
Acta Mech 233:2393–2403 (2022)
https://doi.org/10.1007/s00707-022-03210-w

ORIGINAL PAPER

Marzia Sara Vaccaro · Raffaele Barretta ·
Francesco Marotti de Sciarra · Junuthula N. Reddy

Nonlocal integral elasticity for third-order small-scale beams

Received: 12 November 2021 / Revised: 31 January 2022 / Accepted: 4 April 2022 / Published online: 28 May 2022
© The Author(s) 2022, corrected publication 2022

Abstract Small-scale beams are basic structural components of miniaturized electro-mechanical systems
whose design requires accurate modeling of size effects. In this research, the size-dependent behavior of
nonlocal elastic beams is investigated by adopting the stress-driven elasticity theory. Kinematics of beams is
modeled by the Reddy variational third-order beam theory accounting for the effective distribution of shear
stresses on cross sections without needing the evaluation of shear correction factors. Stress-driven integral
elasticity is thus extended to third-order small-scale beams providing an equivalent constitutive formulation
with boundary conditions. The relevant nonlocal elastic equilibrium problem is formulated and an analytical
strategy is proposed to obtain closed-form solutions. The present approach is elucidated by solving some
structural problems of current interest in Nanotechnology.

1 Introduction

There exist several one-dimensional theories in the scientific literature to model beams assuming different
kinematic hypotheses [23]. Among these theories, the oldest and simplest model is the Bernoulli–Euler beam.
According to this theory, cross sections are rigid plane bodies clamped to the beam axis. Thus, transverse shear
strains are consequently neglected, which is a valid assumption to capture the structural behavior of slender
beams.

A refined theory that is usually applied to model thick beams is the Timoshenko beam theory, also known
as the first-order shear deformation theory [21]. This model is based on the kinematic hypothesis that cross
sections are rigid planes attached to the beam axis. Thus, transverse shear strains are not neglected but they
are uniform along the bending axis of cross section. Thus, a shear correction coefficient is needed to account
for the effective distribution of shear stress.

A more refined model is the third-order shear deformation theory which assumes warping of cross sections
[3,10,13,20,23,24]. This higher-order beam theory accommodates quadratic variation of transverse shear
strains and ensures the fulfillment of equilibrium boundary conditions. Hence, in the framework of the third-
order theory there is no need to evaluate shear correction coefficients. Kinematics of the third-order shear
deformation beam theory was first proposed by Levinson [13]. In 1984, a variationally consistent formulation
was independently derived by Reddy [20].

The above-mentioned one-dimensional continuum theories can be efficiently adopted to model structural
elements of new generation small-scale devices [2,11,16,19,32,33], provided that size effects are properly
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taken into account in the constitutive law [14,15]. Indeed, in modeling and design of micro- and nano-electro-
mechanical systems (M/NEMS), nonlocal models of elasticity based on a continuum mechanics approach can
be conveniently adopted in place of atomistic methodologies in order to reduce computational efforts.

Seminal contributions on nonlocal theories of continua can be found in [12,26,27]. A nonlocal model
of elasticity based on a strain-driven integral approach was later exploited by Eringen to efficiently solve
screw dislocation and wave propagation problems involving unbounded domains [5–7]. However, some issues
emerged when the strain-driven model is applied to structural elements. Indeed, when applied to bounded
domains, Eringen’s theory leads to an ill-posed nonlocal elastic problem due to incompatibility between
constitutive and equilibrium equations [29,30].

A well-posed nonlocal model based on a stress-driven integral approach has been recently proposed in [28]
and it has been proven to be able to efficiently capture the size-dependent behavior of small-scale structures
[4,8,17,25,31,35]. According to the nonlocal stress-driven model, elastic strain at a point of a continuum
depends on the stresses at all the other points by means of an integral convolution with a proper averaging
kernel.

It is worth noting that in modeling of small-scale beams, a crucial point is the evaluation of the shear
correction factor since an energetic equivalence must be prescribed between the Timoshenko beam and the
three-dimensional Cauchy continuum. This issue can be overcome by adopting a third-order theory, that
accommodates quadratic distribution of shear strain field and thus does not require shear correction coefficients.

In the present study, the nonlocal stress-driven elasticity [28] is combined with the Reddy variational third-
order beam model [10,20,23,24]. The plan of the paper is as follows: in Sect. 2, kinematics and equilibrium
of the Reddy variational beam theory are illustrated; then, in Sect. 3 the nonlocal stress-driven elasticity is
formulated for third-order beams; in Sect. 4, the nonlocal elastic equilibrium problem is analytically derived
and an effective solution strategy is proposed. Finally, in Sect. 5 some case studies are investigated providing
parametric closed-form solutions. Main outcomes of the present study are summarized in Sect. 6.

2 Kinematics and equilibrium of third-order beams

Let us consider a Cauchy three-dimensional continuum B shaped as a right prism of length L with cross
section modeled by a two-dimensional domain Ω . The following coordinate system will be adopted: the
x-axis, identified by the unit vector i , is coincident with the locus of geometric centroid of cross sections;
the y- and z-axes identify the plane of cross section and are associated to the unit vectors j and k := i × j ,
respectively.

In a geometrically linearized theory, the kinematics of the continuum B is assumed to be described by the
following vector field [3,10,13,20,24]

u(x, y, z) =
[

− y ϕ(x) − α y3
(

w′(x) − ϕ(x)

)]
i + w(x)j, (1)

where the symbol ( �)′ stands for first derivative along the x-axis. In Eq. (1), the function w(x) is the transverse

displacement uy of cross section along the y-axis while the function ϕ is defined as −∂ux
∂y

∣∣∣∣
y=0

. The axial

displacement ux is composed of a linear (first-order) field along the y-axis and a third-order field along y
representing the warping of cross section. The transverse displacement along z is assumed to be zero (because
bending in the xy-plane is considered). The coefficient α in Eq. (1) is equal to 4/(3h2) , where h is the
maximum dimension of cross section along the y-axis. By computing the gradient of the displacement field
in Eq. (1), we obtain

[∇u] =
⎡
⎣−y ϕ′ − α y3

(
w′′ − ϕ′) −ϕ − 3α y2

(
w′ − ϕ

)
0

w′ 0 0
0 0 0

⎤
⎦ . (2)

Then, the total strain field D is obtained by the kinematic compatibility formula D = sym∇u. Assuming
β = 3α , the nonzero strain components of [D] are expressed as{

εx = −ε̄(x) y − ¯̄ε(x) y3,
γxy = γ̄ (x) + ¯̄γ (x) y2,

(3)
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where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε̄ := ϕ′,
γ̄ := w′ − ϕ,

¯̄ε := α γ̄ ′,
¯̄γ := −β γ̄ .

(4)

Prescription of the variational equilibrium condition [22] together with the following static equivalences∣∣∣∣MP
∣∣∣∣ =

∫
Ω

−
∣∣∣∣ yy3

∣∣∣∣ σx dA,

∣∣∣∣QR
∣∣∣∣ =

∫
Ω

∣∣∣∣ 1y2
∣∣∣∣ τxy dA (5)

leads to the differential equilibrium equations ∀ x ∈ [0, L]{
β R′(x) − Q′(x) + α P ′′(x) = q(x),

α P ′(x) − M ′(x) + β R(x) − Q(x) = 0,
(6)

where P and R denote the higher-order stress resultants and q represents the distributed transverse loading.
Equation (6) is equipped with the following boundary conditions:⎧⎪⎨

⎪⎩

(
Q − β R − α P ′)(xi ) δw(xi ) = (−1)i Fi δw(xi ),

α P(xi ) δw′(xi ) = (−1)i α Pi δw
′(xi ),(

M − α P
)
(xi ) δϕ(xi ) = (−1)i Mi δϕ(xi ),

(7)

where i = {1, 2} with x1 := 0 , x2 := L . In Eq. (7), virtual kinematic fields fulfilling homogeneous kinematic
boundary conditions are denoted by δw, δϕ, δw′ while Fi , Mi , Pi are concentrated forces and couples and
higher-order concentrated couples.

As shown in Eq. (3)2, the shear strain γxy is a quadratic field on cross section and satisfies the zero
condition at the lower and upper fibers. Hence, unlike the shear stress field provided by the Timoshenko beam
theory, that is uniform and thus requires the introduction of a shear correction factor, on the contrary, there is
no need to evaluate shear correction coefficients according to the third-order beam theory.

3 Nonlocal integral elasticity: the stress-driven model

Let us recall the constitutive equations of local elasticity for the plane and linearized third-order beam theory
[24]. Denoting by E and G the Euler–Young and shear moduli, respectively, the stress resultants in Eq. (5)
are related to local elastic strains by the following relation:

∣∣∣∣∣∣∣
M
P
Q
R

∣∣∣∣∣∣∣
=

⎡
⎢⎢⎢⎣
I (2)
E I (4)

E 0 0
I (4)
E I (6)

E 0 0
0 0 I (0)

G I (2)
G

0 0 I (2)
G I (4)

G

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣

ε̄l

¯̄εl
γ̄ l

¯̄γ l

∣∣∣∣∣∣∣∣
, (8)

where

I (m)
E :=

∫
Ω

E ymdA, I (n)
G :=

∫
Ω

G yndA, (9)

with Ω the two-dimensional domain modeling cross section. Terms in Eq. (9) are higher-order elastic stiffness
coefficients (for m > 2, n > 0 ), including bending stiffness IE and shear stiffness AG for m = 2 and
n = 0, respectively, i.e., I (2)

E := IE and I (0)
G := AG . Hereinafter, the following notation will be adopted:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ĪE := IE − α I (4)
E ,

Ī (2)
G := I (2)

G − β I (4)
G ,

ĀG := AG − β I (2)
G ,

ÂG := ĀG − β Ī (2)
G .

(10)
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By reversing Eq. (8), we get the local elastic strains of the third-order beam model, that is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̄l(x) = I (4)
E P(x) − I (6)

E M(x)(
I (4)
E

)2 − IE I (6)
E

,

¯̄εl(x) = I (4)
E M(x) − IE P(x)(
I (4)
E

)2 − IE I (6)
E

,

γ̄ l(x) = I (2)
G R(x) − I (4)

G Q(x)(
I (2)
G

)2 − AG I (4)
G

,

¯̄γ l(x) = I (2)
G Q(x) − AG R(x)(
I (2)
G

)2 − AG I (4)
G

.

(11)

Then, manipulating system (11) we get
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(x) = I (4)
E

IE

(
M(x) − α

I (4)
E

ĀG
Q′(x)

)
+ α

I (6)
E

ĀG
Q′(x),

R(x) = Ī (2)
G

ĀG
Q(x),

ε̄l(x) = M(x)

IE
− α I (4)

E Q′(x)
ĀG IE

,

γ̄ l(x) = Q(x)

ĀG
,

(12)

where all functional dependencies between strain fields in Eq. (4) have been taken into account. It is worth
noting that equations (12)1,2 provide elastic relations involving only stress fields while Eq. (12)3,4 represent
the effective constitutive relations.

Then, according to the stress-driven integral model [28], nonlocal elastic strains {ε̄, γ̄ } are expressed as
integral convolutions of the local elastic strains {ε̄l , γ̄ l} and a proper averaging kernel φLc described by a
characteristic length parameter Lc:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̄(x) = (φLc ∗ ε̄l)(x) :=
∫ L

0
φLc(x − ξ)

(
M(ξ)

IE
− α I (4)

E Q′(ξ)

ĀG IE

)
dξ,

γ̄ (x) = (φLc ∗ γ̄ l)(x) :=
∫ L

0
φLc(x − ξ)

Q(ξ)

ĀG
dξ .

(13)

Commonly adopted averaging kernels as originally proposed by Eringen in [6] are the error function

φerr
Lc

(x) = 1

Lc
√

π
exp

(
−

(
x

Lc

)2 )
, (14)

and the bi-exponential function (i.e., Helmholtz’s averaging kernel)

φH
Lc

(x) = 1

2 Lc
exp

(
− |x |

Lc

)
. (15)

Remark 1 The constitutive integral laws in Eq. (13) represent general expressions which lend themselves to
any choice of the averaging kernel φLc . Adoption of different kernels in Eq. (13) leads to technically coincident
structural responses as will be shown in Sect. 5. Thus, without loss of generality, choice of the bi-exponential
kernel in Eq. (15) as done byEringen in [6], is onlymore convenient for theoretical and computational purposes,
by virtue of the peculiar properties it enjoys [18]. Indeed, if the Helmholtz’s kernel in Eq. (15) is adopted, the
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integral equations (13) can be expressed in an equivalent differential formulation [28] so that nonlocal elastic
strains {ε̄, γ̄ } can be obtained as the unique solution of the following second-order differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̄(x) − L2
c ε̄′′(x) = M(x)

IE
− α I (4)

E Q′(x)
ĀG IE

,

γ̄ (x) − L2
c γ̄ ′′(x) = Q(x)

ĀG
,

(16)

equipped with the constitutive boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

ε̄′(0) = ε̄(0)

Lc
, ε̄′(L) = − ε̄(L)

Lc
,

γ̄ ′(0) = γ̄ (0)

Lc
, γ̄ ′(L) = − γ̄ (L)

Lc
.

(17)

Remark 2 Let us rearrange Eq. (12) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε̄l(x) = M(x)

IE
− α I (4)

E Q′(x)
ĀG IE

= P(x)

I (4)
E

− α
I (6)
E

ĀG I (4)
E

Q′(x),

γ̄ l(x) = Q(x)

ĀG
= R(x)

Ī (2)
G

.

(18)

Then, the nonlocal elastic strain fields {ε̄, γ̄ } are obtained by the stress-driven integral convolutions in
Eq. (13), that is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε̄ = φLc ∗
(
M

IE
− α I (4)

E Q′

ĀG IE

)
= φLc ∗

(
P

I (4)
E

− α
I (6)
E

ĀG I (4)
E

Q′
)

,

γ̄ = φLc ∗ Q

ĀG
= φLc ∗ R

Ī (2)
G

.

(19)

By linearity of the operator φLc∗, from Eq. (19) we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φLc ∗
(
M

IE
− α I (4)

E Q′

ĀG IE
− P

I (4)
E

+ α
I (6)
E

ĀG I (4)
E

Q′(x)
)

= 0,

φLc ∗
(

Q

ĀG
− R

Ī (2)
G

)
= 0.

(20)

Equation (20) implies that source fields are zero functions. Thus, Eq. (12)1,2 still hold and therefore can be
adopted to formulate the nonlocal elastic equilibrium problem of third-order beams, as shown in the following.

4 Nonlocal elastic equilibrium of third-order beams

The stress-driven nonlocal elastostatic problemof third-order beams is formulated belowalongwith the adopted
analytical solution procedure which is illustrated in detail.

Let us rewrite the differential equilibrium conditions in Eq. (6) as follows:

{
M ′′(x) = q(x),

M ′(x) − α P ′(x) = β R(x) − Q(x).
(21)
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Then, substituting P (Eq. (12)1) and R (Eq. (12)2) in the equilibrium equation (21)2, we get the second-order
differential equation in the unknown field Q

α2
((

I (4)
E

)2
IE ĀG

− I (6)
E

ĀG

)
Q′′(x) + ÂG

ĀG
Q(x) + ĪE

IE
M ′(x) = 0 (22)

where M ′(x) = ∫ x
0 q(ξ) dξ +C from Eq. (21)1, with C the integration constant. The differential equilibrium

equations (21)1–(22) have to be solved with prescription of proper static boundary conditions.
Then, nonlocal elastic strain fields are provided by the constitutive integral laws in Eq. (13):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̄(x) =
∫ L

0
φLc(x − ξ)

(
M(ξ)

IE
− α I (4)

E Q′(ξ)

ĀG IE

)
dξ,

γ̄ (x) =
∫ L

0
φLc(x − ξ)

Q(ξ)

ĀG
dξ .

(23)

Finally, shape-functions w and ϕ are obtained by prescribing differential kinematic compatibility equa-
tions {

ε̄(x) = ϕ′(x),
γ̄ (x) = w′(x) − ϕ(x)

(24)

equipped with kinematic boundary conditions.
The case studies illustrated in the next section involve prescription of the following boundary conditions⎧⎪⎨

⎪⎩
Free : M ′ = 0, P = 0, M = 0;
Hinge : w = 0, P = 0, M = 0;
Clamp : w = 0, w′ = 0, ϕ = 0;

(25)

that can be directly deduced from Eq. (7). It is worth noting that, from Eq. (12)1, the conditions P = M = 0
also imply Q′ = 0.

As shown in Sects. 3 and 4, the relevant nonlocal elastic equilibrium problem of third-order beams based on
the stress-driven model is well-posed. The conclusion amends recent claims in [34] concerning ill-posedness
of the elastostatic problem of stress-driven nonlocal third-order beams.

5 Case studies

Analytical solutions obtained by applying the procedure illustrated in Sect. 4 are here presented for exemplar
structural schemes of technological interest.

For this purpose, let us consider a third-order beam of length L having a rectangular cross section with
height h = 0.2L and base b = 0.5h . The beam is assumed to be made of silicon carbide, with Euler–Young
modulus E = 380 [GPa] and Poisson’s ratio ν = 0.3 [11]. Parametric solutions are obtained for increasing
nonlocal parameter λ = Lc/L . For λ → 0+ solutions of local elastic equilibrium problems of third-order
beams are recovered. In the following, the beam length is assumed to be L = 50 [nm].

5.1 Cantilever (CF) beam under uniformly distributed transverse loading

A uniformly distributed transverse loading q = 10−2 [nN/nm] is applied. Clamped end at x = 0 requires
essential boundary conditions (BCs) w = ϕ = w′ = 0.

Free end at x = L prescribes M ′ = M = P = 0 where the last two BCs provide Q′ = 0 . Solution
of equilibrium equation M ′′ = q with natural boundary conditions M(L) = M ′(L) = 0 yields M(x) =
q(L − x)2/2. Then, the second-order differential equation (22) equipped with natural boundary condition
Q′(L) = 0 is solved to get the unknown field Q as function of the integration constant cQ . The nonlocal strain
fields ε̄ and γ̄ are obtained by the integral convolutions in Eq. (23) where the Helmholtz’s averaging kernel
Eq. (15) is adopted. Finally, differential kinematic compatibility system of Eq. (24) is solved by prescribing
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Fig. 1 Cantilever beam under uniformly distributed transverse loading: shape-function w(x) [10−2 nm] versus x [nm] for
λ = {0+, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4}

Fig. 2 Cantilever beam under uniformly distributed transverse loading: shape-function ϕ(x) [10−3] versus x [nm] for λ =
{0+, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4}

kinematic boundary conditions ϕ(0) = w(0) = 0, while kinematic boundary condition w′(0) = 0 is
prescribed to get the unknown integration constant cQ .

Plots of the solution fields are depicted in Figs. 1 and 2. The parametric analysis shows a stiffening
behavior of structural responses for increasing nonlocal parameter λ. The shear stress fields on the cross
section at x = L/2 are parametrically represented in Fig. 3 for increasing λ.

5.2 Simply supported (SS) beam under uniformly distributed transverse loading

A uniformly distributed transverse loading q = 10−1 [nN/nm] is applied. Pinned ends require w(xi ) =
P(xi ) = M(xi ) = 0 for i = {1, 2} . The last two boundary conditions also imply Q′(xi ) = 0. Then,
equilibrium differential equation M ′′ = q with natural boundary conditions M(0) = M(L) = 0 yields
M(x) = q(x − L)x/2. Solution of the second-order differential equation (22) equipped with boundary con-
ditions Q′(0) = Q′(L) = 0 provides the unknown field Q. Nonlocal strain fields ε̄ and γ̄ are obtained by
the integral convolutions in Eq. (23) where the Helmholtz’s averaging kernel Eq. (15) is adopted. Finally,
differential kinematic compatibility system (24) is solved by prescribing kinematic boundary conditions
w(0) = w(L) = 0.

Parametric plots of solution fields are shown in Figs. 4 and 5, showing stiffening responses for increasing
nonlocal parameter λ. Shear stress fields on cross section at x = L are parametrically represented in Fig. 6
for increasing nonlocal parameter λ.
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Fig. 3 Cantilever beam under uniformly distributed transverse loading: shear stress field τxy(y) [MPa] versus y [nm] at mid-span
for λ = {0+, 0.1, 0.2, 0.3, 0.4}

Fig. 4 Simply supported beam under uniformly distributed transverse loading: shape-function w(x) [10−2 nm] versus x [nm]
for λ = {0+, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4}

Fig. 5 Simply supported beam under uniformly distributed transverse loading: shape-function ϕ(x) [10−3] versus x [nm] for
λ = {0+, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4}



Nonlocal integral elasticity for third-order small-scale beams 2401

Fig. 6 Simply supported beam under uniformly distributed transverse loading: shear stress field τxy(y) [MPa] versus y [nm] at
free end for λ = {0+, 0.1, 0.2, 0.3, 0.4}

Table 1 Cantilever beam: nonlocal responses for the error kernel φerr
λ and the Helmholtz kernel φH

λ

λ w(L) [10−2 nm] ϕ(L) [10−3]
φλ = φerr

λ φλ = φH
λ φλ = φerr

λ φλ = φH
λ

0.05 4.6901 4.4407 1.2292 1.1820
0.10 4.2517 3.8392 1.1442 1.0669
0.20 4.1925 2.8966 1.1398 0.8731
0.30 3.7417 2.2423 1.0674 0.7180
0.40 3.3402 1.7887 0.9966 0.5974

Table 2 Simply supported beam: nonlocal responses for the error kernel φerr
λ and the Helmholtz kernel φH

λ

λ w(L/2) [10−2 nm] ϕ(0) [10−3]
φλ = φerr

λ φλ = φH
λ φλ = φerr

λ φλ = φH
λ

0.05 5.5857 5.4739 3.1793 3.1489
0.10 5.4620 5.1298 3.1483 3.0405
0.20 5.0788 4.3259 3.0319 2.7273
0.30 4.5832 3.6432 2.8615 2.4058
0.40 4.0670 3.1182 2.6592 2.1274

5.3 Averaging kernel: bi-exponential versus error function

The elastic equilibrium problem illustrated in Sect. 4 is formulated exploiting the nonlocal integral laws in
Eq. (13), equipped with any averaging kernel fulfilling symmetry, positivity and limit impulsivity [6].

For comparison sake, results obtained in Sect. 5 by adopting as averaging kernel the bi-exponential
(Helmholtz’s) function φH

λ in Eq. (15), are here analyzed with respect to those obtained by exploiting the error
function φerr

λ in Eq. (14). Structural responses for increasing nonlocal parameter λ are shown in Tables 1
and 2 for cantilever and simply supported beams analyzed in Sect. 5. Notably, Tables 1 and 2 show that for
λ < 0.2, results got by exploiting different kernels are technically coincident.

5.4 Validation of results

Solutions of the local elastic equilibrium problem can be recovered as limiting cases of the nonlocal elastostatic
problem formulated in Sect. 4. Indeed, nonlocal shape-functions w ,ϕ of the examined case studies for
λ → 0+ (see Table 3) perfectly match the local elastic results provided in [24].
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Table 3 Limiting solutions of nonlocal elastic equilibrium problems for λ → 0

x [nm] CF SS

w(x) [10−2 nm] ϕ(x) [10−3] w(x) [10−2 nm] ϕ(x) [10−3]
0 0.000 0.000 0.000 3.189
5 0.127 0.338 1.798 3.023
10 0.414 0.626 3.381 2.544
15 0.824 0.850 4.610 1.827
20 1.327 1.019 5.387 0.953
25 1.897 1.141 5.652 0.000
30 2.513 1.223 5.387 − 0.953
35 3.156 1.274 4.610 − 1.827
40 3.814 1.301 3.381 − 2.544
45 4.475 1.312 1.798 − 3.023
50 5.135 1.316 0.000 − 3.189

6 Closing remarks

Stress-driven theory of nonlocal elasticity has been adopted tomodel size effects in third-order shear deformable
beams. Kinematics and equilibrium of the third-order model have been illustrated; then, the stress-driven
integral model has been extended to third-order elastic beams and an equivalent differential formulation with
nonclassical boundary conditions has been derived. The corresponding nonlocal elastic equilibrium problem
of third-order small-scale beams has been formulated and addressed by an effective analytical methodology.
Parametric closed-form nonlocal structural solutions of exemplar case-problems of applied interest have been
established, examined and validated. According to the proposed beam model, there is no need to evaluate
shear correction factors, which is a crucial point in the framework of nonlocal elasticity. Thus, by combining
the stress-driven elasticity with the third-order beam theory, the presented methodology provides an effective
approach to capture the size-dependent behavior of small-scale beams.

As emerged from the parametric studies, a stiffening mechanical behavior has been predicted by the
presented approach in agreement with experimental outcomes in [1,9], thus confirming the peculiarmechanical
phenomenon of smaller-is-stiffer.
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