four typical quantiza-
tion parameters are tested, i.e., 22, 27, 32 and 37. Three
coding configures are tested respectively as that in CTC, i.e.,
all intra coding (AI), low delay B coding (LDB), and random
access coding (RA). Along with the increase of K and
Bs, the computational complexity increases rapidly, while
the filtering performance may decrease for some sequences
since dissimilar structures are more possibly to be included.
Therefore, in our experiments, the size of image patches is
set to Bs = 6 and the number of nearest neighbours for
each image patch is set to K = 30 for all the sequences.
For each frame, we extract image patches every five pixels
according raster scanning order, which makes the image
patches overlapped.

First, we treat the HM12.0 with and without ALF as
anchors, respectively. The overall coding performance of
NLSLF-S and NLSLF-H only with frame level control are
illustrated in Table 2∼ 5. Both of the two thresholding filters
with nonlocal image patches achieve significant bitrate sav-
ings compared with that of HM12.0 without ALF. NLSLF-S
achieves 3.2%, 3.1%, 4.0%, bitrate savings on average for AI,
LDB and RA configurations, respectively. Moreover, NLSLF-
H also achieves 4.1%, 3.3% and 4.4% bitrate savings on
average for AI, LDB and RA configurations compared with
HM12.0 without ALF. When the Nonlocal similarity struc-
ture based in-loop filters are combined with ALF, NLSLF-
S achieves about 2.6%, 2.6% and 3.2% bitrate savings and
NLSLF-H achieves about 3.1%, 2.8% and 3.4% bitrate sav-
ings compared with HM12.0 with ALF for AI, LDB and RA
configurations, respectively. Although the improvements of
the NLSLF are not so significant as that without ALF, they
can still further improve the performance of HEVC with
ALF. This verifies that the nonlocal similarity can further
benefit compression artifact reduction compared with image
local similarity. Since hard- and soft-thresholding opera-
tions are suitable for signals with different distributions,
they show different coding gains on different sequences.
Although NLSLF-H achieves better performance for most
sequences than that of NLSLF-S in our experiments, soft-

thresholding outperforms hard-thresholding for some se-
quences, e.g., Class E in LDB coding configuration and Class
A in LDB and RA coding configurations.

Table 6 shows the detailed results of NLSLF-S with
LCU level control for each sequence. Although LCU lev-
el control increases overheads, it can improve the coding
efficiency as well by avoiding the over-smoothing case.
It also shows that there is still room for improving the
filtering efficiency by designing more reasonable thresholds
for group-based sparse coefficients. Fig. 6 and Fig. 7 illus-
trate the rate-distortion curves of NLSF and HEVC without
ALF for sequences, Johnny, KristenAndSara and FourPeople,
respectively, which are compressed at different QP under
RA configuration. We can see that coding performance is
significantly improved in a wide bit range with the nonlocal
similarity based in-loop filters.

We further compare the visual quality of the decoded
video frames with different in-loop filters in Fig. 8. The
deblocking filter only remove the blocking artifacts, and
it is difficult to reduce other artifacts, e.g., ringing artifacts
around the strips in the coat of image Johnny. Although SAO
can process all the reconstructed samples, its performance is
constrained by the large overheads, such that the blurring
edges still exist. The nonlocal similarity based filters can
efficiently remove different kinds of compression artifacts,
and it also can recover destroyed structures by utilizing
nonlocal similar image patches, e.g., most of the lines in
coat being well recovered.

Although the NLSLF achieves significant improvement
for video coding, it also introduces lots of computational
burdens, especially due to SVD. Compared with HM12.0
encoding, the encoding time increase by NLSLF-H is 133%,
30% and 33% for AI, LDB and RA respectively. This also
proposes new challenges to the loop filter research with
image nonlocal correlations, which are also as our future
work.

5 CONCLUSION

In this paper, we described our views on the in-loop filter
design in the context of nonlocal similarities and chiseled
a rough road toward the high efficiency in-loop artifacts
removal for video compression. The novelty lies in adopting
the non-local prior model in the in-loop filtering process,
which leads to reconstructed frames with higher fidelity. To
estimate the noise level, different kinds of thresholding op-
erations have been examined, confirming that the nonlocal
strategy can significantly improve the coding efficiency. This
poses new chances not only to the in-loop filter research
with non-local prior models, but also opens up new space
for future exploration in nonlocal inspired high efficiency
video compression.
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TABLE 2
Performance of the NLSLF-S (Anchor: HM12.0 with ALF off).

Sequences
AI LDB RA

Y U V Y U V Y U V
Class A -4.3% -4.0% -3.9% -3.5% -3.3% -2.3% -4.8% -6.1% -5.7%
Class B -2.9% -3.3% -4.0% -3.0% -4.2% -4.2% -4.3% -5.5% -4.7%
Class C -2.8% -4.6% -6.2% -1.6% -3.4% -5.4% -2.1% -5.1% -6.5%
Class D -2.0% -4.5% -5.5% -1.3% -2.4% -2.5% -1.6% -3.5% -4.4%
Class E -5.8% -5.3% -4.4% -7.9% -10.0% -9.5% -9.8% -9.4% -8.6%
Class F -2.5% -3.1% -3.4% -1.7% -2.8% -3.3% -2.2% -4.4% -4.7%
Overall -3.4% -4.1% -4.6% -3.2% -4.4% -4.5% -4.1% -5.6% -5.8%

TABLE 3
Performance of the NLSLF-S (Anchor: HM12.0 with ALF on).

Sequences
AI LDB RA

Y U V Y U V Y U V
Class A -1.8% -2.3% -2.4% -1.0% -3.9% -2.5% -2.2% -5.2% -5.0%
Class B -1.8% -2.1% -3.0% -1.8% -3.9% -4.7% -2.6% -5.0% -5.2%
Class C -2.7% -3.5% -4.5% -1.7% -4.4% -5.9% -2.2% -5.6% -6.4%
Class D -1.9% -2.8% -3.7% -1.7% -2.2% -3.2% -1.8% -3.7% -4.6%
Class E -3.9% -2.8% -2.1% -6.1% -7.5% -6.0% -7.4% -7.3% -6.2%
Class F -2.4% -2.9% -3.2% -1.9% -3.6% -3.9% -2.0% -4.2% -4.5%
Overall -2.4% -2.7% -3.2% -2.4% -4.2% -4.4% -3.0% -5.1% -5.3%

TABLE 4
Performance of the NLSLF-H (Anchor: HM12.0 with ALF off).

Sequences
AI LDB RA

Y U V Y U V Y U V
Class A -4.9% -3.0% -3.5% -3.1% -1.2% -1.4% -4.2% -3.1% -2.8%
Class B -3.2% -2.2% -3.9% -3.2% -3.5% -3.7% -4.3% -3.9% -3.8%
Class C -3.6% -4.9% -6.9% -1.9% -3.4% -4.8% -2.5% -4.2% -5.9%
Class D -3.1% -4.4% -5.9% -1.5% -2.5% -2.8% -2.1% -3.4% -3.4%
Class E -7.1% -8.5% -8.9% -7.4% -9.5% -10.5% -10.0% -11.4% -12.1%
Class F -3.5% -4.4% -5.0% -2.4% -2.8% -3.6% -3.0% -5.0% -5.4%
Overall -4.2% -4.6% -5.7% -3.3% -3.8% -4.5% -4.3% -5.2% -5.6%

TABLE 5
Performance of the NLSLF-H (Anchor: HM12.0 with ALF on).

Sequences
AI LDB RA

Y U V Y U V Y U V
Class A -2.1% -1.4% -1.8% -1.0% -1.6% -1.3% -1.7% -2.3% -2.1%
Class B -1.9% -1.0% -2.5% -2.1% -2.9% -3.3% -2.6% -3.0% -3.8%
Class C -3.1% -2.6% -5.0% -2.0% -4.0% -5.1% -2.2% -4.3% -5.9%
Class D -2.6% -1.6% -3.1% -1.6% -2.5% -3.0% -1.9% -3.6% -3.8%
Class E -4.9% -4.5% -3.9% -5.5% -5.5% -5.6% -7.5% -7.5% -6.8%
Class F -3.1% -4.3% -5.0% -2.8% -3.5% -3.6% -2.9% -4.7% -5.3%
Overall -2.9% -2.6% -3.5% -2.5% -3.3% -3.7% -3.1% -4.2% -4.6%

Apart from in-loop filtering, the nonlocal information
can motivate the design of other key modules in video
compression as well. Traditional video coding technologies
mainly focus on reducing the local redundancies by intra
prediction with limited neighboring samples. The inter-
prediction can be regarded as a simplified version of non-
local prediction, which obtains predictions from a rela-
tively large range compared with intra prediction, leading
to significant performance improvement. However, to the
maximum extent, only a unique pair of patches can be em-
ployed, e.g., one image patch in unidirection and two image
patches in bidirection predictions. This significantly limits
the potentials of the prediction technique, as the number
of similar image patches can be further extended to fully
exploit the spatial and temporal redundancies. With the new

technological advances in hardware and software, we could
have foreseen the arrival and maturity of these non-local
based coding techniques. We also believe that the non-local
based video coding technology described in this paper or
similar technologies developed from this ground could play
important roles in the future video standardization.
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(a) (b) (c)

Fig. 6. The rate-distortion performance of NLSLF-S compared with HEVC (ALF OFF) for test sequences, (a) Johnny, (b)KristenAndSara,
(c)FourPeople , which are compressed by HEVC RA coding.

(a) (b) (c)

Fig. 7. The rate-distortion performance of NLSLF-H compared with HEVC (ALF OFF) for test sequences, (a) Johnny, (b)KristenAndSara,
(c)FourPeople , which are compressed by HEVC RA coding.

TABLE 6
Performance of the NLSLF-S with LCU level on/off control (Anchor: HM12.0 with ALF on).

Sequences
AI LDB RA

Y U V Y U V Y U V

Class A
Traffic -2.0% -2.0% -2.4% -2.3% -1.9% -1.5% -2.9% -3.9% -3.2%

PeopleOnStreet -2.4% -2.7% -2.4% -2.8% -5.2% -3.4% -2.5% -5.8% -6.1%

Class B

Kimono -1.9% -1.0% -1.8% -3.0% -4.3% -4.4% -1.5% -2.8% -4.1%
ParkScene -0.6% -0.5% -0.9% -0.9% 1.4% 0.5% -1.3% -0.4% -0.1%

Cactus -2.4% -1.5% -4.5% -4.1% -2.3% -4.9% -4.3% -6.8% -7.3%
BasketballDrive -1.9% -4.7% -5.2% -2.5% -9.1% -8.5% -2.3% -8.0% -6.9%

BQTerrace -2.8% -2.5% -2.7% -4.6% -2.5% -4.9% -7.2% -4.4% -5.6%

Class C

BasketballDrill -4.3% -7.0% -8.6% -3.1% -10.2% -11.9% -3.3% -11.8% -13.0%
BQMall -4.2% -3.8% -4.0% -4.7% -4.3% -4.5% -4.4% -5.4% -5.0%

PartyScene -0.9% -1.3% -1.8% -1.4% 0.9% 1.5% -1.8% -0.1% -0.2%
RaceHorsesC -1.3% -1.8% -3.6% -2.7% -3.1% -7.6% -2.6% -3.6% -7.3%

Class D

BasketballPass -3.4% -4.5% -4.7% -2.4% -4.0% -3.6% -2.0% -5.2% -4.6%
BQSquare -1.7% -0.9% -2.6% -1.5% 1.0% -0.4% -2.4% -0.8% -1.9%

BlowingBubbles -1.1% -2.9% -3.6% -1.9% -2.7% -0.5% -2.2% -3.7% -4.1%
RaceHorses -2.1% -3.3% -4.4% -3.3% -1.0% -5.6% -2.7% -4.6% -7.2%

Class E
FourPeople -3.2% -2.5% -1.7% -4.8% -5.6% -4.5% -5.6% -5.2% -4.7%

Johnny -4.9% -3.0% -1.7% -6.7% -7.7% -5.3% -8.1% -6.8% -5.8%
KristenAndSara -3.6% -2.6% -2.7% -5.2% -5.0% -4.4% -6.0% -7.4% -5.2%

Class F

BasketballDrillText -4.4% -6.7% -7.8% -3.3% -8.2% -8.5% -3.7% -10.3% -10.8%
ChinaSpeed -1.7% -2.5% -2.5% -2.9% -2.1% -3.1% -2.3% -4.6% -4.4%
SlideEditing -1.9% -0.5% -0.8% -2.1% -0.2% -0.4% -2.1% -0.5% -0.8%
SlideShow -1.4% -1.5% -1.4% -0.8% -3.2% -1.4% 0.0% -0.7% -0.9%

Overall -2.5% -2.7% -3.1% -3.1% -3.7% -3.9% -3.3% -4.8% -5.0%
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