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 6 

Abstract: Schrödinger dynamics is a nonlocal process. Not only does local perturbation affect 7 
instantaneously the entire space, but the effect decays slowly. When the wavefunction is spectrally 8 
bounded, the Schrödinger equation can be written as a universal set of ordinary differential 9 
equations, with universal coupling between them, which is related to Euler's formula. Since every 10 
variable represents a different local value of the wave equation, the coupling represents the 11 
dynamics' nonlocality. It is shown that the nonlocal coefficient is inversely proportional to the 12 
distance between the centers of these local areas. As far as we know, this is the first time that this 13 
inverse square law was formulated. 14 

Keywords: quantum nonlocality, quantum decoding, inverse square law, Euler Formula, quantum 15 
causality 16 

 17 

1. Introduction 18 
Nonlocality is a fundamental feature of quantum mechanics. It appears in many places of the 19 

quantum world. Most often, it is mentioned in the context of identical particles and entangled 20 
particles. The well-known EPR experiment [1], the Bell theorem [2] and its possible interpretations 21 
(see, for example, Ref.[3]) are classic examples. Another source of nonlocality arises from the 22 
nonlocal effect of potentials on the wavefunction (see, for example, the Aharonov-Bohm effect[4]). 23 
However, nonlocality appears in the single particle wavefunction as well. In fact, nonlocality is a 24 
fundamental property of Schrödinger dynamics.  25 

Unlike in Maxwell's wave equation, where perturbations propagate at the speed of light, in 26 
Schrödinger dynamics, any local perturbation is instantaneously felt all over space, just as in the 27 
diffusion equation case[5]. However, unlike the diffusion equation where the nonlocal effect is 28 
exponentially small, in the Schrödinger equation, it decays much slower – as a power law. 29 

In both cases, i.e., in the diffusion and the Schrödinger cases, the causality is violated due to the 30 
asymmetry between space and time.  31 

In the Klein-Gordon's (KG), or similarly in the Dirac's, equation, due to the symmetry between 32 
space and time, causality reappears. In the KG case, the nonlinear dispersion relation distorts the 33 
wavefunction in high agreement with the Schrödinger equation only as far as causality allows, i.e., 34 
as far as the distance ctx =  from the local perturbation [6,7]. That is, any local perturbation has an 35 
effect over the entire ctx ±=  domain. Clearly, in the non-relativistic regime (i.e., the Schrödinger 36 
case) this domain is the entire space. As a result, an initial discontinuous wavefunction can kindle 37 
currents all over space instantaneously [8,9].   38 

Since the physical validity of discontinuous wavefunctions can be questioned, it is of interest to 39 
investigate the nonlocal effect of a local but smooth perturbation. We will see below that even in this 40 
case nonlocal behavior appears. 41 

2. The Dynamics  42 
The differential version of the free Schrödinger equation  43 
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illustrates the nonlocality more vividly.  50 
 51 
However, the oscillations' frequency increase so rapidly that their averages (which is equivalent 52 

to the integral operation) quickly converges to zero and the locality properties reappear. In 53 
particular, in some cases the latter nonlocal equation (2) was used to derive the former local one (1) 54 
[10].  55 

Clearly, a local analysis of the Schrödinger equation is an excellent approximation in the 56 
quasi-classical regimes, which mathematically equivalent to the stationary phase approximation[11]. 57 
However, locality is questionable in the quantum regime. The problem is that Eq.(3) is the impulse 58 
response of the Schrödinger equation (1), i.e., it is the quantum system's response to the initial state 59 
of a delta function. However, a delta function can never be a physical state (it is based on infinite 60 
energies and it is not normalizable). To take a more physical initial state, it is usually accustomed to 61 
replacing the impulse response with a more physical, finite-width pulse –response, i.e., 62 
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In which case the pulse response (after a period t ) 64 

( ) ( ) 







ρρ−

−







πρρ−
=ψ

−− 22

24/1

2/12 /21
exp2

/21

1,
mti

x

mti
tx


       (5) 65 

decays (in space) exponentially as well. 66 
 67 
Therefore, it may seem as if the locality approximation is justified since in principle one can 68 

choose ρ  to be arbitrarily small. However, this result is based on the premises that the spatial 69 
spectrum of the wavefunction is unbounded.  70 

When the spatial spectrum of the wavefunction is bounded, i.e., when the spectral coefficient 71 
beyond a certain spatial frequency are all zero, then according to the Nyquist theorem, the 72 
wavefunction can be written as a superposition of sinc functions [12]. That is, all the information in 73 
the wavefunction can be written as an infinite discrete series of complex numbers nnn i ψℑ+ψℜ=ψ  74 
for ∞−−∞=  ,2,1,0,1,n . In the spectral domain, the wavefunction occupies the spatial spectral 75 
bandwidth xΔ/1 , and therefore the initial wavefunction can be written as an infinite sequence of 76 
overlapping Nyquist-sinc functions (for applications in the optical communication sphere see 77 
Refs.[13-18]) (see Fig.1), i.e.,   78 

( ) ( )
∞

−∞=

−Δψ==ψ
n

n nxxtx /sinc0, ,            (6) 79 

where ( ) ( )
πξ

πξ
≡ξ

sinsinc  is the "sinc" function. 80 

 81 
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 82 
 83 
Figure 1. Illustration of the method, in which any spectrally bounded function can be written as an infinite series 84 
of sinc pulses. In the figure the sinc pulses, which are centered at 4,3=ξ  and 5 are plotted by dashed curves, 85 
while the final function is presented by solid curves (real/imaginary part in the upper/lower panel). 86 

Due to the linear nature of the system, Eq.(6) can be solved directly 87 

( ) ( )( )
∞

−∞=

Δ−Δψ=>ψ
n

n xtmnxxtx 2//,/dsinc0,           (7) 88 

where "dsinc" is the dynamic-sync function [19] 89 
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Clearly, ( )[ ] ( )ξ=τξ
→τ

sinc,dsinclim
0

. 91 
To simplify the derivation we use the dimensionless variables  92 

( ) 2// xtm Δ≡τ    and  xx Δ≡ξ / .            (9) 93 
Some of the properties of the dsinc function are illustrated in Figs.2 and Fig.3. As can be seen, 94 

the distortions from the initial delta function ( ) ( )nn δ=0,dsinc  gradually increase with time ( τ ). 95 
 96 
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 97 
Figure 2: The relation between the real and imaginary parts of the dsinc function for the discrete values 3,2,1,0=ξ . 98 

 99 
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 100 

Figure 3: The temporal dependence of the absolute value of dsinc for the discrete values 3,2,1,0=ξ  101 

With notations (9), Eq.(1) and (7) can be rewritten 102 
( ) ( )

2

2 ,
2
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and  104 
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n
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Respectively. 106 
 107 

3. Matrix Formulation and Nonlocality 108 
 109 
When xΔ  is the spatial resolution of the problem, then the wavefunction at the center of the 110 

mth point, i.e., at m=ξ , is a simple discrete convolution 111 
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where  113 
( ) ( )τ≡ ,dsinc nnh  and ( ) ( ) ( )nnnh δ−τ≡δ ,dsinc .         (13) 114 
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then Eq.(10) can be written as a linear set of differential equations 117 
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with the universal and dimensionless vector 119 

( ) ( )






=π−

≠−
≡

+

06/
0/1

2

21

m

mm
mw

m

,             (16) 120 

and the asterisk stands for discrete convolution. 121 
Note that ( ) 0=∞

−∞=m
mw  due to Euler's formula [20]. 122 

This equation is universal in the sense that the vector ( )mw   is time independent. This is a 123 
unique property of the sinc pulses, which does not exist in other sets of orthogonal pulses (like 124 
rectangular pulses). 125 

 126 
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Moreover, since the Schrödinger dynamics is a unitary operation, normalisation is kept and 127 
there is no change in the wavefunction spectrum. Therefore, Eq.(15) is valid for any given time.  128 

In a matrix form, Eq.(15) can be written 129 
 130 
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i.e.,  132 
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where M  is a matrix with the coefficients 134 
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 136 
The nonlocality of this form is clearly emphasized, when compared to the ordinary numerical 137 

form of the Schrödinger equation with the ordinary 1D Cartesian local Laplacian 138 
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In the presence of a non-zero potential, whose maximum spatial frequencies is also lower than 140 
xΔ2/1  the Schrödinger equation can be rewritten in a matrix form 141 

( )ψψ VMi
d

d
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τ
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, or simply 145 
( ) ( ) ( )mnnVmnV −δ=, .              (23) 146 

 147 
Therefore, a pulse which is initially located at 0=x  has an instantaneous effect over the entire 148 

space, and its effect on any other point (say xnΔ ) is inversely proportional to the distance between 149 
them, i.e., ( ) 2−

Δxn . 150 
On the other hand, when the local Laplacian is used, then the pulse effect on a point xnΔ  afar, 151 

would be felt only after n  consecutive steps. Therefore, if there is a barrier between these points 152 
( 0=x  and xnx Δ= ) then with a local Laplacian it may seem that the effect of the one on the other 153 
(and vice versa) must take into account the barrier in between the two points. However, in fact, as 154 
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the nonlocal form teaches, in the short time its effect is negligible since the Schrödinger equation can 155 
be approximated by 156 
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and its short-time solution   158 
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 160 
shows that in the short time the potential has only a local effect (provided it is a smooth 161 

function), i.e., ( )τψ ,n  is affected only by ( )nV  (and the effect is a simple phase change). However, 162 
the wavefunction has a nonlocal effect, i.e., ( )τψ ,n  is affected by any non zero ( )τψ ,m  (for any m). 163 
This result is consistent with Ref.[21], where it was demonstrated that in short time, singular 164 
wavefunction are unaffected by the barrier despite their nonlocal effect. 165 

4. Inverse Square Law 166 
By multiplying Eq.(15) by the complex conjugate of the wavefunction and taking the real part of 167 

the equation one finds a nonlocal equation for the probability density 168 
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Using the notation ( ) ( )nn iAn φ≡τψ exp,  then Eq.(26) is simply 170 
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and the equivalent phase equation reads 172 
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If ( )τψ ,n  is presented as a 2D vector in a 3D space  174 
( ) ( ) ( )τℑ+τℜ≡τ ,ψ,ψ, nynxn

ψ             (29) 175 
instead of a complex number in a complex plane, then the numerator in the summation can be 176 

presented as the cross product of two vectors, i.e.,  177 
 178 
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          (30) 179 

In this terminology, ( )τ,mψ  is the norm of the vecor ( )τ,mψ  and the cross represents cross 180 
product. 181 

It is instructive to see the resemblance between this law and any other inverse square law. 182 
Eq.(30) can also be written in terms of the derivative of the vector's norm ( )τ,mψ  183 
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zn,τ
d

md
2
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where ( ) ( )τ≡ ,/ˆ mm,τm ψψψ  is the unit vector in the ( )m,τψ  direction. 185 
 186 
It is therefore clear, that maximum probability density transfer occurs when the relative phase 187 

between the two points is 2/π , i.e. when the "vectors" ( )n,τψ  and ( )m,τψ  are orthogonal.  188 
In Fig. 4 such a density transfer is illustrated. In this case the wavefunction  189 

( ) ( ) ( )[ ]9sinc8sinc0, −ξ+−ξ==τξψ iN  was taken as the initial state (N is the normalisation 190 
constant). As can be seen, in the short time regime ( 198.0=τ in this case), probability was transferred 191 
from the pulse at 9=ξ  to the one at 8=ξ . 192 
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 193 

Figure 4: Illustration of probability transfer. The dashed curve represents the initial state 194 

( ) ( ) ( )9sinc8sinc0, −ξ+−ξ==τξψ i , while the solid curve stands for ( ) ( ) ( )τ−ξ+τ−ξ==τξψ ,9dsinc,8dsinc198.0, i . 195 

In both cases the real part is plotted in the upper panel, while the imaginary part is plotted in the lower one. 196 

 197 
Moreover, it is clear from (27) and (30) that maximum probability transfer to a certain location 198 

(say 0=ξ ) occurs (provided the initial state is bounded) when the initial state oscillates in signs, i.e., 199 

( ) ( ) ( ) ( )ξ+−ξ−==τξψ 
≠

sincsinc10,
0

ni
n

n
           (32) 200 

In this case the rate in which the probability increases (or decreases in the opposite case) is 201 
exactly 3/2 2π  since (using Euler formula, see Ref.[20]) 202 

( )[ ]
( ) 3

212
,ln 2

2

2
π

=
−

=
τ

τψ 
≠mn nmd

md
           (33) 203 

and the probability density at 0=ξ  can increase almost four fold before it start to decay (see 204 
Fig.5). 205 

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

0

1
=0.51

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

0

1

2

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2

4

 206 

Figure 5: The short time dynamics of the wavefunction (32). The dashed curves represent the initial ( 0=τ ) 207 

state, while the solid curves represent the state after a period of 51.0=τ , where the probability density at 0=ξ  208 

increases by a factor of 4. 209 
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 210 

Clearly, the source of this nonlocality is the fact that each one of the sinc is spread over the 211 
entire space. However, the important result is, that this nonlocal presentation of the Schrödinger 212 
equation is independent of xΔ , which can be as short as the spatial measurement accuracy.  213 

5. Conclusions 214 
It has been shown that when a given wavefunction is spectrally bounded, then the Schrödinger 215 

dynamics can be formulated in a universal nonlocal form. Instead of a local partial differential 216 
equation, it can be formulated as an infinite set of ordinary differential equation, where the coupling 217 
are pure numbers, which are strongly related to Euler's formula 6/2

1
2 π=∞

=n
n . 218 

Therefore, the mutual effect of every two points on the wavefunction is instantaneous and can 219 
be formulated by an inverse square law. 220 
 221 
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