NoNLOCAL MICROPLANE CONCRETE MODEL WITH
RATE EFfFeECT AND LoAaD CYCLES.
I: GENERAL FORMULATION

By Toshiaki Hasegawa' and Zdenék P. Bazant,? Fellow, ASCE

ABsTRACT: The nonlocal microplane model for concrete is improved to describe
unjoading, rcloading. cyclic loading, and the rate effect. The differences compared
to the previous formulation are: (1) Normal strain component on the microplane
is not split into its volumetric and deviatoric parts—rather the normal component
is made dependent on the lateral normal strains on the microplanc: and (2) instcad
of considering on cach microplanc only one shear strain vector parallel to the shear
stress vector, the shear strain is represented by two independent components on
the microplane. To introduce rate effect, the stress-strain faw for cach microplane
component is described by a gencralized Maxwell niodel—a scries coupling of a
lincar viscous element and an clastoplastic-fracturing clement. Nonlinear unioad-
ing-reloading hysteresis rules with back- and objective-stresses are developed 1o
introduce hysteresis. The model is then combined with nonlocal theory to enable
describing localization phenomena and avoid spurious mesh sensitivity due to strain
softening. The numerical implementation in finite-clement programs is described.
The study consists of two parts; part I deals with the general formulation (part 11
deals with experimental verification).

INTRODUCTION

The heterogeneity of concretes and brittleness of its matrix are responsible
for complex nonlinear triaxial behavior with strain-softening damage. To
describe such behavior, many types of models for concrete have been de-
veloped and investigated. They may be grouped into two basic categories—
the macroscopic phenomenologic models and the micromechanics-based
models. The hypoelastic models, plasticity models, endochronic models,
fracturing theory, and continuum damage mechanics models belong to the
former category. The constitutive models in the second category are more
limited at present. The microplane model is one effective model based on
certain simplified micromechanics ideas. It has been proven to describe
many experimentally observed features of concretes as well as rocks and
soils (Bazant 1984; Bazant and Oh 1985; Bazant and Prat 1988; Bazant and
Ozbolt 1990; Ozbolt and Bazant 1991; Carol et al. 1992). The microplane
model has been combined with the nonlocal theory in order to make it
applicable to localized fracture behavior and size effects, and to avoid spu-
rious mesh sensitivity in finite clement analysis (Bazant and Ozbolt 1990:
Ozbolt and Bazant 1991).

The present study (Hasegawa and Bazant 1991) attempts to improve and
generalize the previously developed microplanc model in several respects,
particularly with regard to response to cyclic loading as influenced by the
loading rate. This influence is manifested in the shape and width of the
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hysteresis loops. The loading rate of course also strongly affects the response
to monotonic loading.

It should be mentioned that another partly similar but in some basic
aspects different model, with different advantages, was developed at North-
western University (Ozbolt and Bazant 1991) at the same time as the model
presented here. Because of scope limitations, a comparison of these twa
versions of the cyclic microplane model with rate effect is relegated to a
subsequent study.

MODIFICATION AND SIMPLIFICATION OF PREVIOUS
MICROPLANE MODEL

A detailed description of the concept of microplane model and its evo-
lution, beginning with the idea of Taylor (1938), was given in BaZant and
Prat (1988) and is not repeated here. The following hypotheses, in some
respects different from those used in the previous work, were adopted for
the development of the present generalized cyclic and rate-dependent ver-
sion of the model. (The Latin lower-case subscripts refer to Cartesian co-
ordinates x;, i = 1,2, 3))

Hypothesis I
The strains on any microplane are the resolved components of the mac-
roscopic strain tensor e, (this represents a tensorial kinematic constraint).

Hypothesis II

The microplane resists not only normal strains e, but also in-plane shear-
strain vectors (e,«, €7), whose direction within each microplane is the
same as that of the shear stress vector (o7, 0y4).

Hypothesis I11
The normal-stress increments on a microplane depend on the resolved
lateral strains e, on the same microplane.

Hypothesis IV

The inelastic shear-stress vector increment on each microplane depends
on the resolved normal component of the macroscopic stress tensor o; on
the same microplane (this represents an additional static constraint).

Hypothesis V

Constitutive laws for the normal and shear components on the micro-
planes (microconstitutive law) are based on a generalized Maxwell rheologic
model in which a linear viscous element is coupled in series with an elas-
toplastic-fracturing element.

Hypothesis VI

The microconstitutive laws for the normal and shear components on each
microplane are mutually independent.

Hypothesis VI was justified in Bazant and Prat (1988). The decoupling
of volumetric, deviatoric, and shear responses on the microplane seems at
first an oversimplification. But success in the modeling of test data indicates
that the appropriate coupling of the volumetric and deviatoric responses on
the macroscopic level is obtained through the coupling of microplanes of
all orientations due to the kinematic constraint. In contrast to the previous
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formulations by Bazant and Prat (1988) and Carol et al. (1991), the normal
microplane components are not split into volumetric and deviatoric parts
in the present model.

According to hypothesis I, the normal-strain component and the strain
vector components on a microplane of direction cosines rn; are

B = ME) = MIGE[ oot (la)

Eni = MIEE L o e evn e e L. (1b)

In the previous microplane model, the shear-strain response was defined,
for the sake of simplicity, only in terms of magnitudes €, = Veyeq =
(k€ jmPn(Ese — nin;e)] 2. With this definition, the strain magnitudes arc
always positive. But this makes it is impossible to describe the cyclic response
on microplanes. To avoid this limitation, two in-plane unit coordinate vec-
tors k and m, normal to each other, are introduced on each microplane as
shown in Fig. 1(b), and two shear components €y, €yy in those directions

concrete

coarse aggregate
mortar matrix

(b)

FIG. 1. (a) Microplanes in Concrete; (b) Unit Vectors n, k, m; and p on Microplane;
(c) Microptane System (without Shear Response ) and Generalized Maxwell Model
for Each Microplane; (d) Numerical Integration Points on Unit Hemisphere for 21
Integration Points Formula
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generalized Maxwell model
for each microplane
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linear viscous elasto-plastic-fracturing
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m w=0.0265214244003 6
o w = 0.0250712367487
A w=0.0199301476312

(d)

FIG. 1. (Continued)

are considered. Since the directions of the vector k and m must be fixed at
the beginning of calculations, some kind of rule to determine these directions
is necessary. The rule must not have a significant bias for any direction;
i.e., the frequency of various directions within the microplanes taken by
vectors m and n must be about the same. This is approximately achieved
by the following simple rule: vector m of microplane 1 is determined to be

375



normal to the z-axis, vector m of microplane 2 normal to the x-axis, vector
m of microplane 3 normal to the y-axis, vector m of microplane 4 normal
again to the z-axis, and so on. Then for vector m normal to z-axis

m e m ! 0 (2a)
= —— alaay———_s m-, =U ..., .. 00
YUoNn? ¥ n? 2 Vnl + nl *

butm, = 1;m, = 0;my, = 0ifn, = n, = 0.
For vector m normal to x-axis

m, = __.n3_~_ M. = _nl . m, = 0 (2[7)
2 \/nzi + ng’ 3 m, T ¥

butm, =0;m, = 1;my = 0ifn, = n, = 0.
For vector m normal to y axis

—h; n,

T m3 = m2
Vni + n? Vni+ n?

butm, = 0;m, = 0;my = 1ifn, = n, = 0.

After determining vector m, vector k is calculated for each microplane
as k = m X n. According to hypothesis II, the in-plane shear strain com-
ponents in the k and m directions on a microplane of direction cosines n,
are

m; =

]
erx = kig] = kiney = i(k,n, +oknde; oo (3a)

1
&rm = Me} = mne; = E(m,-n,- tmnE; o (3b)

where symmetry of €; was exploited to symmetrize these expressions. The
separate treatment of erx and €4, brings about an improvement over the
previous microplane formulation by Bazant and Prat (1988), but it increases
the number of variables.

INCREMENTAL MACROSCOPIC STRESS-STRAIN RELATIONSHIP

The incremental microconstitutive relations are written separately for the
normal component and the shear components in the K and M directions

doy = Cy dey — dol, for normal component ................ (4a)
doyx = Cri dergy — do'yy for K-shear component ............ (4b)
doyy = Crpydepy — do'py, for M-shear component ........... (4¢)

in which doy, do,, and do,, = incremental microstresses; Cy, C;«, and
Crm = incremental elastic stiffnesses; and do'y,, do,, and do’},, = inelastic
microstress increments. Note that there is no coupling between K-shear and
M-shear (decoupling hypothesis for shear).

Using the principle of virtual work (i.e., equality of virtual works of the
macrostresses and microstresses), we can write

4
?" do;de, = 2 L (dondey + douder + dopydern)f(n) dS ... ... (5)
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in which 3g;, dey, ey, and deyy, = small variations of the macroscopic
strain tensor and of the microstrain components on a microplane. The con-
stant 441/3 means that the macroscopic work is taken over the volume of a
unit sphere. The factor 2 on the right-hand side arises because the micro-
scopic work needs to be integrated only over the surface of a unit hemisphere
S. The function f(m) is a weight function for the normal directions n, which
in general can introduce anisotropy of the material in its initial state. We
will use f(n) = 1, which means isotropy. Expressing 8¢y, de7x, and 8ery
from (1) and (3) and substituting them into (5), we can get

do
4?“ do,de; = 2 L [n,n,- doy + "2”‘ (kn, + k)
Aoy ds 6
+ - (mn; + mn) | f(n) dSde,; ... (6)

.» therefore we can

This variational equation must hold for any variations 8¢ ;;

delete d¢,; and substituting (4) we obtain

i

do

(10','/' = %J’s |:n,~n,- dU'N + _‘2—‘ (kinj + k/'"l,-)

+ do% (m;n; + m,n,-)] fm)ydS ..o (7a)

3 1 )
doy; = o L [n,-n,-(CN dey — dai) + E(k,-n,- + kn ) (Crx derx — do'ry

1 ~ "
+ i(m,-n,- + mn)(Crpy deqpr — Ao’y ]f(n) as ... (7b)

Eqgs. (1) and (3) may now be here substituted for ey, €7«, and ey,,. This
finally yields the macroscopic incremental stress-strain relation

doj = Cyode,, — doj; ... ... (8)
in which Cy,, denotes the incremental elastic stiffness tensor
3 1
Cyrs = 7 I [nin,n,nSCN + Z(k,n, + kjn)(kn, + kon,)Crg
1 .
+ Z(m,n,- + myn;)(mn, + nzxn,)C,-M] fm)yds ........... ... ... )

and da; denotes the inelastic stress increments

i

3 1
do_r,', = % fs l:n’-n,- dO’;’V + E(k‘»f’l/- + k]-n,») dU’;*K

1
+ E(m,nj + m;n;) da’;MjI fn)dS ... ... (10)

For the initial isotropic elastic response we can substitute the initial moduli
C% and C%for Cy and Cy, Cyyyin (9), and set f(n) = 1. Since these moduii
are independent of the microplane direction, we could integrate (9) explicitly
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if the unit vectors k and m were also known explicitly. However, they are
not explicit, being calculated numerically as described before.

For initial elasticity we can substitute the initial moduli C% and CY for
Cy and Crx, Cry in (4), and set do}, = do'7x = do'ry = 0. Then we have
doyx = CYderx and dopy, = C% dery, for shears. From that, |do,| =
C%|de|, where |do;| = \/doZ, + doy and |des| = Vdei + dedy,.
This is the same relation as that used in the previous microplane model
involving normal and shear components (Bazant 1984) (in which the shear
vectors were characterized by three components in the Cartesian coordinates
x; i = 1, 2, 3). Therefore the expressions derived in that study apply

. (1-4)E
Ch = g T a3y (11b)

in which F and v = Young’s modulus and Poisson’s ratio.

One can now realize from (11) that only Poisson's ratios v within the
range —1 < v = (.25 can be obtained with the present microplane model,
while the microplane model with separate volumetric, deviatoric, and shear
components (Bazant and Prat 1988) can describe elastic behavior with any
thermodynamically possible Poisson’s ratio —1 = v < 0.5. However, the
disadvantage of the limited range of Poisson’s ratio in the present model
does not seem very serious for concrete, since for usual concretes 0.15 < v
= 0.22. In general, of course, we do not advocate abandoning the previous
formulation with the full range of v, which is in principle more realistic.
The present restriction on the range of v is due to avoiding a split of normal
microplane components into volumetric and deviatoric ones, which brings
about a simplification of the formulation.

RHEOLOGIC MODEL FOR RATE EFFECT IN
MICROCONSTITUTIVE LAW

For cyclic behavior it is important to specify appropriate rate-dependent
microconstitutive models. In this study a series coupling of a linear viscous
element and an elastoplastic-fracturing element is adopted for the micro-
constitutive law on each microplane [Fig. 1(¢)]. For the sake of brevity of
notation, let £ and o now represent any of the microstrains ey, £;4, and
£7y and microstresses oy, 07k, and oy, The model is described by the
differential equation

do _ cde _© (12)
dt dt p
where C* = C* for virgin loading; C' = C* for unloading and reloading;
t = time; p = relaxation time of the viscous element; and C* = current
tangential stiffness of the elastoplastic-fracturing element, which takes the
value of either C* or C* depending on the loading-unloading-reloading
criteria described later. When (12) is solved by using a central difference
approximation, numerical difficulties or instabilities may be encountered in
the case of strain softening, and even if the solution is numerically stable,
a large error is usually accumulated and the stress is not reduced exactly to
zero at very large strains.
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To avoid these difficulties, the exponential algorithm, initially developed
for aging creep of concrete (Bazant 1971, 1988), is applied in this study in
a similar way as in an alternative nonlocal microplane model of Bazant and
Ozbolt (1990). To achieve unrestricted numerical stability, we need to re-
write (12) so that it involves a positive incremental stiffness or unload-reload
stiffness throughout the entire range of hardening and softening

do Cur 51_5_ a

GG T (13)
1 _1 ur 1 dE
a = o + (C - C)O'Z .................................... (14)

in which B = a quasi-relaxation time for the purpose of calculation. When
we apply (13) and (14) to finite steps, it is most accurate to take the values
of C"’: C', p, and o for the middle of the time step (1,, ¢, 1), denoted with
subscript r + 1/2, in which r = number of the step (r = 1, 2, . . )

do de o

71?= H_]/z'd—t—m ..................................... (15)
1 — 1 ur 3 Ae
BT ot (e = Clavdoin g, (16)

L)
cw, 12 and B, ., in these equations are assumed to be constant for the
duration of each time step; however, to calculate G2 C¥% 1, and
Clivan weneedo,,, C}% ,and C;, |, which means that numerical iterations
of the time step are necessary. The general solution of (15) is then exactly

-{r—4 1 ur ds
o(f) = Ae U-0Brr12 4 C’)'”ZB’”/ZE ......................... (17)

in which A = an integration constant. From the initial condition ¢ = o
at t+ = ¢, the integration constant can be calculated as A = o, -
C¥ 2B, 412 deldt, and then

0-([) - U’e‘(’—lr)/Br+I/2 + [1 _ e—(lvry)lﬂnwz]Clrl; l/2Br+l/2 fjl_s ........ (18)
dar

For the end of the time step, t = ¢,,, = ¢, + At, we have

o, + Ao = 0,4 + A_Lz (1 — e 2)C \pde oo (19)

where Az = At/B,,,,. We can rewrite (19) in the form of 4

Ao = Aiz(l — e 8)CH 1 pAe — (1 — e~29)a, = CAe — Ad” ..... (20)

where

C = Ai(l e 2 | OF AT (21)
z

A" = (1 — e™90, . (22)



MICROCONSTITUTIVE LAW FOR NORMAL COMPONENTS

To be able to model the response to hydrostatic pressure, we must assume
the stress-strain curve for the normal component to be the same as for the
volumetric component of the previous microplane model. But then reason-
able postpeak strain-softening would not be obtained for uniaxial or biaxial
compression. This problem is circumvented by hypothesis 111. The purpose
of including a dependence on lateral strains is to achieve the following: (1)
The normal strain response would not be the same as the volumetric or
hydrostatic response except when the lateral strains are the same as the
normal strain, which is the case of hydrostatic loading; while at the same
time (2) the normal response would be more brittle when the difference
between the normal and lateral strains is large, i.e., it would exhibit more
strain softening.

To implement hypothesis 111, we need to derive equations for the max-
imum and minimum principal values £ 7**, e7i" of lateral strain on each
microplane. To this end we introduce another in-plane unit vector p, whose
angle with the unit vectors k and m is 45°, as shown in Fig. 1(b); p =
(k + m)/V/2. The lateral normal strains in the directions of k, m, and p are

Ex = KKi€y oo (23a)
Ep = PG oo oo (23b)
Ep = PUDJEl « oo e e e e e (23¢)

Considering Mohr’s circle for in-plane strains in the microplane, we can get
the maximum and minimum principal values € P**, £ " of the lateral strain
on each microplane

3

2 2
o= St o \/ (e R T 0
2 " 2
) ex + € Ex T Ey Ex & En
girin = K—z._ﬂi — \/(k—2—> + (-2—— - El’) ......... (25)

which are invariant. It is useful to define a lateral-deviatoric strain ¢, ;, that
combines € P** and €™ into one strain invariant for the microplane

ep = lew — ET] + Jew = EFM Lo (26)

To be able to change the normal response from the hydrostatic stress-strain
response, which always has a positive slope, to plastic response (zero slope)
and softening response (negative slope), the following hardening-softening
function &(e, ) in terms of €, , may be introduced [Fig. 2(b)]:

1

PELD) = o e e (27a)
()

Bep) = &7 WHEN €15 = €00 «ovvennee (27b)

d(e,p) =0 when eP* >0 ... i (27¢)

inwhiche}, = g, value when ¢(e.p) = 0.5;m = aconstant that specifies
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FIG. 2. (a) Dependence of Normal Compression Microstress-Strain Curve on Lat-
eral Strain; (b) Hardening-Softening Function for Normal Compression

the shape of the curve ¢(g, ,,); and &# = value corresponding to the case
of plastic response.

Now we try to set weight functions in terms of ¢(e,,,) and use them to
obtain a gradual transition from hydrostatic response to plastic response
and softening response for the virgin loading curve of the normal-strain

component of the microplane; for 0 < ¢,,, < ¢/,
€.p) — $” 1 — ¢(e
onteneuo) = (KL= e ¢ (Lrteend) 7oy asa

I’
For e/, <e,p

€ P — ¢(e
oon o) = (H222)) 7 ey + (ﬂ%) fulen) ... (280)
in which fy,(ey) = hydrostatic loading curve of normal component when
e.p = 0; fyr(en) = plastic toading curve of normal component when ¢, ,
= ¢{p; and fy,(ex) = softening loading curve of normal component when
e.p =  [Fig. 2(a)].

To obtain the loading tangential stiffness, we need to differentiate (28);
for0<e¢,,=¢e?,

do(en: €1p) _ <¢(ew) - ¢"> dfunlen) | (1 = ¢(sw)> dfy(en)

dey 1 — &° den 1 — ¢r dey
......................................................... (29a)
Foref, <e¢,p
dUN(eN’ 8LD) _ (b(eu)) dip(EN) b — ¢(ELD)> di.t(eN)
den = ( pys ) dey + < o de, .. (29b)

Similarly, the transition for the linear unload-reload stiffnesses Ccyo
(o, €%, €, p) may be written as follows; for 0 < gp = €%,

d(eLp) — (bp) Curo

1= ¢r win (O, €%
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1 - € ) ur u UY 3
N ( 1‘_:5___((1)1;0 ) CH0 (0%, B5) o vee e (30a)

For €%, < ¢€,p

cye (("7\1, ENs ELD) = <¢(E'LD)‘> C;{,;,f’ (o, ek

&
Y GV, CUO (G, €4) woeeene e (30b)
&P
. . _ - i . he
in which C%) (o%, €%) = hydrostatic linear unload-reload stiffness of t
normal conllvphone};llt when e, ,, = 0; Cii” (o, €x) = plastic linear unload-

1

reload stiffness of the normal component when &,, = €7,; CY ok, %
= softening linear unioad-reload stiffness of the normal component when
€,p = ®©;, g and e = stress and straip at the start of unloading. )

In the previous microplane model, virgin loading curves for strain-soft-
ening on each microplane were formulated using a single exponential func-
tion, ¢ = CP% ~!*l"’¢. With this kind of equation, however, one cannot
adjust the peak stress, peak strain, and postpeak ductility individually. It
is more versatile to introduce equations that can do so. Therefore, in this
study the following virgin loading curves are used for pre- and postpeak
tensile regions of the normal component [Fig. 3(a)].

For 0 = ey = €% (prepeak)

. En \Chenr/ahr ith g0 = Onr (31a)
On = OpNT r-11- T with ear = CNI‘C(/:/ ....

For £ < ey (postpeak)

() (b) 0

Z.
6
c® a
© []
@ 50 [ = 1 1
(%13 ‘ 0
£ S Cy Cy
172} =
: e
E «
E o° £
o —
¢ 5]
c
050 e (%+¢h) normal microstrain €y
c®

microstrain ¢

FIG. 3. (a) Strain-Softening Curve for Microplane; (b) Hydrostatic Curve for Nor-
mal Compression
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PNT
Ev — ENp . g
Oy = O.(I)VT exp ,:_ <H> ] with 87VT — 'YNTe(lle ~ YnT ):’,T
Enr v CR
......................................................... (31b)

In (31), 0%y = peak stress of the curve; {y; = a parameter that controls
the peak strain €3, and yy, = a parameter that controls €7 At the strain
ey = X7 + ey, the stress decreases to oY, /e in the softening region; pyr
= a parameter that changes the shape of the softening curve. Thus we can
control the shape of the stress-strain curve with these four parameters quite
easily, which is important for being able to adjust properly the macroscopic
response with the microplane model; C% = initial modulus for the normal
component, which can be determined from (11).

For the compression range of the normal component, we must specify
the equations for softening, plastic, and hydrostatic stress-strain curves, as
mentioned before. The same types of equation as for tension are assumed
as for compression softening of the normal component {Fig. 3(a)).

For 0 = ey = e} (prepeak)

o En Chelelohe
fuslen) = oy = o |1 = (1~ =

ENC
¢ 0.()
with efe =~ (32a)
CNC(’N
for e3¢ > €y (postpeak)
~ L0 PrnC
Ins(ew) = oy = g exp [_ (E‘Nt—m> ]
Enc
. 0 YneT Rie
With ehe = Yvcele = =05 (32b)
LNCCN

For the hydrostatic curve of the normal component, we introduce the
relation

9 ct,

o + g EN e
EiNCT
€, €p

in which C4, = asymptotic final modulus for normal compression as shown
in Fig. 3(b); €, and ¢, = strain values that characterize the shape of the
curve; and p,, (<1) and g, (> ~1) = exponents that also change the shape.
With this equation, we have six parameters to be fixed. Eq. (33) can control
the final tangent stiffness of the hydrostatic curve; the equation of the
previous model with five parameters cannot.

For the plastic curve of the normal component, the first part of the
hydrostatic curve with p,, = 1 is adopted, for the sake of simplicity

.
(E—N> +1
ea

frunlen) = oy =

pr(SN) = 0On =
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For unloading and reloading, the initial moduli of the normal component,
C%, are used as the linear unload-reload stiffnesses C%; and C4 for the
case of hydrostatic and plastic responses and also in the prepeak region of
the tensile or compressive softening response. On the other hand, for the
case of tensile or compressive softening after the peak stress, the following
damage evolution is considered for linear unload-reload stiffness C.

For 0 = ey = e %7 (prepeak tension) and 0 = g, = & (prepeak compres-
sion)

G0 = O et (35a)
For ey > £%+ (postpeak tension)

ur® _ ONT NT

# = anrC + (1 — anp) — with vy = eRy — =1

et — Enr N
......................................................... (35b)

For ey < & %¢ (postpeak compression)

Ty, . e

CH#’ = ancC + (I — anc) p ~E with £y ENe I\(/,(

NC gN(, (’N
......................................................... (35¢)

in which ay,, ane = weight constants, which describe the proportions of
progressive damage in tension and compression softenings; o%, and ¥, =
stresses at the start of unloading for tension and compression softening;
e%rand e 4 = strains at the start of unloading for tension and compression
softening; €y, and £y = plastic residual strains after complete unloading
from the peak stress to zero stress. Thus, with parameter C';" we can control
the elastoplastic-fracturing behavior for the case of softening in normal
microplane component.

MICROCONSTITUTIVE LAW FOR SHEAR COMPONENTS

We know that shear behavior usually depends on the compressive stress
normal to the shear plane. We will take this dependence into account in
the constitutive law for the shear component on the microplane according
to hypothesis IV. In the previous microplane model, this effect was modeled
through the confining stress o. = ¢,,/3, which had the advantage that o, is
the same for all the microplanes. However, a frictional effect such as this
would be better considered individually on each microplane since the shear
response on each microplane is independent and the magnitudes of normal
stress on various microplanes are different. Therefore, in this study it is
assumed that the peak shear stress value on each microplane depends on
the resolved normal component of the macroscopic stress tensor o;; on the
same microplane individually. The resolved normal component S, of the
macroscopic stress tensor ¢; on a microplane whose direction cosines are
n; is
SN S MO = MG oot (36)

The virgin loading curve of K-shear component and M-shear component
must be specified as identical since they differ only in the chosen directions
within the microplane. We use for shear the same form of strain-softening

equation as for the normal component {Fig. 3(a)].
For 0 = |e4| = | e} (prepeak)
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or=101-(1 - 2 Chelfsa? ith 60 < 0 3
T o0 with €% = GOy (37a)

For |€}] < |&,] (postpeak)

e, — e\ ) 0
o, = 7" exp [—— (—’———') with €% = ;£ = y,"r“ ..... (37b)

g ?I' C'l' T

in which subscript T refers to K-shear (TK) or M-shear (TM); 1 = peak
stress, which depends on Sy; {; = a parameter that controls the peak strain
€9; and y; = a parameter that controls e%. At the strain e = % + g%,
the stress decreases to 1%/e in the strain-softening region; p, = a parameter
controlling the shape of the softening curve. Unlike the normal component,
(37) is applied for both tension and compression. The only difference be-
tween tension and compression is the sign of the peak stress 1; i.e., 10 >
0 in tension and 7" < 0 in compression.

The concept of shear frictional cocfficient p is utilized to model the
dependence of shear peak stress 7° on Sy.

For tension of shear

T = +0f — WSy when S, <O ... (38a)
™= +of when Sy =0 ... ... L (38b)
For compression of shear

= —0o% + uSy when S, <O ... (38¢)
M= —g} when Sy =0 ... ... ... ... L. (384d)

in which o9 = peak shear stress at zero normal stress. Thus, our stress-
strain curve for shear has five parameters, 0%, {;, v py, and p.

For straight-line unloading and reloading, the initial modulus of the shear
component, CY, is used as the linear unload-reload stiffness C4%"in the case
of the prepeak region. On the other hand, after the peak stress, the following
damage evolution is considered for the linear unload-reload stiffness Cyr®
for straight-line response.

For 0 = |e,] = [} (prepeak)

CU® = CY (394)
For |e,| > |eY| (postpeak)

Cy = a,Ch + (1 — o) with &, = e — — ........ (39b)

1
eh — & cy
in which o7 = a weight constant that describes progressive damage for shear
softening; o4, €% = stress and strain at the start of unloading; and &; =
plastic residual strain after complete unloading from the peak stress to zero
stress. Thus, Cy"" models the elastoplastic-fracturing microconstitutive law
for the softening in shear.

LOADING, UNLOADING AND RELOADING IN
MICROCONSTITUTIVE RELATIONS

_ Macroscopic stress-strain relations for cyclic loading require proper load-
ing-unloading-reloading criteria for each microplane component. Since our
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microplane model is based on a kinematic constraint and the response on
each microplane can be described only (or mainly) by microstrain compo-
nents, it seems preferable to express the loading criteria in terms of mi-
crostrains only. Let each microstrain €, e7x, €74 and microstress compo-
nent oy, 07k, o1y be defined as € and o, for the sake of simplicity. The
following loading-unloading-reloading criteria are used for all the compo-
nents.

Loading
when o, > 0, Ae, ., >0, T (40a)
when o, < 0, Ae,,, <0, €rbl = B e (40b)
Unloading
when o, > 0, Ae,,, <0, €rp1 < Brax e (40¢)
when o, < 0, Ae, ., >0, Eral = B e e (404)
Reloading
when o, > 0, Ag, ., >0, €01 < EBmax v (40e)
when o, < 0, Ag,,, <0, Bl  Epin o e (401)

in which o, = microstress of each component at the end of the previous
load step; ¢,,, = microstrain of each component at the present load step;
Ae, ., = €,,, — g, = incremental microstrain of each component; and ¢
and e, = maximum and minimum microstrains in the history.

The loading-unloading-reloading criteria in (40) with linear unload-reload
stiffnesses Ci° [(30) and (35)] and C4° [(39)] can be used in order to
describe the cyclic behavior of each component. However, numerical sim-
ulations with C'7° and C4'” revealed that the hysteresis loops are too narrow.
Wider hysteresis loops on the microplane are necessary to obtain proper
hysteresis on the macrolevel. The reason is that hysteresis loops govern
energy dissipation and the basic hypothesis of the microplane model is
energy equivalence between the macro- and microlevels. Nonlinear un-
loading-reloading hysteresis rules with back-stress and objective-stress are
developed for this purpose. The hysteresis rules are applied to the case of
unloading or reloading in the strain-softening regions. The microplane back-
stress g, is defined as

max

Tpre1 = O, when Ag, Ag, . <0 ... . . (41a)
Oprrt = Oy, when Ag,Ae, ., =0 ... .. ... ... (41b)

in which subscripts » and r + 1 refer to the previous and current numerical
steps. The microplane objective-stress o, is defined as

O =0 whenunloading ............................... (42a)
O, = O whenreloading ............................... (42b)

in which o = stress at the start of unloading from the virgin loading curve;
o, and o,, are set when the microplane is unloading or reloading. We
introduce the following unloading-reloading function F*(c) in terms of
microstress o on the unloading or reloading branch:
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g, —O
Fogo) = |2

Top — Oy

This function is nondimensional and its values vary from 0 to 1. The un-
loading tangent stiffness C*(o) and the reloading tangent stiffness C’(o) are
(sce Fig. 4)

CHo) = [(Unin = Upad F(0) + UpalC70 (44a)
C(0) = (R — Ruad) F(0) + RouddC0 (44b)

in which U, and U,,,, = nondimensional ratios determining the minimum
and maximum unloading tangent stiffnesses C*,, and C%,, (i.e., Ct,, =
UninC*" and Ct,o = U,iiC"" Rio and R, = nondimensional ratios
determining the minimum and maximum reloading tangent stiffnesses
C:‘nin and C:‘unx (i'e'~ C’I;\il! = RminC“r” Zlnd C:‘nux = RmuxC”r”)' USing the
foregoing hysteresis rules. one can get hysteresis loops such as that depicted
in Fig. 4(a).

CYCLIC LOADING RULES FOR MICROCONSTITUTIVE RELATIONS

» The foregoing rules apply separately to the tension and compression
regions of each microplane component. The borderline between the tension
and compression regions is given by zero microplane stress. To establish a
complete cyclic loading model for the microplane, the foregoing rule must
be extended to the entire range of tensile and compressive microplane

(b)

v
2
£ Cumax = 7
5 UnaC™
;é; 3 Cur()_
(a) 20
c Cu_ -
o min o
/ACO c® o UninC |
O 0 1 1 5 0 1
° ur() @ . . .
» UmaxC c ° unloading - reloading function
@ 1 E F" (0)
-‘:—’) o' 1 RuminC
5 1 2 (c)
€ Rfax ¢ g o
0 = max = o]
1(] : . Curo 5 R U0
{ i £L usd
ev é £0 " Cé)’b C
microstrain € s RC:"i'b oy
g) min !
=i 0 1
S unloading - refoading function
[od Fur(o)

FIG. 4. (a) Unloadings and Reloadings from and to Points on Virgin Microstress-
Strain Curve; (b) Unloading Tangent Stiffness C*(s); (c) Reloading Tangent Stiff-
ness (’(a)

387



stresses. The basic idea to do this is as foHows: (1) The virgin stress-strain
curves for both tension and compression are unique regardless of the number
of cycles or the strain history; (2) the transition between the tension and
compression regions involves horizontal plateaus; and (3) the virgin stress-
strain curves can be horizontally shifted along the strain axes to the starting
point of unloading or reloading. Many possible cases of the cyclic rule based
on this basic idea were tricd numerically and compared to the uniaxial
compressive and tensile tests from the literature.

The cyclic rule for the normal component which was determined in this
way is illustrated by the idealized (partially exaggerated) stress-strain curves
in Fig. 5(a) (softening curve fy,(e ) is used for compression). With the cyclic
rule for the normal component. the origin of the compression stress-strain
curve is fixed; however, the origin of the tension curve is shifted as shown.
In the example of Fig. 5(a), the first cycle enters tensile softening, and then
reverts to compression. Before going into compressive stress, there is a
plateau, which corresponds to closing of microcracks. The compression
region begins always at the origin (zero strain); however, the origin of
tension is shifted every time when unloading from the compression region
crosses the strain axis.

The cyclic rule for the shear component is shown by the idealized stress-
strain curves in Fig. 5(b). The origins of the stress-strain curves for both
tension and compression regions are fixed. In the example shown. the strain
cycles are similar to those used in the previous example of normal com-
ponent; however, the stress responses are very different. After the unloading
curves reach the strain axis. there are always plateaus of zero stress. This
assumption is needed to model experimental observations showing that for
large deformations almost no stress change occurs in crack shear (aggregate
interlock) tests with stress reversals. Such behavior is due to free play be-
tween asperities or between the faces of opened cracks, which need to come
into contact before the stress can reverse its sign.

NONLOCAL MICROPLANE MODEL

The microplane model described so far deals only with the point properties
of the macroscopic continuum approximating the average response of the
heterogeneous material, under macroscopically uniform strain. This is in-

a b
100 ( ) 20 ( )
@ 50 @
=~ o __ 104
*(;;NE tNE
n
°o 0 6o
O o™
[ o 0
Ex € x
—“\/ _50_ L\_/
O = -
£® 8°_o]
S —100 5
¢
~150 -20
-25-20 -15 -10 -5 0 5 -6 -4 -2 0 2 4 &

normal microstrain &y (1074 shear microstrain & (107%)

FIG. 5. (a) Cyclic Rule for Normal Component; (b) Cyclic Rule for Shear Com-
ponent
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sufficient for describing the localization phenomena and size effects. To this
end, as is by now well established, one must introduce some type of a
nonlocal concept.

In the original (imbricate) nonlocal theory (Bazant et al. 1984) the total
strain was assumed to be nonlocal. But this has the disadvantage that the
differential equilibrium equations and the boundary conditions are not the
same as those of the local continuum theory. More recently (Pijaudier-
Cabot and Bazant 1987; Bazant and Pijaudier-Cabot 1988; Bazant and Lin
1988) it has been shown that the nonlocal aspects of strain-softening can be
captured while preserving the same forms of the equilibrium equations and
the boundary conditions as those of the local continuum theory. In the new
nonlocal damage theory, only the variables associated with strain softening
are nonlocal while all the other variables, particularly the elastic strain, are
local. This new nonlocal concept, which was combined with the microplane
model for time-independent monotonic response of concrete in Bazant and
Ozbolt (1990), is adopted in this study.

To render the microplane model nonlocal. we replace the local values of
microplane stiffnesses Cy, Cyx. Cyrpy [(9)] and_inelastic microstresses do )
do'yx, do'yy [(10)] with the nonlocal values C,, C;x, and Cyy, and dGy,
da'yx, dd'yy, (the overbars mean ‘‘nonlocal™). These nonlocal values are
calculated on the basis of the nonlocal microstrains €, £, €44, Which
represent the resolved components of the nonlocal macroscopic strain tensor
£;. Thus, one always needs both local and nonlocal variables and must
calculate both responses for each component on each microplane. When a
microplane is loading (hardening or softening), we use the nonlocal values
in (9) and (10), and when a microplane is unloading or reloading, we use
the local values. The nonlocal macroscopic strain tensor &, is calculated as

g4(x) = ﬁ jv afs — X)g,(s) dV = [v a'(x,s)e(s)dV ... . ... (45)
in which

V,(x) = jv a(s — xX)dV (46a)
wixs) = S8 X (46b)

VA(x)

x and s = coordinate vectors; a(x) = weight function, which is treated as
a material property; V = volume of the entire structure; V,(x) has approx-
imately but not exactly the same meaning as the representative volume in
the statistical theory of heterogeneous materials. '

Initially the weight function a(x) was assumed as the normal (Gaussian)
distribution function. Recently Bazant proposed to use a computationally
more efficient quartic bell-shaped function, which vanishes for distances
greater than r; = kI (Fig. 6)

fora=s1 ax) = (1 —A)%4 fora>1 a(x) =0 ......... (47)
in which A = r/r, = r/kl and for the one-dimensional case

15
r=xls k= s (48a)
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FIG. 6. Weight Functions for Nonlocal Averaging

For two-dimensional case

V3
r=Vxi+ x3; k = TOT e (48h)
For three-dimensional case
’;5 1/3
r=Vxi+ x5+ xy; k== .
%% ] ] <64> ......................... (48¢)
where x; = Cartesian coordinates; k = constants determined from the

condition that the volume under the function a(x) should be cqual to the
\_folume under a function &(x) that is uniform, a(x) = 1 for r = /2, and
&(x) = 0forr > I/2. Here [ is the characteristic length of nonlocal continuum
(which gives the size of the representative volume)

NUMERICAL ALLGORITHM IN FINITE-ELEMENT ANALYSIS

The present nonlocal microplane model has been introduced in a usual
nonlinear finite-element program using initial stiffness method. One rez;so‘n
why the initial stiffness method is used is the nonsymmetry of the structural
stiffness matrix, which is caused by treating only the inelasticity as n()nl()cz;l
Another reason is numerical convergence in the softening regime of the
structure. Although the initial stiffness method sometimes gives slow con-
vergence, it always converges and leads to stable iterations when the stress
and strain increments due to iterations are accumulated. o

In the first iteration of the first load step, the total elastic structural
stiffness matrix K is assembled using the specified Young's modulus and
Poisson’s ratio of the material. In each load step, the following num;srical
algorithm is employed.

1. At the beginning of each iteraction, K is used to estimate a trial
structural incremental displacement vector Au by solving the equation A‘u
= K“"Af, where Af is the nodal force increment due to prescribed force
and displacement at the present load step or the residual nodal force from
the previous iteration. Then one calculates the incremental local macro-
scopic strains Ae; for all the integration points of all finite elements and
also the incremental nonlocal macroscopic strains Ag,, from (45) and ('46)

. . . 'I
2. The incremental local microstrains Aey, Ae gk, and Ag,, are calculated
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for each microplane at cach integration point of cach finite clement using
(1) and (3) with Ag,. The incremental nonlocal microstrains Agy, A&y,
and Agqy, are also cvaluated from Ag; Then, for normal, K-shear, and
M-shear components of both local and nonlocal strains on each microplane,
loading, unloading, or reloading is judged using (40). Depending on the
loading-unloading-reloading condition, the local and nonlocal values of the
microstiffnesses Cn, Crx, Crarr Cns Crx, and Cryy and the local and nonlocal
inelastic microstresses da’y, do'yx, Aoy, Ao, dé'y, and dd'y,, are calcu-
lated based on the aforementioned microconstitutive models. If there is
hardening or softening (virgin loading) on a microplane we use the nonlocal
microstiffnesses and inelastic microstresses; on the other hand, if unloading
or reloading occurs on a microplane, the local values are used to calculate
macroscopic incremental stiffness C,;,, [(9)] and macroscopic inelastic stress
increment do; [(10)] for the integration point of the finite element. Then
the macroscopic total stress increment da;; [(18)] and the macroscopic total
stress o; are calculated.

3. Based on the calculated total stresses at each integration point in each
finite element, the total equivalent nodal forces f*¢ are evaluated and as-
sembled for the whole structure. The residual nodal forces £ are calculated
as fR = f — f£9, in which f is the total nodal force due to the prescribed
force and displacement at the present load step, or the residual nodal force
of the previous iteration.

4. The norm ratio w of the residual nodat forces, defined as w = [2 (f*)%/
= (F)?)"2, is calculated to judge convergence of the iterations. In this study,
if w = 0.01, the iteration process is judged to have converged, and the
calculation advances to the next load step. If w > 0.01, one returns to step
1 and starts the next iteration.

To implement the step-by-step calculation, a number of characteristic
microstrain and microstress values for each microplane need to be stored
in the computer memory. Their number is 43 (=15 + 2 x 14) per micro-
plane (Table 1). Since in this study the BaZant and Oh’s (1986) integration

TABLE 1. Characteristic Values for State of Each Microplane to Be Stored in
Memory

Value Normal Shear K and M
Tension | Compression | Tension | Compression

(1) (2) (3) 4 (5) (6)

Strain in previous iteration g, O O O O

Maximum strain Ermax O — O —

Minimum strain Emin — O — O

Strain at back-stress € O O O O
Strain at zero stress after com-

plete unloading €, O O O O

Strain at origin of curve €. O — — —

Stress in previous iteration a, O O O O

Stress at start of unloading a O O O O

Back-stress a, O O O O

Linear unload-reload stiffness | C*° Q O O @]

Note: O means necessary to be stored in memory.
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formula with 21 points on a hemisphere is used [Fig. 1(d)], and since we
have both local and nonlocal components, we need to store 1,806 (=2 x
21 x 43) values for each integration point of each finite element.

CONCLUSION

The present improved and extended formulation of the microplane model
for concrete bears considerable promise with regard to numerical finite-
element analysis of concrete structures. [Application to the analysis of test
data is done in part II (Hasegawa and Bazant 1993); in which detailed
conclusions are to be found.]
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NONLOCAL MiICROPLANE CONCRETE MODEL WITH
RATE EFFECT AND LOoAD CYCLES.
I1: APPLICATION AND VERIFICATION

By Toshiaki Hasegawa' and Zdenék P. Bazant,? Fellow, ASCE

ApsTRACT: This sccond part of the study deals with experimental verification of
an improved and generalized nonlocal microplane model whose general formulation
was given in the first part. First the stress-strain relations for a material point are
simulated with a local version of the model. and then the representation of some
basic tests is studied in finite-clement analyses with the nonlocal caleulation.

INTRODUCTION

Part I of this study (Hasegawa and Bazant 1993) presented various im-
provements and extensions of the microplane model for concrete. The pur-
pose of this second part is to demonstrate the capability to simulate the
pertinent test data. All definitions and notations from part [ arc retained.

The postpeak response of specimens with strain-softening damage or
fracture must be suspected to involve strain localization and size effect, and
cannot be interpreted as if the specimens were in a uniform state. This
means that the numerical results we get with one finite element using a local
version of the microplane model are insufficient to compare with the ex-
perimental results and verify the model. Subdivision of the specimens into
many finite elements is needed to do that. Nevertheless, as the first check
of the constitutive model, the point response, calculated with one finite
element, needs to be explored and understood.

SIMULATION OF MACROSCOPIC STRESS-STRAIN RELATION FOR
MATERIAL POINT

Except for the elastic constants, Young’s modulus £ and Poisson’s ratio
v, each microplane in the present model is characterized by three groups
of material parameters: The first group involves the material parameters
for the virgin stress-strain curves, i.e. 0%z, Lars Yare and pa, for (31) of
part I; o%¢. {nves Yo and pyc for (32) of part 1; o', Ly vy pys and o for
(37) and (38) of part I; C[, =,. €, pys, and g, for (33) and (34) of part I;
and €l ,,, €4, and m for (27) of part 1. The second group involves the
material parameters for unloading-reloading, i.e. a,, and oy for (35) of
part I; a for (39) of part I; and U, Unins Ruax and R, for (44) of part
I. The third group involves the relaxation times p in (12) of part 1. For U, .
U ins Riaxs Rimin and p we have separate values for normal tension, normal
compression, and shear. Altogether, there are 39 material parameters. How-
ever, according to the data-fitting experience it appears that one docs not

'Struct. Res. Engr., Shimizu Corp., 3-4-17 Etchujima, Koto-ku. Tokyo 135, Japan.

*Walter P. Murphy Prof. of Civ. Engrg., Northwestern Univ., 2145 Sheridan Rd.,
Evanston, IL 60208-3109.

Note. Discussion open until January 1, 1994. Separate discussions should be sub-
mitted for the individual papers in this symposium. To extend the closing date one
month, a written request must be filed with the ASCE Manager of Journals. The
manuscript for this paper was submitted for review and possible publication on
September 23, 1991. This paper is part of the Journal of Materials in Civil Engineering .
Vol. 5, No. 3, August, 1993. ©ASCE, ISSN 0899-1561/93/0003-0394/$1.00 + §$.15
per page. Paper No. 2742,
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have to specify the individual values for oy, ane. and o, as well as those
for Uaee Unine Runax» and R, in normal tension, normal compression, and
shear. Also, it appears that one can set U,,. = Ry, and Uyin = R
because, if U,y # Ruax OF Upin # Ruin. the shapes of the hysteresis loops
are sometimes unacceptable. It means that we can reduce the number of
independent microplane material parameters to 27.

By fitting cyclic uniaxial compressive and tensile test data for concrete,
the following values characterizing the unloading-reloading rule were found
to work:

Upie = Roe = 2.0 oo e (1a)
Ui = Rogn = 0.5 oo oo et e e (1b)
Gnp = one = G = 0.2 (Ic)

In the case of normal hydrostatic response, the hysteresis loops of a micro-
plane should be very narrow because little damage is done to the material;
in the case of normal compressive softening response, the hysteresis loops
should be wide. However, no hysteresis is assumed for normal compressions
including softening, for the sake of simplicity.

Since under hydrostatic condition there is no shear on the microplanes,
the material parameters C/. €,. &,. py. and g, for the hydrostatic curve
[(33) of part 1] can be determined independently of all the others, simply
by direct fitting of the experimental data for hydrostatic compression of
concrete. Such a fitting of the test data of Green and Swanson (1973) is
shown in Fig. 1(a), and the material parameters identified are C} = C%;
g, = —0.0013; e, = —0.17; and p,; = q,, = 1.0. Although there exist only
limited hydrostatic compression test data for concrete, they show that we
may assume the asymptotic final modulus (slope) for the hydrostatic curve
to be the same as the initial modulus, i.e., C/ = C%. For most individual
data sets of concrete, the hydrostatic response curve has not been measured,
and therefore the parameters determined for the test data of Green and
Swanson are used in all the present calculations.

Since in most static loading tests of concrete only one strain rate has been
used, it is impossible to identify the microplane material parameters gov-
erning the rate cffect, i.c. relaxation times p. Therefore, in the following

(c) L)

o 0 &
1% ---- test by Green et al S
9_) - an(EN { ~~~~~ N
@~ 10004 U'—ZOOACOnfining stress)
BNE = 6.=7.03 kg/cm
£ —20001 N —4001
§; 2000 5 0.=70.3 kg/cmis
cX ® = - =
5 3—3000- g—GOO-i
L. = -
T b 7] .
}’ — 4000 — —800- 6.=140.6 kg/cm
2 2 -~ -~ {est by Willam et|al.
8 o —— microplane model
- —1000;
5000—4 -3 -2 -1 0 ~25-20 -15 -10 -5 03 5
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FIG. 1. {(a) Comparison with Hydrostatic Compression Test by Green and Swan-
son (1973); (b) Comparison with Triaxial Compressive Tests by Willam et al. (1986)
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calculations for the static loading tests we have to climinate the strain rate
effect by specifying infinite values of the relaxation times p”. According to
the numerical simulations of one microplane response with different relax-
ation times and strain rates, the values of the relaxation times p* seem to
be functions of the strain rate and the peak stress value for the monotonic
curve. In the case of calculations for the typical static strain rates used in
experiments, ¢ = 10-°-10~%/s, it seems possible to consider the relaxation
times p%r = p3 = 10° s and pk = 10° or 107 s as infinite.

First some comparisons with the previous microplane model shouid be
mentioned. In the previous microplane model (Bazant and Prat 1988; BaZant
and Ozbolt 1990; Ozbolt and Bazant 1991; Carol et al. 1992), a good de-
scription of the response in compression softening was achieved by splitting
the resolved normal microstrain component into volumetric and deviatoric
components, which meant that the microplane response was indirectly af-
fected by the lateral strain. This split made it possible to describe materials
with arbitrary Poisson ratios v, within the range ~1 = v = 0.5, which is an
advantage over the present model (in which an arbitrary Poisson’s ratio
cannot be obtained). However, the fact that the lateral strain has only an
indirect effect, as a part of the volumetric strain, may be a disadvantage,
detracting from conceptual clarity. Whereas the differences in the capabil-
ities of these two related but different approaches remain to be explored
deeper, we adhere here to the direct use of lateral strain, with no volumetric-
deviatoric split of the normal strain.

Fig. 2 shows an example of response for the uniaxial compressive test,
in which the formulations for the volumetric, deviatoric and shear com-
ponents on all microplanes are combined. The material parameter values
are as follows: (1) For volumetric tension o\, = 2.45 MPa, {,; = 0.9, vy
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FIG. 2. Responses for Uniaxial Compressive Test with Previous Microplane Modei:
{a) Macroscopic Stress-Strain Response; (b) Microstiress-Strain Responses at In-
tegration Point 1; (c) Microstress-Strain Responses at Integration Point 2; (d) Mi-
crostress-Strain Responses at Integration Point 18; (e) Volumetric Response
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= 3.0, pyr = 2.0, pyyr = 1085, and m = CY/CY = 1.0; (2) for deviatoric
tension o'y, = 0.49 MPa, {,,r = 0.9, ypr = 3.0, ppy = 2.0, and pyy =
105 s (3) for deviatoric compression % = —39.23 MPa, {5 = 0.5, Ypc
= 1.5, ppc = 1.5, and ppe = 10°s; and (4) for shear o'}y = 1.47 MPa,
= 0.5, v, = 1.5, py= 15 p =10, and py = 10° s. The numerical
integration over the spherical surface of microplane orientations was done
using Bazant and Oh’s (1986) formula with 21 integration points per hem-
isphere [Fig. 1(d) of part I]. (The uniaxial compression direction coincided
with the direction of the unit normal vector at integration point 2.) Fig. _2(a)
shows the macroscopic stress-strain curve and Figs. 2(b—d) show for inte-
gration points 1, 2, and 18 (the deviatoric response and the shear responses
of the K and M directions) and the total normal response as a sum of the
deviatoric and volumetric components. Fig. 2(e) shows the volumetric re-
sponse. The microplane at integration point 2 affects mainly the axial re-
sponse, while the microplane at integration point 1 aftects mainly the Poisson
effect and volume dilatancy. The microplane at integration point 18 has a
high intensity of shear strain, while integration points 1 and 2 have no shear
strains. ]

Since a few existing hydrostatic tension tests show that the macroscopic
hydrostatic tensile strength of concrete is approximately equal to the mac-
roscopic uniaxial tensile strength f;, we have to choose the volumetric peak
tensile stress value o', equal to the macroscopic uniaxial tensile strength
f.. However, the macroscopic uniaxial tensile peak stress calculated with the
‘microplane volumetric-deviatoric-shear formulation is then higher than the
sum of the deviatoric peak tensile stress value a9, and the volumetric peak
tensile stress o', This means that we should set o, - as close t.of, as possible
and ¥, as small as possible because a reasonable triaxial failure envelope
in the tensile region could not otherwise be obtained. Therefore, in cal-
culating Fig. 2, a small value of oy .(=().49 Ml?a) and a larger. value of
o', (=2.45 MPa) were chosen. But this goes against the assumption of the
previous model that the stress-strain curves for volumetric tension and de-
viatoric tension are the same. The use of a small value of a9, causes the
damage on each microplane to occur earlier, especially on the microplanes
that resist lateral dilation in the case of uniaxial compression; this causes a
deviation from purely elastic behavior at lower stress level. This is the reason
why the response seen in Fig. 2(a) is far away from purely elastic behavior
[dotted straight lines in Fig. 2(a)] already at the beginning of stressing. To
avoid this. a material constant n, (= C%/CY), representing the ratio between
the initial deviatoric and volumetric moduli, was changed for these calcu-
lations, but no better result had been available. '

One interesting result is the volumetric response, which shows a volu-
metric dilatation to occur at the beginning and a volumetric compaction
after that, as seen in Fig. 2(¢). It is an opposite trend to that in the study
of Bazant and Prat (1988), in which reasonable results were obt'ain.ed sh_ow-
ing the initial volumetric compaction and subsequent volumetric dilatation.
The reason was the assumption that o'y = oV and that the stress-strain
curves for deviatoric and volumetric tensions are the same. However, the
assumption o9,; = oY, appears questionable from th(: viewpoint of the
macroscopic triaxial strength envelope, as already mentioned.

To compare the present normal-shear formulation with the previous vol-
umetric-deviatoric-shear formulation, Fig. 3 presents the numerical results
for uniaxial compression using the present micyoplane model, and Table 1
gives the corresponding material parameters. Fig. 3(a) shows the calculated
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FIG. 3. Responses for Uniaxial Compressive Test with Present Microplane Model:
{a) Macroscopic Stress-Strain Response; (b) Microstress-Strain Response at in-
tegration Point 1; (¢} Microstress-Strain Response at Integration Point 2; (d) Mi-
crostress-Strain Responses at Integration Point 18; (e) Macroscopic Volumetric
Response

macroscopic stress-strain response. Figs. 3(b-d) show the normal, K-shear,
and M-shear responses for integration points 1, 2, and 18 (the same as in
Fig. 2). Fig. 3(e) shows the resulting relation between the macroscopic axial
stress o, and the macroscopic average volumetric strain €, (e, = &,/3).
Compared with the responses on the microplanes in the previous formulation
(Fig. 2), the responses for the present formulation appear quite reasonable.
The response at integraton point 1 is a progressive tensile softening behavior.
which reflects axial tensile cracking in the uniaxial compressive specimen
[Fig. 3(b)]. In the calculation, the macroscopic compressive peak is obtained
when the shear responses on some microplanes (integration points 4, 5, 6,
7,10, 11, 12, and 13) go into the softening regimes after the normal responses
on the same microplanes go into softening. This appears to be a consistent
picture of the micromechanism of uniaxial compressive failure, in which the
uniaxial compressive specimen is weakened by axial splitting cracks. The
main difference from the results with the previous formulation is the relation
between the macroscopic axial stress o,, and the macroscopic average vol-
umetric strain ¢,,,, shown in Fig. 3(e). In contrast to the previous formulation
[Fig. 2(e)], the present volumetric response is consistent with the experi-
mental fact that the volumetric compaction precedes the volumetric dila-
tation due to axial tensile cracking. The turning point from volumetric
compaction to dilatation, which is sometimes called the critical point and
occurs in experiments usually at 75-90% of uniaxial compressive strength
f+, is here obtained at 78% of f..

Fig. 1(b) shows the fits of the triaxial compressive test data for concrete
by Willam et al. (1986), and Table 1 gives the material parameters used.
These tests, which were carried out at three different confining stress levels
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Optimum Values of Material Parameters

TABLE 1.
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(o, = 0.69. 6.90, and 13.79 MPa). show the confinement cffect, i.c.. the
transition from the softening response at o, = 0.69 MPa to the plastic
hardening response at o, = 13.79 MPa. The feature that enables the present
microplane model to describe the confinement effect is the dependence of
the normal response on the lateral strains and also the dependence of the
peak shear microstress value on the resolved normal macroscopic stress
tensor. The former dependence is included in parameter €} ,,, €, ,,, and m,
and the latter dependence is included in parameter w. The fits in Fig. 1(b)
are good, .which means that the present normal-shear formulation with
lateral strain dependence and the resolved normal macroscopic stress tensor
dependence is valid without resorting to the volumetric-deviatoric subdi-
vision of the normal microplane strain. The other tests simulated in this
study include no data with different confining stress levels, therefore in the
latter calculations the parameters fitted to the test data of Willam et al.
(1986), e1p = 0.01, e5,, = 0.01, and m = 1.0, are used for the sake of
simplicity.

Figs. 4 and 5 show the fits of the cyclic uniaxial compressive tests of
concretes by van Mier (1984) and by Karsan et al. (1960), and Table 1 lists
the corresponding material parameters. As before, Fig. 4(b-d) and Fig.
5(b-d) show the normal, K-shear and M-shear responses at integration
points 1, 2, and 18. From these results we can see a good capability of the
present model in describing macroscopic cyclic behaviors including degra-
dation of the unloading-reloading stiffness and the shapes of the hysteresis
loop, particularly the change of the loop width. The integration points 1
correspond to the lateral directions for uniaxial compression and their re-
sponses simulate axial splitting cracks. Note that even though the microplane
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responses at integration points 2 corresponding to the direction of uniaxial
compression have no hysteresis loops, the macroscopic responses for the
same strain values as those for integration points 2 do have hysteresis loops.
It means that the source of macroscopic hysteresis lies mainly in the hys-
teresis loops for normal tensile softening and shear softening on the micro-
planes.

Fig. 6 compares the calculated results with Reinhardt’s (1984) cyclic un-
iaxial tensile tests, in which tapered cylindrical specimens were used, with
saw-cut notches inducing a crack at mid length. The displacement across
the notch was measured over the base length of 25 mm. The average strain
over the base length was compared to the present calculations. The identified
material parameters are again listed in Table 1. The calculated results agree
well with these test data, especially the postpeak stiffness degradation and
the linear compressive behavior.

Fig. 7(a) compares the uniaxial compressive tests data (Dilger et al. 1984)
for different strain rates (—3.3 X 1073 to —2.0 x 107" s~!) with the
calculated results using the relaxation times p given, along with other ma-
terial parameters, in Table 1. The p-values have totally diffcrent orders of
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magnitude than in the previous static calculations because the strains range
from static to dynamic (impact). In the calculation. different values of Young's
modulus £ are used for different strain rates, since, otherwisc. the initial
prepeak response would deviate from the test results (for ¢ = 3.3 x [0-5,
=33 x 107, and =2.0 x 10" s~": E = 324 x 0", 3.43 x 10", and
4.22 x 10* MPa). (This could be avoided by introducing strain-rate de-
pendence in the elastoplastic-fracturing element of the gencralized Maxwell
model for each microplane, but this would further complicate the model. )
Although the fits are not poor, more extensive comparisons are desirable.

There are only few experimental data on the strain rate effect. especially
for cyclic loading. We consider van Mier's (1984) cyclic uniaxial compression
data. The relaxation times are assumed as ppy = p, = 1.0 % 10" s: Pre =
1.0 x 10°s; and the monotonic and cyclic loading calculations are done for
two strain rates, ¢ = ~1.0 x 10-*and —~1.0 x 10~2 s"'. In each. the
unloading-reloading cycles start at two postpeak stress values 0.90,.. and
0.60.., Where 0.« = peak stress for monotonic loading. The results are
shown in Fig. 7(b). The decreases of the load capacities due to cycling.
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which are defined as stress differences between the monotonic and cyclic
curves, get smaller as the strain rate gets larger.

One advantage of the present microplane model is that cach material
parameter has a clear, easily understandable, mechanical meaning. For
example, o® are the peak microstresses for each component, vy represent
the ductilities in the postpeak range, and { represent the strains at peak
stress, characterizing the degree of nonlinearity in the prepeak response.
The values in Table 1 illuminate the choice of material parameters for the
microplane model; o, and oY appear to be related not only to f, but also
to f.; 0% can control the stress level for the critical point of uniaxial com-
pressive stress-strain curve; o%, does not have a strong correlation with
£, but we might consider it to be larger than f,. From numerical experience,
o = (1.0-2.0)f, o% = —1.5f/, and 0% = (0.5-1.5)f,. The values of
{nrand { ycdo not have large effects on the macroscopic behavior; however,
{nc must be chosen so that the normal compressive softening curve touches
inside of the normal hydrostatic curve. On the other hand, the value of {;
can change the macroscopic peak stress and the ductilities in uniaxial com-
pressive test. From numerical experience, {yy; = 0.4-0.6, {n, = 0.3-0.5,
and {; = 0.4-0.8. There seems to be a tendency of large vy, and v, values
to yield higher peak stresses and ductilities in the macroscopic responses.
The value yyc seems to have a small effect on the macroscopic uniaxial
compressive and tensile behaviors. The values pyr, pyc. and p, change the
postpeak softening curves only slightly (the ductilities depend mainly on v).
From such experience, pyr = pne = pr = 1.5. The larger the frictional
coefficient p of the shear component, the more prominent the confinement
effect in triaxial tests. However, if n becomes too large, the volumetric
dilatation near the uniaxial peak stress disappears. From experience, p =
0.5-1.0.

With the foregoing parameters fixed as indicated, 10 material parameters
remain to be identified by fitting individual monotonic test data (namely
%7 Thes 0% Cnvrs Enves Crs YT Yves Yoo and w) provided that the param-
eters of the hydrostatic curve and the lateral strain effect have already been
fixed.

Note that all the test data used were obtained at fixed principal stress
rotations. We cannot guarantee that if their directions rotate, some modi-
fications of the model might not be needed. In principle, however, the
microplane model should apply to rotating principal stress directons as well.

As important feature to note is that the test data were fitted under the
assumption of a uniform strain state. Obviously this is generally not true
for postpeak softening. Localizations likely occurred, and consequently the
postpeak response obtained with the present model applies only to specimen
sizes approximately the same as those tested. But calculations in the post-
peak softening range can be made using some form of a localization limiter,
for which the nonlocal theory is adopted here.

NUMERICAL STUDIES WITH NONLOCAL MICROPLANE MODEL

The present microplane model has been combined with the nonlocal
theory, and the microplane finite-elecment program has been generalized for
the nonlocal behavior. This makes it possible to model the size effects,
which were investigated in the previous studies of the nonlocal smeared-
cracking model and nonlocal microplane model (BaZant and Lin 1988; Ba-
zant and Ozbolt 1990). Those studies dealt with tensile cracking and fracture.
The present microplane model is more general and has been partly verified
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for more general stress conditions. We are interested in applying it to non-
tensile failures. We explore a set of experiments availabie in the literature,
those of van Mier (1984), dealing with uniaxial compressive failures of prisms
of the same square section (100 x 100 mm) but different heights (50, 100,
and 200 mm). These tests, strictly speaking, do not show what is understood
as the size effect, because the specimens were not geometrically similar.
Van Mier’s tests show that the postpeak descending stress-strain diagram
becomes steeper as the specimen height (length) (or the height-to-width
ratio, slenderness) is increased.

Fig. 8 shows the three finite-element meshes used. Meshes A, B, and C
correspond to van Mier’s specimens 15A1-5 (height & = 50 mm), 10B1-3
(h = 100 mm), and 10B2-2 (h = 200 mm): They consist of 25 four-node
isoparametric finite elements with 2 x 2 Gaussian integration points. The
plane stress condition is assumed. The boundary conditions on the loaded
sides are a sliding (frictionless) constraint in the x-direction. The load is
introduced by prescribing uniform nodal displacements along the loaded
side. The material parameters are the same as those indicated for the sim-
ulation of van Mier’s cyclic uniaxial compressive test (Table 1). The char-
acteristic length / is assumed tobe / = 3d, = 3 x 16 mm = 48 mm (d, is
maximum aggregate size). The finite-element calculations are done not only
with nonlocal averaging, but also without it.

The calculated load-displacement curves are compared to van Micr's data
in Fig. 9(a). The load-displacement curves for both local and nonlocal cal-
culations are almost the same in the cases of i = 50 and 100 mm, and they
both agree with the experiments well. However. in the case of I = 200
mm, the maximum load value for the local calculation is too small, while
the nonlocal calculation predicts the maximum well. Generally, the nu-
merical convergence of the load-step iterations in the local calculations has
not been good, although for the nonlocal calculations it has been very good.
The reason is spurious strain localization in the case of local calculations:
the nonlocal calculations do not have such a problem, as shown later.

Fig. 10 shows the distributions of strain ,, (lateral strain) at maximum
load (P = P,,,,) for all the meshes; Fig. 10(a—c) are the nonlocal calcula-
tions, and Fig. 10(d-f) are the local calculations (here and in Figs. 11-13).

Yy
1 £
Y y9yeye s
b i
Y : X
E[ g
e -

X —> - »
o BEEAEL X Y. y.y.y.y.} X L.y y. . X
I 5x20 mm I , 5%20 mm l 5x20 mm I
Mesh A Mesh B Mesh C

FIG. 8. Finite-Element Meshes for van Mier’s (1974) Specimens
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Mier's (1984) Tests: (a)-(c) Nonlocal Calculations; (d)-(f) Local Calculations

There are only small differences between the distributions for nonlocal and
local calculations for the heights & = 50 and 100 mm, but for # = 200 mm
the strain distributions are very different, the strain field for the local cal-
culation tends to localize. Fig. 11 shows the ¢,, distributions at postpeak
load P = 0.7P,,,, for all the meshes [the strain scale of Fig. 11(f) is different
from the others]. A large strain localization occurs in the local case for h
= 200 mm [Fig. 11(f)]; in the nonlocal case there is no pronounced local-
ization, only a gradual strain distribution [Fig. 11(c)]. The localization ob-

405



<4mm compressive loading

Ex (1074
Q\,30 40

&

FIG. 11. Calculated Lateral Strain Distributions ¢, at Load on Softening Regime
(P = 0.7P,,,) tor van Mier's (1984) Tests: (a)-(c) Nonlocal Calculations: (d)-(f)
Local Calculations
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FIG. 12. Calculated Compressive Axial Strain Distributions ¢,, at Load on Soft-
ening Regime (P = 0.7P,,,) for van Mier's (1984) Tests: (a)-(c) Nonlocal Calcu-
lations; (d)—(f) Local Calculations
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FIG. 13. Calculations Shear Strain Distributions v,, at Load on Softening Regime
(P = 0.7P,,,,) for van Mier's (1984) Tests: (a)~(c) Nonlocal Calculations: (d)-(f)
Local Calculations

tained in the local case seems to be spurious, due to numerical problems,
which is indicated by poor numerical convergence and the fact that locali-
zation is seen to occur in only a single element band at x = 0 to 2 cm.
Comparing the nonlocal and local cases for the heights # = 50 and 100 mm,
the local case always gives a stronger localization than the nonlocal case.

Fig. 12 shows the distributions of €,, (compressive axial strain) at postpeak
load P = 0.7P,,,, for all the meshes [the strain scale of Fig. 12(f) is different
from the others]. We can observe the same phenomena as in the case of
£, Fig. 13 compares the distributions of shear strain v,, at postpeak load
P = 0.7P,,.. for all the meshes [the strain scale of Fig. 13(f) is different
from the others]. At the maximum load, there are almost no shear strains
in all the cases except the local case of # = 200 mm, in which the shear
strains are localized. However, in Fig. 13 for the softening response the
shear strains in all the cases are relatively large compared to those at the
maximum load, especially in the local case for h = 200 mm [Fig. 13(f)].
The shear strain localization tends to increase with the mesh sizes, and the
localization is more pronounced for the local cases.

To summarize the comparisons in Figs. 10-13, the nonlocal calculations
always yield numerically stable solutions regardless of the specimen height
or the element size; and the local calculations yield spurious localizations
and poorer convergence when specimens much larger than / are analyzed.
The nonlocal results of course do not represent the actual microstrains but
macroscopically smoothed (averaged) strains.

The aforementioned strain distributions reveal differences in the failure
mechanisms for different specimen heights. The first stage of damage is
characterized by splitting cracks in the direction of compressive axis, as
revealed by large values of the calculated lateral strains ¢, in Figs. 10 and
11. After the peak load, the shear strains v,, increase markedly and tend
to localize; prior to the peak load there is almost no shear strain. The shear
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localization is more intense when the specimen height is larger. Since the
shear localization represents local failure and may lead to buckling of the
material strips between the splitting cracks, the load-carrying capacity of
the specimens with larger height decreases at an earlier stage of the softening
regime than for the specimens with smaller height. According to experi-
mental observations, uniaxial compressive specimens without friction under
the loading platens usually do not fail by shear bands but by axial splitting.
The final failure probably occurs by snap-through buckling of the material
itrips between the splitting cracks. These experimental facts are consistent
vith the present analytical results. .

In the present calculations, the finite elements were relatively large com-
pared with the specimen sizes and with the characteristic length /. Thus it
might be that the element subdivision might not be sufficiently fine to
represent the deformation field, and especially the shear band localization
mode. Calculations with finer meshes are desirable.

In this study, the characteristic length [ is fixed as [ = 3d,, which is the
approximation suggested for the crack-band theory (Baian.t and Oh 1983).
The effect of changing / has not been explored, but the estimate / = 3d,, is
certainly a crude guess and the value / would better be identified by fitting
of more extensive test data on the effects of both the height-to-width ratio
and the specimen size for the same height-to-width ratio. But such com-
prehensive test data are lacking. .

It is interesting to compare the cyclic calculation results using the nonlocal
and local microplane models. Van Mier’s (1984) cyclic uniaxial compressive
test data for the specimen with height # = 100 mm were fitted in Fig. 4
with a single finite element, and mesh B (100 X 100 mm) is then used along
with the same material parameters given in Table 1. Fig. 9(b) shows the
calculated stress-strain curves along with the previous result using a single
finite element, for comparison'(the load-displacement data were converted
into average stress-strain data for the total specimen height). The differences
between the nonlocal 25-element calculation, the local 25-element ca]gu-
lation, and the single-element calculation are seen to increase with increasing
strain. However, the differences between the strain (e,,. ¢,,, and v,,) dis-
tributions of the nonlocal and local 25-element calculations are very small
compared to differences in the results for different specimen heights.

CONCLUSIONS

1. The previously formulated nonlocal microplane modfel for concrete is
improved to describe the cyclic and rate-dependent b(;hav:ors. By contrast
with the previous microplane model, the normal strain component on the
microplane is not split into its volumetric and deviatoric parts; instead, the
lateral normal strains are considered. The penalty is that the full range of
Poisson’s ratio cannot be covered, but the Poisson ratio values typical for
concrete can be obtained. Furthermore, instead of one shear strain resultant
on the microplane, the shear strain is represented by two shear components
in the directions of two in-plane coordinates. This approach appears to
climinate some possibly unrealistic features of the ca!culated response on
the microplanes (although this question cannot be decided by direct exper-
imental observations). . .

2. The response of the normal strain component on the mlcrop!ane is
varied from hydrostatic response to plastic response and to softening re-
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sponse as a function of lateral normal strain on the same microplane. As
before, the microplane strains are the resolved components of the macro-
strain (kinematic constraint), but the response of the shear component is
made to depend on the resolved normal component of the macroscopic
stress tensor on the same microplane (which represents a static constraint).
This allows it to represent more closely the physical concept of friction. The
values of peak stress, strain at peak, ductility, and the postpeak shape of
the descending stress-strain curve for the microplane components, can be
used to control the macroscopic response in an easily understandable man-
ner. In the case of monotonic loading tests, 10 microplane material param-
eters have to be identified by fitting test data.

3. Tomodel rate dependence, a Maxwell-type rheologic model consisting
of a linear viscous element with a constant relaxation time coupled in series
with an elastoplastic-fracturing element is adopted for each microplane strain
component. The exponential algorithm previously developed for creep (and
previously also applied to a different microplane model} is adapted to this
formulation to calculate the response for each microplane component in the
time steps of numerical integration.

4. Nonlinear unloading-reloading hysteresis rules are developed for each
elastoplastic-fracturing element using the concept of back-stress and objec-
tive-stress. Furthermore, cyclic rules are set up for the overall response of
the generalized Maxwell model or each microplane component, covering
both the tensile and compressive stress ranges and general strain histories.

5. The present microplane model describes reasonably well the existing
test data from cyclic uniaxial compressive and tensile tests, triaxial com.
pressive tests, and the strain-rate effect in uniaxial compressive tests. The
model also realistically describes the strain-softening, damage processes, the
hysteretic properties during unloading and reloading, the confinement effect
on the transition from softening to hardening, and the hydrostatic response.

6. A nonlocal generalization of the present microplane model can well
represent localization behavior and the effect of height-to-width ratio on
uniaxial compressive softening. Generally, the numerical convergence of
the finite-element calculations is not good for the local model, but is good
for the nonlocal model.
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