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ABSTRACT: The nonlocal microplane model for concrete is improved to describe 
unloading, reloading. cyclic loading. and the rate effect. The differences compared 
to the previous formulation arc: (I) Normal strain component on the microplanc 
is not split into its volumetric and deviatoric parts-rather the normal component 
is made dependent on the lateral normal strains on the microplane: and (2) instead 
of considering on each mieroplane only one shear strain vector parallel to the shear 
stress vector. the shcar strain is represented hy two independent components on 
the microplane. To introduce ratc effect, the stress-strain law for cach microplane 
component is described by a generalized Maxwell model-a scrics coupling of a 
linear viscous clement and an c1astoplastic-fracturing elemcnt. Nonlinear unload­
ing-reloading hysteresis rules with back- and objective-stresses arc developed to 
introduce hystcresis. The model is then combined with nonlocal theory to enable 
describing localization phenomena and avoid spurious mesh sensitivitv dill' to strain 
softcning. Thc numerical implementation in finite-clement programs is descrihed. 
The study consists of two parts; part I deals with the general formulation (part II 
deals with experimental verification). 

INTRODUCTION 

The heterogeneity of concretes and brittleness of its matrix are responsible 
for complex nonlinear triaxial behavior with strain-softening damage. To 
describe such behavior, many types of models for concrete have been de­
veloped and investigated. They may be grouped into two basic categories­
the macroscopic phenomenologic models and the micromechanics-based 
models. The hypoelastic models, plasticity models, enliochronic models. 
fracturing theory, and continuum damage mechanics models belong to the 
former category. The constitutive models in the second category arc more 
limited at present. The microplane model is one effective model based on 
certain simplified micromechanics ideas. It has been proven to describe 
many experimentally observed features of concretes as well as rocks and 
soils (Bazant 1984; Bazant and Oh 1985; Bazant and Prat 19~~; Bazant and 
Ozbol! 1990; Ozbol! and BaZant 1991; Carol et al. 1992). The microplane 
model has been combined with the non local theory in order to make it 
applicable to localized fracture behavior and size effects. and to avoid spu­
rious mesh sensitivity in finite clement analysis (Bazant and Ozbolt 1990; 
Ozbolt and Bazant 1991). 

The present study (Hasegawa and Bazant 1991) attempts to improvll and 
generalize the previously developed microplane model in several respects, 
particularly with regard to response to cyclic loading as influenced by the 
loading rate. This influence is manifested in the shape and width of the 
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hysteresis loops. The loading rate of course also strongly affects the response 
to monotonic loading. 

It should be mentioned that another partly similar but in some basic 
aspects different model, with different advantages, was developed at North­
western University (Ozbolt and Bazant 1991) at the same time as the model 
presented here. Because of scope limitations, a comparison of these two 
versions of the cyclic microplane model with rate effect is relegated to a 
subsequent study. 

MODIFICATION AND SIMPLIFICATION OF PREVIOUS 
MICROPLANE MODEL 

A detailed description of the concept of microplane model and its evo­
lution, beginning with the idea of Taylor (1938), was given in Bazant and 
Prat (1988) and is not repeated here. The following hypotheses, in some 
respects different from those used in the previous work, were adopted for 
the development of the present generalized cyclic and rate-dependent ver­
sion of the model. (The Latin lower-case subscripts refer to Cartesian co-
ordinates Xi' i 1, 2, 3.) 

Hypothesis I 

The .strain~ on any microplane are the resolved components of the mac­
roscOptC stram tensor E" (this represents a tensorial kinematic constraint). 

Hypothesis II 
T.he microplane resists not only normal strains EN, but also in-plane shear­

stratl1 vectors (E IK, E nt), whose direction within each microplane is the 
same as that of the shear stress vector (arK' arM)' 

Hypothesis III 
The normal-stress increments on a microplane depend on the resolved 

lateral strains EL on the same microplane. 

Hypothesis IV 
The inelastic shear-stress vector increment on each microplane depends 

on the resolved normal component of the macroscopic stress tensor a ij on 
the same microplane (this represents an additional static constraint). 

Hypothesis V 
Constitutive laws for the normal and shear components on the micro­

planes (microconstitutive law) are based on a generalized Maxwell rheologic 
model in which a linear viscous element is coupled in series with an elas­
toplastic-fracturing element. 

Hypothesis VI 
The microconstitutive laws for the normal and shear components on each 

microplane are mutually independent. 
Hypothesis VI was justified in Bazant and Prat (1988). The decoupling 

of volumetric, deviatoric, and shear responses on the microplane seems at 
first an oversimplification. But success in the modeling of test data indicates 
that the appropriate coupling of the volumetric and deviatoric responses on 
the macroscopic level is obtained through the coupling of microplanes of 
all orientations due to the kinematic constraint. In contrast to the previous 
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formulations by Bazant and Prat (1988) and Carol et. al. (1991): the .normal 
microplane components are not split into volumetrIC and devIatonc parts 
in the present model. . . 

According to hypothesis I, the norma~-str~m co~ponent and the stram 
vector components on a microplane of direction cosmes Il i are 

EN = IljEf' = "/lkEjk ...•.....••............................. (1(/) 

ENi = nilljnkEjk .•..•...•....•••.••...•••..•..••.•..•.••..•.. (lb) 

In the previous microplane model, the shear-stra~n response was defined, 
for the sake of simplicity, only in terms of magmtudes E] = V EliEri = 

[nkEj",n",(Ejk - ninjEik)P/2. Wit.h. t~is defi~ition, the ~train mag~itudes arc 
always positive. But this makes It IS Impossible to descnbe t~e cych~ response 
on microplanes. To avoid this limitation,. two in-plane umt coo~dmate vec­
tors k and m normal to each other, are mtroduced on each mlCfoplane as 
shown in Fig: l(b), and two shear components ElK, ErM in those directions 

concrete 

(a) 

(b) 

coarse aggregate 

mortar matrix 

microplane 

IJ 

microplane 

FIG. 1. (a) Microplanes in Concrete; (b) Unit Vectors n, k, m; and p on Mlcroplane; 

(c) Microplane System (without Shear Response) and Generalized Maxwell Model 
for Each Microplane; (d) Numerical Integration Points on Unit Hemisphere for 21 

Integration Points Formula 
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are considered. Since the directions of the vector k and m must be fixed at 
the beginning of calculations, some kind of rule to determine these directions 
is necessary. The rule must not have a significant bias for any direction; 
i.e., the frequency of various directions within the microplanes taken by 
vectors m and n must be about the same. This is approximately achieved 
by the following simple rule: vector m of microplane 1 is determined to be 
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normal to the z-axis, vector m of microplane 2 normal to the x-axis, vector 
m of microplane 3 normal to the y-axis, vector m of microplane 4 normal 
again to the z-axis, and so on. Then for vector m normal to z-axis 

m _ -nl 

Z - Vny + nr mJ = 0 .............. (2a) 

but m l = 1; m z = 0; mJ = 0 if nl = 112 = O. 
For vector m normal to x-axis 

m l = 0 .............. (2b) 

but m l = 0; m z = 1; m3 = 0 if 112 = IlJ = O. 
For vector m normal to y axis 

m z = 0 .............. (2b) 

but m l = 0; m z = 0; m) = 1 if III = n} = O. 
After determining vector m, vector k is calculated for each microplane 

as k = m X n. According to hypothesis II, the in-plane shear strain com­
ponents in the k and m directions on a microplane of direction cosines 11; 

are 

I 
ErK = kjEj = kjll;E;j = 2 (k;nj + kjll;)E;j ....................... (3a) 

1 
ETM = mjE j = mjlljEjj = 2 (mjn j + mjll;)E;j ..................... (3b) 

where symmetry of E

l
" was exploited to symmetrize these expressions. The 

sepa~ate tr~atment 0 ETK and ErM brings about an improvement over the 
prevIOus micro plane formulation by Bazant and Prat (1988), but it increases 
the number of variables. 

INCREMENTAL MACROSCOPIC STRESS·STRAIN RELATIONSHIP 

The incremental microconstitutive relations are written separately for the 
normal component and the shear components in the K and M directions 

daN = CN dEN - da'/..; for normal component ................ (4a) 

darK = CTK dETK - da;"K for K-shear component ............ (4b) 

for M-shear component ........... (4c) 

in which daN, da TK, and da TM = incremental micros tresses; C N, C IK, and 
CTM = incremental elastic stiffnesses; and da'/..;, da~~K' and da~~M = inelastic 
microstress increments. Note that there is no coupling between K-shear and 
M-shear (decoupling hypothesis for shear). 

Using the principle of virtual work (i.e., equality of virtual works of the 
macrostresses and microstresses), we can write 
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in which OE;j' OEN' OETK, and OErM = small variations of the macroscopic 
strain tensor and of the microstrain components on a microplane. The con­
stant 41T/3 means that the macroscopic work is taken over the volume of a 
unit sphere. The factor 2 on the right-hand side arises because the micro­
scopic work needs to be integrated only over the surface of a unit hemisphere 
S. The function f(n) is a weight function for the normal directions n, which 
in general can introduce anisotropy of the material in its initial state. We 
will use f(n) = 1, which means isotropy. Expressing OEN' OETK' and OETM 
from (1) and (3) and substituting them into (5), we can get 

41T r [ daTK 3 da;jOE;j = 2 Js n;nj daN + -2- (k;nj + kjn;) 

daTM ] + -2- (m;ll j + mjll;) f(n) dSOE;j ............................. (6) 

This variational equation must hold for any variations OE;j; therefore we can 
delete OE;j; and substituting (4) we obtain 

3 r [ dUrK 
da;j = 21T Js Il;nj daN + -2- (k;nj + kjn;) 

daTM ] + -2- (m;ll j + mjll;) f(n) dS .............................. (7a) 

da;j = 2: Is [1l;ll j (CN dEN - da'/..;~ + ~ (k;nj + k/l;)(CTK dErK - da~K) 

+ ~ (m;ll j + mjll;)(CrM dErM - da'~M) ] f(n) dS ................ (7b) 

Eqs. (1) and (3) may now be here substituted for EN, ETK, and ETM' This 
finally yields the macroscopic incremental stress-strain relation 

da;j = C;jrs dEr" - da'!; ........................................ (8) 

in which C;jrs denotes the incremental elastic stiffness tensor 

C;jrs = 2: Is [n;ll j ll r IlS CN + ~ (k;nj + kjll;)(krlls + ksllr)CTK 

+ ~ (m;ll j + mjll;)(myll, + m,llr)CrMJ f(n) dS ................... (9) 

and da'!; denotes the inelastic stress increments 

da'!; = 2: Is [1l;ll j da'/..; + ~ (k;llj + kjll;) da'~K 

+ ~ (m;ll j + mjll;) da'~M ] f(n) dS ............................. (10) 

For the initial isotropic elastic response we can substitute the initial moduli 
C~ and C} for CN and CIK, CIM in (9), and setf(n) = 1. Since these moduli 
are independent of the microplane direction, we could integrate (9) explicitly 
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if the unit vectors k and m were also known explicitly. However, they are 
not explicit, being. c.alculated numer!cally as ~e~~ribed bef?re;J () 

For initial elastIcIty we can substItute the InItIal modulI C Nand C r for 
CN and CrK , CrM in (4), and set dcr'!v = dcr/~K = dcr/~M = O. Then we have 
dcrrK = C'} dEn and dcrrM = C'} dErM for shears. From that, Idurl = 
C,}ldErl, where Idurl. = Vdcr}K + dcr}M and IdF:TI = ydE}K + dE}M· 
This is the same relatIOn as that used In the prevIOus mlcroplane model 
involving normal and shear components (Baza~t 1984) (in ~hich the .shear 
vectors were characterized by three components In the CartesIan coordInates 
Xi; i = 1, 2, 3). Therefore the expressions derived in that study apply 

C~ = (1 : 2v) ........................................... (lla) 

C~ = (1 ~ ~)~;)! v) ..................................... (11b) 

in which E and v = Young's modulus and Poisson's ratio. 
One can now realize from (11) that only Poisson's ratios v within the 

range -1 :5 v :5 0.25 can be obtained with the present microplane model, 
while the microplane model with separate volumetric, deviatoric, and shear 
components (Bazant and Prat 1988) can describe elastic behavior with any 
thermodynamically possible Poisson's ratio - 1 :5 V :5 0.5. However, the 
disadvantage of the limited range of Poisson's ratio in the present model 
does not seem very serious for concrete, since for usual concretes 0.15 :5 v 
:5 0.22. In general, of course, we do not advocate abandoning the previous 
formulation with the full range of v, which is in principle more realistic. 
The present restriction on the range of.v is due to. avoi~ing a split ?f nor.mal 
microplane components into volumetnc and devlatonc ones, whIch bnngs 
about a simplification of the formulation. 

RHEOLOGIC MODEL FOR RATE EFFECT IN 

MICROCONSTITUTIVE LAW 

For cyclic behavior it is impo.rtant to spec~fy appropriate ra~e-depe.ndent 
microconstitutive models. In thIS study a senes couplIng of a lInear VISCOUS 
element and an elastoplastic-fracturing element is adopted for the micro­
constitutive law on each microplane [Fig. l(c)]. For the sake of brevity of 
notation let E and cr now represent any of the microstrains EN, ETK, and 
ETM and' microstresses crN' crTK' and crrM. The model is described by the 
differential equation 

dcr dE cr 
- = C' - - - ........................................... (12) 
dl dl P 

where C' = C" for virgin loading; C' = C'Ir for unloading and reloading; 
I = time; p = relaxation time of the viscous element; and C' = current 
tangential stiffness of the elastopla~tic-fracturing el.ement, wh}ch takes ~he 
value of either Ct' or CU, dependIng on the loadIng-unloadIng-reloadIng 
criteria described later. When (12) is solved by using a central differen~e 
approximation, numerical difficulties o~ instabiliti~s ~ay be en~ountered In 
the case of strain softening, and even If the solutIon IS numencally stable, 
a large error is usually accumulated and the stress is not reduced exactly to 
zero at very large strains. 
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To avoid these difficulties, the exponential algorithm, initially developed 
for aging creep of concrete (Bazant 1971, 1988), is applied in this study in 
a similar way as in an alternative non local microplane model of Bazant and 
Ozbolt (1990). To achieve unrestricted numerical stability, we need to re­
write (12) so that it involves a positive incremental stiffness or unload-reload 
stiffness throughout the entire range of hardening and softening 

dcr = Cu, dE _ ~ 
dl dl 13 

.......................................... (13) 

1 1 dE 
~ = p + (Cu, - C')cr dl .................................... (14) 

in which 13 = a quasi-relaxation time for the purpose of calculation. When 
we apply (13) and (14) to finite steps, it is most accurate to take the values 
of CU', C', p, and cr for the middle of the time step (I" 1,+ I), denoted with 
subscript r + 112, in which r = number of the step (r = 1,2, ... ) 

dcr C'Ir dE cr 
dl = ,+112 dl - -Il- ..................................... (15) 

1-', + 112 

1 1 IlE 
-- = -- + (C~~1I2 - C~+1/2)cr'+1I2 AI •.•.•••.•••..••.•.•. (16) 
13,+ 1/2 p,+ 112 U 

• 
C~~ 112 and 13,+ 1/2 in these equations are assumed to be constant for the 
duration of each time step; however, to calculate cr,+ 1/2, C~~ 1/2, and 
C~+ 112, we need cr,+ I, C~~ 1, and C~+ I, which means that numerical iterations 
of the time step are necessary. The general solution of (15) is then exactly 

dE 
cr(/) = Ae-(,-,,)/13,.1I2 + C~~1/2I3'+1/2 dl ......................... (17) 

in which A = an integration constant. From the initial condition cr = cr, 
at I = I" the integration constant can be calculated as A = cr, 
C~~ 11213,+ 1/2 dEldl, and then 

() () -(,-,,)/U,+112jC'" dE cr I = cr ,e - , - /, 113,. 112 + [1 - e'" 13 ( 18) 
,+ 1/2 1+ 1/2 dl ......... . 

For the end of the time step, I = 1,+ I = I, + Ill, we have 

1 
cr, + Ilcr = cr,e-t>z + Ilz (1 - e-t>Z)C~~1I2IlE ................... (19) 

where Ilz = 111113,+112. We can rewrite (19) in the form of (4) 

1 
Ilcr = Ilz (1 - e - <1z)C~~ l/2IlE - (1 - e -<1Z)cr, = CIlE - Ilcr" ..... (20) 

where 

1 
C = Ilz (1 - e-<1Z)C~~l/2 .................................... (21) 

Ilcr" = (1 - e -t>z)cr, ........................................ (22) 
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MICROCONSTITUTIVE LAW FOR NORMAL COMPONENTS 

To be able to model the response to hydrostatic pressure, we must assume 
the stress-strain curve for the normal component to be the same as for the 
volumetric component of the previous microplane model. But then reason­
able postpeak strain-softening would not be obtained for uniaxial or biaxial 
compression. This problem is circumvented by hypothesis Ill. The purpose 
of including a dependence on lateral strains is to achieve the following: (I) 
The normal strain response would not be the same as the volumetric or 
hydrostatic response except when the lateral strains arc the same as the 
normal strain, which is the case of hydrostatic loading; while at the same 
time (2) the normal response would be more brittle when the difference 
between the normal and lateral strains is large, i.e., it would exhibit more 
strain softening. 

To implement hypothesis III, we need to derive equations for the max­
imum and minimum principal values E 't", E'J'.'" of lateral strain on each 
microplane. To this end we introduce another in-plane unit vector p, whose 
angle with the unit vectors k and m is 45°, as shown in Fig. I (b); p = 

(k + m)/Y2. The lateral normal strains in the directions of k, m, and p arc 

EK = kikjEij ............................................... (23a) 

EM = mimjEij ............................................. (23b) 

Ep = PiPjEij ............................................... (23c) 

Considering Mohr's circle for in-plane strains in the microplane, we can get 
the maximum and minimum principal values E ~,ax, E't" of the lateral strain 
on each microplane 

EK + EM + (EK ; EMf (fK ~ fM fl') 2 ......... (24) emax - + L -
2 

EK + EM 
(EK 2 EMf + (EK 

+ EM 
- fl'f ......... (25) emin 

-L -
2 2 

which are invariant. It is useful to define a lateral-deviatoric strain EI.IJ that 
~ombines E Tax and E t" into one strain invariant for the microplane 

- I maxi + I - m;"1 (26) ELD - EN - E L EN E L ............................ . 

To be able to change the normal response from the hydrostatic stress-strain 
response, which always has a positive slope, to plastic response (zero slope) 
and softening response (negative slope), the following hardening-softening 
function <p(ELf) in terms of ELf) may be introduced [Fig. 2(b)]: 

1 
<l>(ELf) = -l-+-(-E-Ei-:-)-=m ..................................... (27a) 

<l>(ELf) <pP when ELf) = E'£[) ........................... (27b) 

<p(ELf) = 0 when ETax > 0 ............................... (27c) 

in which E tD = ELf) value when <p(ELf) = 0.5; m = a constant that specifies 
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FIG. 2. (a) Dependence of Normal Compression Mlcrostress-Straln Curve on Lat­
eral Strain; (b) Hardening-Softening Function for Normal Compression 

the shape of the curve <p(Ew); and <pP = value corresponding to the case 
of plastic response. 

Now we try to set weight functions in terms of <p( E LlJ) and use them to 
obtain a gradual transition from hydrostatic response to plastic response 
and softetting response for the virgin loading curve of the normal-strain 
component of the microplane; for 0 :::; ELf) :::; E~f) 

( (
<P(ELf)) (<p" - <P(ELf)) f ) aN EN, ELf) = ~ fNp(EN) + <p

P 
Ns(EN ..... (28b) 

in which f Nh( EN) = hydrostatic loading curve of normal component when 
ELf) = 0; fNP(EN) = plastic I?ading c~rve of normal component when ELf) 
= Eff); andfNs(E N) = softemng loadmg curve of normal component when 
ELf) = 00 [Fig. 2(a)]. 

To obtain the loading tangential stiffness, we need to differentiate (28); 
for 0 :::; ELf) :::; E'{f) 

daN(EN' ELf) = (<P(ELf) - <p
p
) dfNh(EN)f- (1 - <P(ELf)) dfN,,(E N) 

dEN 1 - <p P dEN 1 - <p" dEN 

......................................................... (29a) 

For E'{f) < ELf) 

daN(EN' ELf) = (<P(ELf)) dfNp(E N) + (<pp - <P(ELf)) dfN,(E N) .. (29b) 
dEN <p P dEN <p P dEN 

Similarly, the transition for the linear unload-reload stiffnesses C'N 0 

(aN. EN, ELf) may be written as follows; for 0:::; ELf) :::; E'{D 
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+ (1 - <!>(ELD») CN;) (erK., EK.) ............................. (30a) 
1 - <!>P 

(
<!>(ELD») C"d) (er" E") <!>p Np N, N 

in which CK.1: (erN, EN) = hydrostatic linear unload-reload stiffness of the 
normal component when lOw = 0; C'JJ;,° (er:':", E;z,) = plastic linear unload­

reload stiffness of the normal component when ELO = E'l./); C;';'O(er'jy, E'jy) 
= softening linear unload-reload stiffness of the normal component when 
ELD = 00; erN and E K. = stress and strain at the start of unloading. 

In the previous microplane model, virgin loading curves for strain-soft­
ening on each microplane were formulated using a single exponential func­
tion, er = COe -IElal-PE • With this kind of equation, however, one cannot 
adjust the peak stress, peak strain, and postpeak ductility individually. It 
is more versatile to introduce equations that can do so. Therefore, in this 
study the following virgin loading curves are used for pre- and postpeak 
tensile regions of the normal component [Fig. 3(a)]. 

For 0 ::; EN ::; 10 7vT (prepeak) 

For E 7vT < EN (postpeak) 

microstrai n E 

z 
b 
(f) 
(f) 

~ 
Vi 
e 
() 

'E 
Iii 
E .... 
o 
c 

with E'Jv.,. 

(b) 

er7.,r 
..... (3Ia) 

tN7C'Jv 

normal microstrain EN 

FIG. 3. (a) Strain-Softening Curve for Mlcroplane; (b) Hydrostatic Curve for Nor­
mal Compression 
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o "I NTer7.,T 
with E~T = "INTENT = ~'--~ 

t NT C7., 
..................... " " ............ " ............ " .... (3Ib) 

In (31), er7.,T = peak stress of the curve; tNT = a parameter that controls 
the peak strain E7.,T; and "INT = a parameter that controls E<;';r. At the strain 
EN = E7.,T + E~T' the stress decreases to er7.,T/e in the softening region;PNT 
= a parameter that changes the shape of the softening curve. Thus we can 
con.trol th~ sh.a~e of the stress-st!ain curve wit~ these four parameters quite 
easily, whl~h IS Imp~rtant for bemg able to a~J~s.t properly the macroscopic 
response with the mlcroplane model; C~ = mltlal modulus for the normal 
component, which can be determined from (11). 

For th~ compression .range of .the normal component, we must specify 
the e9uatlOns for softemng, plastIc, and hydrostatic stress-strain curves, as 
mentIOned before. The same types of equation as for tension are assumed 
as for compression softening of the normal component [Fig. 3(a)]. 

For 0 2: EN 2: E 7vc (prepeak) 

• 
er O 

with E7vc = ~ 
tNCC~ 

........................................ (32a) 

for E ~c > EN (postpeak) 

o 
with ES

NC = 'VNC.E(NIC = 'YNCerNC 
I r Co .............................. (32b) 

':>NC N 

F~r the hydrostatic curve of the normal component, we introduce the 
relatIon 

Cr,. ] + (::) ,. + 1 'N· . . . . . .. (33) 

!n w~ich C~ = asymptotic final modulus for normal compression as shown 
m FIg. 3(b); Eo and Eb = strain values that characterize the shape of the 
cu~ve; ~nd P Ii (;S 1) and q Ii (> - 1) = exponents that also change the shape. 
Wlth.thls equatIon, ~e have six parameters to be fixed. Eq. (33) can control 
the fmal tangent stIffness of the hydrostatic curve' the equation of the 
previous model with five parameters cannot. ' 

For th~ plastic c.urve of the normal component, the first part of the 
hydrostatic curve WIth PII = 1 is adopted, for the sake of simplicity 

C7v 
erN = -(-)--'-'-- EN ................................ (34) 

:~ + 
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For unloading and reloading, the initial moduli of the normal component, 
C~, are used as the linear unload-reload stiffness~s CNi:' and C'N,:' f?r the 
case of hydrostatic and plastic responses and also In the pre peak regIOn of 
the tensile or compressive softening response. On the other hand, for the 
case of tensile or compressive softening after the peak stress, the following 
damage evolution is considered for linear unload-reload stiffness CMII. 

For 0 S EN S E~T (pre peak tension) and 0 ~ EN ~ ER-c (prepeak compres­
,ion) 

C'Ns° = C~ ............................................... (35a) 

For EN > E ~T (postpeak tension) 

aU a O 

CurO - a Co + (1 - a) NT with ~Nr = ER-r - ~. 
Ns - NT N NT ENT - ~NT CR-

......................................................... (35b) 

For EN < E ~C (postpeak compression) 

a~ a~ 
C'Ns° = aNCC~ + (1 - aNd _ ~ with ~NC = ER-c - ('0 

a~ ~ N 

......................................................... (35c) 

in which aNT, aNe = weight constants, which describe the proportions of 
progressive damage in tension and compression softenings; a').a and a Nc = 

stresses at the start of unloading for tension and compression softening; 
E NT and E NC = strains at the start of unloading for tension and compression 
softening; ~NT and ~NC = plastic residual strains after complete unloading 
from the peak stress to zero stress. Thus, with parameter CMII we can control 
the elastoplastic-fracturing behavior for the case of softening in normal 
microplane component. 

MICROCONSTITUTIVE LAW FOR SHEAR COMPONENTS 

We know that shear behavior usually depends on the compressive stress 
normal to the shear plane. We will take this dependence into account in 
the constitutive law for the shear component on the microplane according 
to hypothesis IV. In the previous microplane model, this effect was modeled 
through the confining stress a c = aii/3, which had the advantage that aii is 
the same for all the microplanes. However, a frictional effect such as this 
would be better considered individually on each microplane since the shear 
response on each microplane is independent and the magnitudes of normal 
stress on various microplanes are different. Therefore, in this study it is 
assumed that the peak shear stress value on each microplane depends on 
the resolved normal component of the macroscopic stress tensor a ij on the 
same microplane individually. The resolved normal component SN of the 
macroscopic stress tensor aij on a microplane whose direction cosines are 
n i is 

SN = npj = njnkajk ........................................ (36) 

The virgin loading curve of K-shear component and M-shear component 
must be specified as identical since they differ only in the chosen directions 
within the microplane. We use for shear the same form of strain-softening 
equation as for the normal component [Fig. 3(a)]. 

For 0 s I ETI s I E'}I (prepeak) 
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[ ( 
. ) ( "f" iT"] _ ° 1 1 10

1 1 1 a l - T - -
E (i 

TO 

with E~ = ............ (37a) 
~TC: 

For I ETI < I Erl (postpeak) 

° [(EI E'i)PT] (T, = T exp -
a'i 

. ., _ ° _ "VI TO 
WIth E r - "VIE r - --0 ..... (37b) 

~rCr 

in which subscript T refers to K-shear (TK) or M-shear (TM); TO = peak 
stress, which depends on SN; ~T = a parameter that controls the peak strain 
E~; and "VI = a parameter that controls ET' At the strain E T = E <j + E T' 
the stress decreases to TOle in the strain-softening region; PT = a parameter 
controlling the shape of the softening curve. Unlike the normal component, 
(37) is applied for both tension and compression. The only difference be­
tween tension and compression is the sign of the peak stress TO; i.e., TO > 
o in tension and TO < 0 in compression. 

The concept of shear frictional coefficient fL is utilized to model the 
dependence of shear peak stress TO on SN' 

For tension of shear 

TO = +a<.j - fLSN 
• 

when SN < 0 ........................... (38a) 

Tn = +a~. when SN ~ 0 .......................... (38b) 

For compression of shear 

TO = -a<.j + fLSN 

TO = -at;. 

when SN < 0 ........................... (38c) 

when SN ~ 0 ........................... (38d) 

in which a(i- peak shear stress at zero normal stress. Thus, our stress-
strain curve for shear has five parameters, a~, ~r, "Vr, Pr, and fL. 

For straight-line unloading and reloading, the initial modulus of the shear 
component, Cr, is used as the linear unload-reload stiffness er o in the case 
of the prepeak region. On the other hand, after the peak stress, the following 
damage evolution is considered for the linear unload-reload stiffness CYo 
for straight-line response. 

For 0 S I Erl S I ETI (prepeak) 

CyO = C; 

For I Ell> I E ~I (postpeak) 

(T'j 
Cro = arC'; + (1 - 0. / ) --'-­

E~. - ~r 
with ~r = E'i-

( '0 
I 

(39a) 

........ (39b) 

in which aT = a weight constant that describes progressive damage for shear 
softening; a~;, E'7 = stress and strain at the start of unloading; and ~T = 

plastic residual strain after complete unloading from the peak stress to zero 
stress. Thus, C;"O models the elastoplastic-fracturing microconstitutive law 
for the softening in shear. 

LOADING, UNLOADING AND RELOADING IN 

MICROCONSTITUTIVE RELATIONS 

Macroscopic stress-strain relations for cyclic loading require proper load­
ing-unloading-reloading criteria for each microplane component. Since our 
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microplane model is based on a kinematic constraint and the response on 
each microplane can be described only (or mainly) by microstrain compo­
nents, it seems preferable to express the loading criteria in terms of mi­
crostrains only. Let each microstrain EN, ETK , ErM and microstress compo­
nent aN' arK, arM be defined as E and a, for the sake of simplicity. The 
following loading-unloading-reloading criteria are used for all the compo­
nents. 

Loading 

when a, > 0, dE,+1 > 0, Er+l ~ Emax ................... (40a) 

when cr, < 0, dE,+1 < 0, E,.+ 1 $ Emin ................... (40b) 

Unloading 

when cr, > 0, dE,+1 < 0, E,.+ I < Emax ................... (40c) 

when cr, < 0, dE,+1 > 0, Er + 1 > Emin ................... (40d) 

Reloading 

when cr, > 0, dE,+1 > 0, E,+I < Emax ................... (40e) 

when cr, < 0, dEr+1 < 0, E,+I > Emin ................... (40f) 

in which cr, = microstress of each component at the end of the previous 
load step; E,+I = microstrain of each component at the present load step; 
dEr+ I = Er+ I - E, = incremental microstrain of each component; and Ema• 

and Emin = maximum and minimum microstrains in the history. 
The loading-unloading-reloading criteria in (40) with linear unload-reload 

stiffnesses C'J.!o [(30) and (35)] and C';dJ [(39)] can be used in order to 
describe the cyclic behavior of each component. However, numerical sim­
ulations with C'N° and CFo revealed that the hysteresis loops are too narrow. 
Wider hysteresis loops on the microplane are necessary to obtain proper 
hysteresis on the macro level. The reason is that hysteresis loops govern 
energy dissipation and the basic hypothesis of the microplane model is 
energy equivalence between the macro- and microlevels. Nonlinear un­
loading-reloading hysteresis rules with back-stress and objective-stress are 
developed for this purpose. The hysteresis rules are applied to the case of 
unloading or reloading in the strain-softening regions. The microplane back­
stress crb is defined as 

when dE,dE,+1 < 0 .......................... (4Ia) 

when dE,dE,+1 2: 0 .......................... (41b) 

in which subscripts rand r + 1 refer to the previous and current numerical 
steps. The microplane objective-stress crob is defined as 

crob = 0 when unloading ............................... (42a) 

<Tab = aU when reloading ............................... (42b) 

in which crU = stress at the start of unloading from the virgin loading curve; 
crb and crob are set when the microplane is unloading or reloading. We 
introduce the following unloading-reloading function F'''(cr) in terms of 
microstress a on the unloading or reloading branch: 
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F'II(U) =" ........................................ (43) 
I 

a -a I 
u(,,, - IT" 

This function is nondimensional and its values vary from 0 to I. The un­
loading tangent stiffness C"(a) and the reloading tangent stiffness C(a) are 
(see Fig. 4) 

C"(o-) = [(UlIli" - UIIl"JFW(o-) + UIIl".]c"rO ................... (44a) 

C'(U) = [(RlIli" - RIIl".)FW·«(T) + RIIl",]C"d) .................... (44b) 

in which UlIli" and UIIl", = nondimensional ratios determining the minimum 
and maximum unloading tangent stiffnesses C::,i" and C::"" (i.e., C::,i " = 
UlIli"c"rO and C:;"" .= UIIl",c"rO; RlIli" and Rill,,, = nondimensional ratios 
determining the minimum and maximum reloading tangent stiffnesses 
C;;'in and C;"'" (i.e., C',;,i" = RllliIlC"d) and C;·"", = RIIl"xc"r"). Using the 
foregoing hysteresis rules, one can get hysteresis loops such as that depicted 
in Fig. 4(a). 

CYCLIC LOADING RULES FOR MICROCONSTITUTIVE RELATIONS 

• The foregoing rules apply separately to the tension and compression 
regions of each microplane component. The borderline between the tension 
and compression regions is given by zero microplane stress. To establish a 
complete cyclic loading model for the microplane, the foregoing rule must 
be extended to the entire range of tensile and compressive microplane 

\:) 00+---,1-'--?f":"""" 
(f) 
(f) 

Q) 

~ou+-~--~r-----~~ 
o ..... 
o 
'E 

EO EU 

microstrain E 

(b) 

(c) 

C~in = +-------"'1 
Rmin curO 

L..-____ -+--' 

unloading - reloading function 
Fur (0) 

FIG. 4. (a) Un loadings and Reloadings from and to Points on Virgin Microstress­

Strain Curve; (b) Unloading Tangent Stiffness C"(u); (c) Reloading Tangent Stiff­

ness C'(u) 
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stresses. The basic idea to do this is as follows: (I) The virgin stress-strain 
curves for both tension and compression are unique regardless of the number 
of cycles or the strain history; (2) the transition between the tension and 
compression regions involves horizontal plateaus; and (3) the virgin stress­
strain curves can be horizontally shifted along the strain axes to the starting 
point of unloading or reloading. Many possible cases of the cvclic rule based 
on this basic idea were tried numerically and comparcd to the uniaxial 
compressive and tensile tests from the literature. 

The cyclic rule for the normal component which was determined in this 
way is illustrated by the idealized (partially exaggerated) stress-strain curves 
in Fig. 5(a) (softening curvef:V,(£N) is used for compression). With the cyclic 
rule for the normal component. the origin of the compression stress-strain 
curve is fixed; however, the origin of the tension curve is shifted as shown. 
In the example of Fig. 5(a), the first cycle enters tensile softening, and then 
reverts to compression. Before going into compressive stress, there is a 
pla~eau, w~ich corresponds to .c1.osing of microcracks. The compression 
regl?n ~egm.s always at. the ongm (zero. strain); however, the origin of 
tension IS shlfte.d ev~ry time when unloadmg from the compression region 
crosses the stram aXIs. 

The cyclic rule for the shear component is shown by the idealized stress­
strain curves in Fig. 5(b). The origins of the stress-strain curves for both 
tension and compression regions are fixed. In the example shown. the strain 
cycles are similar to those used in the previous example of normal com­
ponent; however, the .stres~ responses are very different. After the unloading 
curves reach the stram aXIS, there are always plateaus of zero stress. This 
assumption is needed to model experimental observations showing that for 
~arge deformation.s almost no stress change occurs in crack shear (aggregate 
mterlock) t~s~s With stress reversals. Such behavior is due to free play be­
tween aspentles or between the faces of opened cracks, which need to come 
into contact before the stress can reverse its sign. 

NONLOCAL MICROPLANE MODEL 

The microplane model described so far deals only with the point properties 
of the macroscopic continuum approximating the average response of the 
heterogeneous material, under macroscopically uniform strain. This is in-
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sufficient for describing the localization phenomena and size effects. To this 
end, as is by now well established, one must introduce some type of a 
nonlocal concept. 

In the original (imbricate) nonlocal theory (Bazant et al. 1984) the total 
strain was assumed to be non local. But this has the disadvantage that the 
differential equilibrium equations and the boundary conditions are not the 
same as those of the local continuum theory. More recently (Pijaudier­
Cabot and Bazant 1987; BaZant and Pijaudier-Cabot 1988; Bazant and Lin 
1988) it has been shown that the non local aspects of strain-softening can be 
captured while preserving the same forms of the equilibrium equations and 
the boundary conditions as those of the local continuum theory. In the new 
nonlocal damage theory, only the variables associated with strain softening 
are non local while all the other variables, particularly the elastic strain, are 
local. This new nonlocal concept, which was combined with the microplane 
model for time-independent monotonic response of concrete in Bazant and 
Ozbolt (1990), is adopted in this study. 

To render the microplane model nonlocal, we replace the local values of 
microplane stiffnesses eN' elK' elM [(9)] and_inel5lstic micr~stresses d(T~ 

da';K' da';M [( 10) J with the nonlocal values eN' en;, and elM and d&'/v, 
d&';K' d&';M (the overbars mean "nonlocal"). These nonlocal values are 
calculated on the basis of the nonlocal microstrains EN, En, ElM' which 
represent the resolved components of the non local macroscopic strain tensor 
E;j. Thus, one always needs both local and non local variables and must 
calculate both responses for each component on each microplane. When a 
microplane is loading (hardening or softening), we use the non local values 
in (9) and (10), and when a microplanc is unloading or reloading, we use 
the local values. The non local macroscopic strain tensor E;; is calculated as 

E,;(X) = V,~X) Iv a(s - X)E;;(S) dV = Iv a'(x, S)E;;(S) dV .......... (45) 

in which 

V,(x) = Iv a(s - x) dV .................................... (46a) 

, a(s - x) 
a(x,s)= () ........................................ (46b) 

V .. X 

X and s = coordinate vectors; a(x) = weight function, which is treated as 
a material property; V = volume of the entire structure; V .. (x) has approx­
imately but not exactly the same meaning as the representative volume in 
the statistical theory of heterogeneous materials. . 

Initially the weight function a(x) was assumed as the normal (Gaussian) 
distribution function. Recently Bazant proposed to use a computationally 
more efficient quartic bell-shaped function, which vanishes for distances 
greater than 'I = kl (Fig. 6) 

for X. > 1: a(x) = 0 ......... (47) 

in which X. = ,1'1 = ,Ikl and for the one-dimensional case 

k = ~~ ....................................... (48a) 
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For two-dimensional case 

V3 

(r9"l) 

(r>rl) 

r = Vx? + x~; k = 2: .................... , ............ (4~h) 

For three-dimensional case 

r = V x? + X~ + X5; k = ('6345) 1/3 . . . . . . . . . . . . , ............ (4~c) 

wher~. Xi = Cartesian coordinates; k = constants determined from the 
conditIOn that the vol~me _under tht; fun~tion a(x) should be equal to the 
~olume under a function ~(x) that IS ulllform. a(x) = I for r :so; 112. and 
a(x~ ;;: O.for r > II? Here liS the characteristic length of non local continuum 
(which gives the size of the representative volume). 

NUMERICAL ALGORITHM IN FINITE-ELEMENT ANALYSIS 

T~e pre~e~t nonlocal microplane model has been introduced in a usual 
nonhnea.r ~1~lIte-t;lement program using initial stiffness method. One rcason 
w~y the Inltla} stlff~ess method is used is the nonsymmetry of the structural 
stiffness matnx, ~hlch is c~used by treating ~nly the inelasticity as non local. 
Another reason IS num~n~~1 co~vergence In the softening regime of the 
structure. :<\lthough the II1llIal stIffness method sometimes gives slow con­
vergenct;, I.t always converges and leads to stable iterations when the stress 
and strall1 Increments due to iterations are accumulated. 

In the first iteration of the first load step. the total elastic structural 
sti~fnes~ mat~ix K is assem~led using the specified Young's modulus and 
POlSS~)I1 s ~atlo of the matenal. In each load step, the following numerical 
algonthm IS employed. 

1. At the beginning of each iteraction, K is used to estimate a trhl 
structural incremental displacement vector tlu by solving the equation tl'u 

= K ~ I tlf, where tlf is the nodal force increment due to prescribed force 
and displacement at the present load step or the residual nodal force from 
the I?revio~s iteration. Then one calculates the incremental local macro­
SCOpiC st~aIlls tlEij for all the integration points of all finite elements. and 
also the I~cremental non local macroscopic strains tlEij from (45) and (46). 

2. The IIlcrementallocal microstrains tlEN • tlETK' and tlEfM are calculated 
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for each microplane at cach integration point of each finitc clcment using 
(I) and (3) with tlE ij . The incremental nonlocal microstrains tlEN' tlE n ;, 

and tlETM are also evaluated from tlE ij • Then, for normal, K-shear, and 
M-shear components of both local and nonlocal strains on each micropiane, 
loading, unloading, or reloading is judged using (40). Depending on the 
loading-unloading-reloading con_diti<?n, the lo~al and nonlocal values of the 
microstiffnesses CN , CTK , CTM , CN , CTK , and CrM and the local and non local 
inelastic microstresses drr';... drr';K. drr'~M" d&';... d&';K, and d&';M are calcu­
lated based on the aforementioned microconstitutive models. If there is 
hardening or softening (virgin loading) on a microplane we use the non local 
microstiffnesses and inelastic microstresses; on the other hand. if unloading 
or reloading occurs on a microplane. the local values are used to calculate 
macroscopic incremental stiffness Cij" [(9)1 and macroscopic inelastic stress 
increment drrij [(10)] for the integration point of the finite element: Then 
the macroscopic total stress increment drr ij [(18)] and the macroscopIc total 
stress rrij are calculated. 

3. Based on the calculated total stresses at each integration point in each 
finite element, the total equivalent nodal forces f/'(I are evaluated and as­
sembled for the whole structure. The residual nodal forces fR are calculated 
as fR = f - fW , in which f is the total nodal force due to the prescribed 
force and displacement at the present load step, or the residual nodal force 
of the previous iteration . 

4. The norm ratio w of the residual nodal forces. defined as w = [I (fR)21 
I (f)2]I/2. is calculated to judge convergence of the iterations. In this study. 
if w :so; 0.01. the iteration process is judged to have converged. and the 
calculation advances to the next load step. If w > 0.01. one returns to step 
I and starts the next iteration. 

To implement the step-by-step calculation, a number of characteristic 
microstrain and microstress values for each microplane need to be stored 
in the computer memory. Their number is 43 (= 15 + 2 x 14) per micro­
plane (Table 1). Since in this study the Bazant and Oh's (1986) integration 

TABLE 1. Characteristic Values for State of Each Microplane to Be Stored in 

Memory 

Value Normal Shear K and M 

Tension Compression Tension Compression 

(1) (2) (3) (4) (5) (6) 

Strain in previous iteration E, 0 0 0 0 
Maximum strain Emil" 0 - 0 -
Minimum strain €min - 0 - 0 
Strain at back-stress Eh 0 0 0 0 
Strain at zero stress after com-

plete unloading Ep 0 0 0 0 
Strain at origin of curve E, 0 - - -

Stress in previous iteration <1, 0 0 0 0 
Stress at start of unloading (Til 0 0 0 0 
Back-stress <1" 0 0 0 0 
Linear unload-reload stiffness CurO 0 0 0 0 

Note: 0 means necessary to be stored in memory. 
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formula with 21 points on a hemisphere is used [Fig. l(d)j, and since we 
have both local and nonlocal components, we need to store 1,806 (= 2 x 
21 x 43) values for each integration point of each finite element. 

CONCLUSION 

The present improved and extended formulation of the microplane model 
for concrete bears considerable promise with regard to numerical finite­
element analysis of concrete structures. [Application to the analysis of test 
data is done in part II (Hasegawa and Bazant 1993); in which detailed 
conclusions are to be found.] 
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NONLOCAL MICROPLANE CONCRETE MODEL WITH 

RATE EFFECT AND LOAD CYCLES. 

II: ApPLICATION AND VERIFICATION 

By Toshiaki Hasegawa' and Zdenek I'. Bazant,' Fellow, ASCE 

ABSTRACT: This second part of the study dcals with experimental verification of 
an improved and generalized nonlocalmicroplane motiel whose general formulation 
was given in the first part. First the stress-strain relations for a material point arc 
simulated with a local version of the model. and then the representation of some 
basic tests is studied in finitc-c1cment analyses with the non local calculation. 

INTRODUCTION 

Part I of this study (Hasegawa and Bazant 1993) presented various im­
provements and extensions of the microplane model for concrete. The pur­
pose of this second part is to demonstrate the capability to simulate the 
pertinent test data. All definitions and notations from part I arc retained. 

The postpeak response of specimens with strain-softcning damage or 
fracture must be suspected to involve strain localization and size effect. and 
cannot be interpreted as if the specimens were in a uniform state. This 
means that the numerical results we get with one finite element using a local 
version of the microplane model are insufficient to compare with the ex­
perimental results and verify the model. Subdivision of the specimens into 
many finite elements is needed to do that. Nevertheless. as the first check 
of the constitutive model. the point response. calculated with one finite 
element. needs to be explored and understood. 

SIMULATION OF MACROSCOPIC STRESS-STRAIN RELATION FOR 
MATERIAL POINT 

Except for the elastic constants. Young's modulus E and Poisson's ratio 
v. each microplane in the present model is characterized by three groups 
of material parameters: The first group involves the material parameters 
for the virgin stress-strain curves. i.e. (T~T' ~N" 'YN ,. and P N / for (31) of 
part I; (J~c. ~NC' 'YNC. and P NC for (32) of part I; (T'}. ~ ,. 'Y I. P /. and f-L for 
(37) and (38) of part I; C~. Fa. E". P /I. and q 1/ for (33) and (34) of part I; 
and E~./), E'i./). and 111 for (27) of part 1. The second group involves the 
material parameters for unloading-reloading. i.e. UN! and a NC for (35) of 
part I; aT for (39) of part I; and Vm ,,, , V"'in' R n"". and RIll;n for (44) of part 
I. The third group involves the relaxation times p in (12) of part I. For Villa" 

Vrn;n. RIll"X' Rm;n and p we have separate values for normal tension. normal 
compression. and shear. Altogether, there are 39 material parameters. How­
ever, according to the data-fitting experience it appears that one docs not 

'Struct. Res. Engr., Shimizu Corp., 3-4-17 Etchujima. Koto-ku. Tokyo 135. Japan. 
2Walter P. Murphy Prof. of Civ. Engrg .. Northwestern Univ .. 2145 Sheridan Rd .. 

Evanston. IL 602011-3109. 
Note. Discussion open until January I. 1994. Separate discussions should be sub­

mitted for the individual papers in this symposium. To extend the closing date one 
month. a written request must be filed with the ASCE Manager of Journals. The 
manuscript for this paper was submitted for review and possible publication on 
September 23. 1991. This paper is part of the Journal oj Materials ill Cil'il Ellgilleerillg. 
Vol. 5. No.3. August. 1993. ©ASCE. ISSN 01l99-1561/93/00OJ-OJ94/$1.00 + $.15 
per page. Paper No. 2742. 
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have to specify the imlividual values for UNI. UNC' and UI as well ~s those 
for V

max
• V",;n. R rna ,. and R",;n in normal tension. normal compression. and 

shear. Also. it appears that one can set V",a, = R",ax and V",;n .= Rm;n 

because, if V",a, 1= R",a, or V",;n 1= I?m;n. the shapes of the hysteresIs loops 
are sometimes unacceptable. It means that we can reduce the number of 
independent microplane material parameters to 27. 

By fitting cyclic uniaxial compressive and tensile test. data for concrete, 
the following values characterizing the unloading-reloadmg rule were found 

to work: 

V
ma

, = R
ma

, = 2.D ......................................... (la) 

V",;n = R",;n = 0.5 .......................................... (\b) 

(Ie) 

In the case of normal hydrostatic response. the hysteresis loops of a micro­
plane should be very narrow because little damage is done to the material; 
in the case of normal compressive softening response. the hysteresis loops 
should be wide. However. no hysteresis is assumed for normal compressions 
including softening. for the sake of simplicity. 

Since under hydrostatic condition there is no shear on the microplanes. 
the material parameters C~. E". E, .. P 1/. and q /I for the hydrostatic curve 
[(33) of part I] can be determined independently of all ~he others. ~imply 
by direct fitting of the experimental data for hydrostatic compression ,?f 
concrete. Such a fitting of the test data of Green and Swanson (1973) IS 
shown in Fig. I(a). and the material parameters identified are C~ = C~; 
E" = -0.0013; E/, = -0.17; and PI/ = q/l = l.0. Although there exist only 
limited hydrostatic compression test data for concrete. they show .that we 
may assume the asymptotic final modulus (slope) for the hydrostatic curve 
to be the same as the initial modulus. i.e .• C ~ = C~. For most individual 
data sets of concrete. the hydrostatic response curve has not been measured. 
and therefore the parameters determined for the test data of Green and 
Swanson are used in all the present calculations. 

Since in most static loading tests of concrete only one strain rate has been 
used. it is impossible to identify the microplane material parameters gov­
erning the rate effect. i.e. relaxation times p. Therefore. in the following 

rJ) 

rJ) 

0';"'( o:....!..) ______ --, 

- - - - test by Green et al. 
-- fN.(CN) ~ 

U;.;;-' - 1 000 

"OE 
§< -2000 
00> 
c2:-
"0 u -3000 
L 0 

"Db 
<lJ 
.c -4000 
o 

U 
o 

-5000_
4 

-3 -2 

octahedral normal strain 

-1 

.;;-' O-r-( b-'-.) ____ ---o'IIr----] 

E 
() '-', 

........ -200 '" 
0> confining stress ' 

2:- 0",=7.03 kg/em' 

~-400 
b 

rJ) 

~ -600 
..':; 

rJ) 

- -800 
o ____ test by Willam et al. 
'g -- microplane model 

-100'?25 -20 -15 -10 -5 0 

oxial strain E •• (10-
3

) 

5 

FIG. 1. (a) Comparison with HydrostatiC Compression Test by Green and Swan­
son (1973); (b) Comparison with Triaxial Compressive Tests by Willam et al. (1986) 
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calculations for the static loading tests we have to climinatc the strain rate 
effect by specifying infinite values of the relaxation times pY. According to 
the numerical simulations of one microplane response with different relax­
ation times and strain rates, the values of the relaxation times pY- seem to 
be functions of the strain rate and the peak stress value for the monotonic 
curve. In the case of calculations for the typical static strain rates used in 
experiments, E = 1O- 6 -1O- 5/s, it seems possible to consider the relaxation 
times PNr := Pr = 105 sand PNC = 106 or H)7 s as infinite. 

First some comparisons with the previous microplane modcJ should be 
mentioned. In the previous microplane model (Bazant and Prat 1988; Bazant 
and Ozbolt 1990; Ozbolt and Bazant 1991; Carol et al. 1992), a good de­
scription of the response in compression softening was achieved by splitting 
the resolved normal microstrain component into volullletric and deviatoric 
components, which meant that the microplane response was indirectly af­
fected by the lateral strain. This split made it possible to describe materials 
with arbitrary Poisson ratios v, within the range - I -5 V -5 0.5. which is an 
advantage over the present model (in which an arbitrary Poisson's ratio 
:anl1ot be obtained). However, the fact that the lateral strain has only an 
indirect effect, as a part of the volumetric strain, may be a disadvantage, 
jetracting from conceptual clarity. Whereas the differences in the capabil­
ities of these two related but different approaches remain to be explored 
deeper, we adhere here to the direct use of lateral strain, with no volullletric­
deviatoric split of the normal strain. 

Fig. 2 shows an example of response for the uniaxial compressive test, 
in which the formulations for the volumetric, deviatoric and shear COIll­

ponents on all microplanes are combined. The material parameter values 
are as follows: (1) For volumetric tension alt'l" = 2.45 MPa, ~vr = 0.9, "(1'/ 
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FIG. 2. Responses for Uniaxial Compressive Test with Previous Microplane Model: 
(a) Macroscopic Stress-Strain Response; (b) Mlcrostress-Strain Responses at In­

tegration Point 1; (c) Mlcrostress-Strain Responses at Integration Point 2; (d) Mi­

crostress-Straln Responses at Integration Point 18; (e) Volumetric Response 
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- 3 () I' - 2 () C) - - = 10' s and TIll = C'), 1 C'I = 1.0; (2) for dcviatoric - ... , VI- - ., tVI .. , ,t 

tension (T1J1 = 0.49 MPa, ~{)r = 0.9, "(IJr = 3.0, Pm = 2.n. anu Pm = 
105 s; (3) for deviatoric compression a~)C = -39.23 MPa, ~f)C = n.5, "(nc 

:= 1.5, PDe := 1.5, and Poc := IOn s; and (4) for shear ((i = 1.47 MPa: ~r 
:= 0.5, "(1 = 1.5, P, = 1.5, IJ.. = l.O, a.nd PI := 10 s. ~he numencal 
integration over the spherical surface of mlcro~lane or~entatl~ms was done 
using Bazant and Oh's (1986) formula with 21 mteg.ratl0l! pomts p~r ~em­
isphere [Fig. l(d) of part I]. (The uniaxial co~presslO.n dlre~tlOn co~nclded 
with the direction of the unit normal vector at IIltegratlon POlllt 2.) Fig. 2(a) 
shows the macroscopic stress-strain curve and Figs. 2(b-d) show for inte­
gration points 1,2, and 18 (the deviatoric response and the shear responses 
of the K and M directions) and the total normal response as a sum of the 
deviatoric and volumetric components. Fig. 2(e) shows the volumetric re­
sponse. The microplane at int~gration 'point 2 affects main.ly the axi,~1 re­
sponse, while the microplane at IIltegratlOn pOlllt 1. affects ~alllly.the POisson 
effect and volume dilatancy. The microplane at IIltegratlon POlllt 18 has a 
high intensity of shear strain, while integration points 1 and 2 have no shear 

strains. . 
Since a few existing hydrostatic tension tests show that the macroscopIc 

hydrostatic tensile strength of concrete is approximately equal to th.e mac­
roscopic uniaxial tensile strength J" we have to c.hoos~ t~e volUl!letnc pcak 
tensile stress value al~r equal to the macroscopIc umaxml tensile st:ength 
f;. However, the macroscopic uniaxial tensile pea~ st~ess calc~latcd with the 
microplane volumetric-deviatoric-shear formulatIOn IS then higher t1~an the 
sum of the deviatoric peak tensile stress value (T~J1 and the volumetnc p~ak 
tensile stress a'l. r . This means that we should set (TI~ r ~s c~ose t.o J, as possible 
and a'l)r as small as possible because a reasonable .tnaxIaI failure en~elope 
in the tensile region could not otherwise be obtallled. Therefore, III cal­
culating Fig. 2, a small value of (J1)J1 ~ =0.49 M~a) and a larger. value of 
(TI~r (= 2.45 MPa) were chosen. But thiS goes agalllst the .assumptlon of the 
previous model that the stress-strain curves for volumetnc tension and de­
viatoric tension are the same. The use of a small value of al))T causes the 
damage on each microplane to occur earli~r, ~specially o~ the m.icroplanes 
that resist lateral dilation in the case of umaxIaI compressIOn; thiS causes a 
deviation from purely elastic behavior at lower stress level. This is. the reas~lI1 
why the response seen in Fig. 2(a) is far away from rur~ly elastic b~havlor 
[dotted straight lines in Fig. 2(a)] already at the beglll~lIlg of st~esslllg. To 
avoid this, a material constant T)n (= C~)IC'n, representll1g the ratio between 
the initial deviatoric and volumetric moduli. was changed for these calcu­
lations but no better result had been available. 

One'interesting result is the volu~etr!c response, which ~hows a v~lu­
metric dilatation to occur at the begll1I11ng and a volumetnc compaction 
after that, as seen in Fig. 2(e). It is an opposite trend to that i~ the study 
of Bazant and Prat (1988), in which reasonable results were ob~all1~d sh.ow­
ing the initial volumetric compaction and subsequent volumetnc dIlatation. 
The reason was the assumption that all)] = ah and that the stress-strain 
curves for deviatoric and volumetric tensions are the same. However, the 
assumption a~)J = al~r appears questionable from th: viewpoint of the 
macroscopic triaxial strength envelope, as already mentioned. 

To compare the present normal-shear formulation with the pr:vious vol­
umetric-deviatoric-shear formulation, Fig. 3 presents the numencal results 
for uniaxial compression using the present mic~oplane modeJ, and Table I 
gives the corresponding material parameters. Fig. 3(a) shows the calculated 
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FIG. 3. Responses for Uniaxial Compressive Test with Present Microplane Model: 
(a) Macroscopic Stress-Strain Response; (b) Mlcrostress-Strain Response at In­

tegration Point 1; (c) Mlcrostress-Strain Response at Integration Point 2; (d) MI­

crostress-Strain Responses at Integration Point 18; (e) Macroscopic Volumetric 

Response 

macroscopic stress-strain response. Figs. 3(b-d) show the normal, K-shear, 
and M-shear responses for integration points I, 2, and 18 (the same as in 
Fig. 2). Fig. 3(e) shows the resulting relation between the macroscopic axial 
stress IT,.\. and the macroscopic average volumetric strain E",. (E",. = EiJ3). 
Compared with the responses on the microplanes in the previous formulation 
(Fig. 2), the responses for the present formulation appear quite reasonable. 
The response at integraton point 1 is a progressive tensile softening behavior, 
which reflects axial tensile cracking in the uniaxial compressive specimen 
[Fig. 3(b)]. In the calculation, the macroscopic compressive peak is obtained 
when the shear responses on some microplanes (integration points 4, 5, 6, 
7, 10, II, 12, and 13) go into the softening regimes after the normal responses 
on the same microplanes go into softening. This appears to be a consistent 
picture of the micromechanism of uniaxial compressive failure, in which the 
uniaxial compressive specimen is weakened by axial splitting cracks. The 
main difference from the results with the previous formulation is the relation 
between the macroscopic axial stress IT,.\. and the macroscopic average vol­
umetric strain Em" shown in Fig. 3(e). In· contrast to the previous formulation 
[Fig. 2(e)], the present volumetric response is consistent with the experi­
mental fact that the volumetric compaction precedes the volumetric dila­
tation due to axial tensile cracking. The turning point from volumetric 
compaction to dilatation, which is sometimes called the critical point and 
occurs in experiments usually at 75-90% of uniaxial compressive strength 
f;, is here obtained at 78% of f;. 

Fig. 1 (b) shows the fits of the triaxial compressive test data for concrete 
by Willam et al. (1986), and Table 1 gives the material parameters used. 
These tests, which were carried out at three different confining stress levels 
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(a .. = 0.69,6.90, and 13.79 MPa). show the confinement effect, i.e .. the 
transiti?n from the softening response at a .. = 0.69 MPa to the plastic 
h~rdemng response at a c =.13.79 MPa. The feature that enables the present 
mlcroplane model to descnbe the confinement effect is the dependence of 
the normal re~ponse on the lateral strains and also the dependence of the 
peak shear mlcrostress value on the resolved normal macroscopic stress 
tensor. The former dependence is included in parameter 10 tf), Eli. f) , and m, 
and the latter .dependence is included in parameter 11-. The fits in Fig. l(b) 
are good, .whlch means that the present normal-shear formulation with 
lateral stram ?epe~den~e and the resolved normal macroscopic stress tensor 
d~~endence IS vahd WIthout resorting to the volumetric-deviatoric subdi­
vIsIon. of the normal microplane strain. The other tests simulated in this 
study mclude ~o data with different confining stress levels, therefore in the 
latter cal~ula~ons the parameters fitted to the test data of Willam et al. 
<,1986),.E LO - 0.01, E'!.f) = 0.01. and m = 1.0, are used for the sake of 
sImplIcIty. 

Figs. 4 and 5 show the fits of the cyclic uniaxial compressive tests of 
concretes by van Mier (1984) and by Karsan et al. (1960), and Table I lists 
the corresponding material parameters. As before, Fig. 4(b-d) and Fig. 
5(~-d) show the normal, K-shear and M-shear responses at integration 
pomts 1, 2, an~ 18. Fr~~ these results ,!,e ca~ see a good capability of the 
pre~ent model m de~cnbmg m~cros~oPlc cychc behaviors including degra­
datIon of t.he unloadmg-reloadmg stIffness and the shapes of the hysteresis 
loop, parhcularly the change of the loop width. The integration points I 
correspond to the lateral directions for uniaxial compression and their re­
sponses simulate axial splitting cracks. Note that even though the microplane 
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(1969): (a) Macroscopic Stress-Strain Response; (b) Mlcrostress-Straln Response 

at Integration Point 1; (c) Microstress-Strain Response at Integration Point 2; (d) 

Microstress-Strain Responses at Integration Point 18 

responses at integration points 2 corresponding to the direction of uniaxial 
compression have no hysteresis loops, the macroscopic responses for the 
same strain values as those for integration points 2 do have hysteresis loops. 
It means that the source of macroscopic hysteresis lies mainly in the hys­
teresis loops 'for normal tensile softening and shear softening on the micro­
planes. 

Fig. 6 compares the calculated results with Reinhardt's (1984) cyclic un­
iaxial tensile tests, in which tapered cylindrical specimens were used, with 
saw-cut notches inducing a crack at mid length. The displacement across 
the notch was measured over the base length of 25 mm. The average strain 
over the base length was compared to the present calculations. The identified 
material parameters are again listed in Table 1. The calculated results agree 
well with these test data, especially the postpeak stiffness degradation and 
the linear compressive behavior. 

Fig. 7(a) compares the uniaxial compressive tests data (Dilger et al. 1984) 
for different strain rates (-3.3 x 10- 5 to -2.0 X 10- 1 S-I) with the 
calculated results using the relaxation times p given, along with other ma­
terial parameters, in Table I. The p-values have totally different orders of 
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Rates, Using Material Parameters Corresponding to van Mler's (1984) Test Data 

magnitu~e than in t~e previous static calculations because the strains range 
from statlc:o dynamiC (Imp~ct). In the c~lIclilation, different values of Young's 
modulus E are used for different stram rates. since. otherwisc, the initial 
prepeak response would dcviate from the test results (for f: = 3.3 x lO-". 
-3.3 X 10- 3

• and -2.0 x 10 1 S-I: E =0 3.24 x 1O~. 3.43 X 10'. and 
4.22 x 1~4 MPa). (This c~)Uld be ?voided by introducing strain-rate de­
pendence 111 the el.astoplast!c-fractu.nng element of the gencralized Maxwell 
model for each. mlcroplane. but tl1lS would further complicate the model.) 
Although the fits are not poor, more extensive comparisons are desirable. 

Ther~ are ~nly few expe.rimental data on the strain rate effect. especially 
for cyclic loadmg .. We ~onslder van Mier's (1984) cyclic uniaxial comprcssion 
data. The relaxation times are assumed as PNT = PI" = 1.0 x 10' s; PNC = 

1.0 X 1~5 s; and the monotonic and cyclic loading calculations are done for 
two stram rates, E ::: -1.0 X 10- 6 and -La x 1O'-~ S-I. In each. the 
unloading-reloading cycles start at two postpcak. stress .values IJ9{fp,;,k and 
0.6{fpeak., where (freak = peak stress for monotOl1lc loa~mg. The results are 
shown 111 Fig. 7(b). The decreases of the load capacities due to cycling, 
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which are defined as stress differences between the monotonic and cyclic 
curves. get smaller as the strain rate gets larger. 

One advantage of the present microplane model is that each material 
parameter has a clear, easily understandable. mechanical meaning. For 
example, aO are the peak microstresses for each component. "I represent 
the ductilities in the postpeak range, and ~ represent the strains at peak 
stress, characterizing the degree of nonlinearity in the pre peak response. 
The values in Table 1 illuminate the choice of material parameters for the 
microplane model; a!J.,T and a~. appear to be related not only to!r but also 
to I;; a~T can control the stress level for the critical point of uniaxial com­
pressive stress-strain curve; a!J.,c does not have a strong correlation with 
I;. but we might consider it to be larger than!: .. From numerical experience. 
alJvT = (l.O-2.0)!" {f~~c == -1.5/:. and {fl.}. = (0.5-1.5)f,. The values of 
tNT and tNC do not have large effects on the macroscopic behavior; however. 
tNC must be chosen so that the normal compressive softening curve touches 
inside of the normal hydrostatic curve. On the other hand, the value of {r 

can change the macroscopic peak stress and the ductilities in uniaxial com­
pressive test. From numerical experience. tNT = 0.4-0.6. {NC = 0.3-0.5. 
and {T = 0.4-0.8. There seems to be a tendency of large "IN! and 't1' values 
to yield higher peak stresses and ductilities in the macroscopic responses. 
The value -YNC seems to have a small effect on the macroscopic uniaxial 
compressive and tensile behaviors. The values PNT' Pm-' and PT change the 
postpeak softening curves only slightly (the ductilities depend mainly on -y). 
From such experience. PNT = PNC = PT = 1.5. The larger the frictional 
coefficient fJ. of the shear component. the more prominent the confinement 
effect in triaxial tests. However, if fJ. becomes too large. the volumetric 
dilatation near the uniaxial peak stress disappears. From experience, fJ. = 
0.5-1.0 . 

With the foregoing parameters fixed as indicated, 10 material parameters 
remain to be identified by fitting individual monotonic test data (namely 
cr!J.,T, a7vc, aI}, {NT' {NC' {T. 'tNT' 'tNC, 'tT' and fJ.) provided that the param­
eters of the hydrostatic curve and the lateral strain effect have already been 
fixed. 

Note that all the test data used were obtained at fixed principal stress 
rotations. We cannot guarantee that if their directions rotate, some modi­
fications of the model might not be needed. In principle. however. the 
microplane model should apply to rotating principal stress directons as well. 

As important feature to note is that the test data were fitted under the 
assumption of a uniform strain state. Obviously this is generally not true 
for postpeak softening. Localizations likely occurred. and consequently the 
postpeak response obtained with the present model applies only to specimen 
sizes approximately the same as those tested. But calculations in the post­
peak softening range can be made using some form of a localization limiter, 
for which the non local theory is adopted here. 

NUMERICAL STUDIES WITH NONLOCAL MICRO PLANE MODEL 

The present microplane model has been combined with the non local 
theory, and the microplane finite-element program has been generalized for 
the 110nlocal behavior. This makes it possible to model the size effects, 
which were investigated in the previous studies of the nonlocal smeared­
cracking model and non local microplane model (Bazant and Lin 1988; Ba­
zant and Ozbolt 1990). Those studies dealt with tensile cracking and fracture. 
The present microplane model is more general and has been partly verified 
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for '!lore .general stress conditions. We arc interested in applying it to l1on­
tensile failures. We explore a set of experiments available in the literature, 
those of van Mier (1984).' dealing with uniaxial compressive failures of prisms 
of the same square sectIOn (100 x 100 mm) but different heights (50, 100, 
and 200 mm). These tests, strictly speaking, do not show what is understood 
as the ~ize effect, because the specimens were not geometrically similar. 
Van Mler's tests show that the postpeak descending stress-strain diagram 
becomes steeper as the specimen height (length) (or the height-to-width 
ratio, slenderness) is increased. 

Fig. 8 shows the three finite-element meshes used. Meshes A, B, and C 
correspond to van Mier's specimens 15Al-5 (height II = 50 mm), 1081-3 
~h = 100 m.m): ~nd lOB2-2 (h = 200 mm): They consist of 25 four-node 
Isoparametnc flnI.t~ el~ments with 2 x 2 Gaussian integration points. The 
plane stress conditIOn IS assumed. The boundary conditions on the loaded 
sides are a sliding (frictionless) constraint in the x-direction. The load is 
i~troduced by ~rescribing uniform nodal displacements along the loaded 
Side. The matenal parameters are the same as those indicated for the sim­
ulati~n .of van Mi~r's cyclic uniaxial compressive test Cfable I). The char­
acte~lstlc length [IS a~sumed to .b? [ = 3d" = 3 x 16 mm = 48111111 (d" is 
maximum aggregate size). The flllite-element calculations are done not only 
with non local averaging, but also without it. 
. T~e calculated load-displacement curves arc compared to van Mier's data 
111 Fig. 9(a). The load-displacement curves for both local and nonlocal cal­
culations are ~Imost the sa'!le in the cases of" = 50 and 100 111m, and they 
both agree With the expenments well. However, in the case of" = 200 
mm, the maximum load value for the local calculation is too small, while 
the .nonlocal calculation predicts the maximum well. Generally, the nu­
mencal convergence of the load-step iterations in the local calculations has 
not been go~d, alth.ough for. the no~loc.al c<~lculations it has been very good. 
The reason IS spunous stralll localIzation 111 the case of local calculations; 
the !1onlocal calculations do not have such a problem, as shown later. 

FIg. 10 shows the distributions of strain E" (lateral strain) at maximum 
I?ad (P = r: max) for all the meshes; Fig. lO(a-c) are the nonlocal calcula­
tIOns, and Fig. lO(d-f) are the local calculations (here and in Figs. I 1-13). 
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FIG. 8. Finite-Element Meshes for van Mler's (1974) Specimens 
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FIG. 10. Calculated Lateral Strain Distributions E ... at Maximum Load Pm., for van 

Mler's (1984) Tests: (a)-(c) Nonlocal Calculations; (d)-(f) Local Calculations 

There are only small differences between the distributions for non local and 
local calculations for the heights h = 50 and 100 mm, but for h = 200 mm 
the strain distributions are very different, the strain field for the local cal­
culation tends to localize. Fig. 11 shows the £xx distributions at postpeak 
load P = 0.7 P max for all the meshes [the strain scale of Fig. 11(f) is different 
from the others]. A large strain localization occurs in the local case for h 
= 200 mm [Fig. 11(f)]; in the non local case there is no pronounced local­
ization, only a gradual strain distribution [Fig. 11(c)]. The localization ob-
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... compressive loading 

FIG. 13. Calculations Shear Strain Distributions ')I" at Load on Softening Regime 

(P = O.7Pm .. ) for van Mier's (1984) Tests: (a)-(c) Nonlocal Calculations: (d)-(f) 

Local Calculations 

tained in the local case seems to be spurious, due to numerical problems, 
which is indicated by poor numerical convergence and the fact that locali­
zation is seen to occur in only a single element band at x == 0 to 2 cm. 
Comparing the nonlocal and local cases for the heights h == 50 and 100 mm, 
the local case always gives a stronger localization than the non local case. 

Fig. 12 shows the distributions of ElY (compressive axial strain) at postpeak 
load P == 0.7 P max for all the meshes 1 the strain scale of Fig. 12(f) is different 
from the others]. We can observe the same phenomena as in the case of 
f'xx' Fig. 13 compares the distributions of shear strain "Ixy at postpeak load 
P = O.7P"HIX' for all the meshes [the strain scale of Fig. 13(f) is different 
from the others]. At the maximum load, there are almost no shear strains 
in all the cases except the local case of h == 200 mm, in which the shear 
strains are localized. However, in Fig. 13 for the softening response the 
shear strains in all the cases are relatively large compared to those at the 
maximum load, especially in the local case for h = 200 mm [Fig. 13(f)] . 
The shear strain localization tends to increase with the mesh sizes, and the 
localization is more pronounced for the local cases . 

To summarize the comparisons in Figs. 10-13, the non local calculations 
always yield numerically stable solutions regardless of the specimen height 
or the element size; and the local calculations yield spurious localizations 
and poorer convergence when specimens much larger than I are analyzed. 
The non local results of course do not represent the actual micros trains but 
macroscopically smoothed (averaged) strains. 

The aforementioned strain distributions reveal differences in the failure 
mechanisms for different specimen heights. The first stage of damage is 
characterized by splitting cracks in the direction of compressive axis, as 
revealed by large values of the calculated lateral strains En in Figs. 10 and 
11. After the peak load, the shear strains "IX\" increase markedly and tend 
to localize; prior to the peak load there is alnl0st no shear strain. The shear 
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localization is more intense when the specimen height is largcr. Since the 
shear localization represents local failure and may lead to buckling of the 
material strips between the splitting cracks, the load-carrying capacity of 
the specimens with larger height decreases at an earlier stage of the softening 
regime than for the specimens with smaller height. According to experi­
mental observations, uniaxial compressive specimens without friction under 
the loading platens usually do not fail by shear bands but by axial splitting. 
The final failure probably occurs by snap-through buckling of the material 
itrips between the splitting cracks. These experimental facts are consistent 
¥ith the present analytical results. 

In the present calculations, the finite elements were relatively large com­
pared with the specimen sizes and with the characteristic length I. Thus it 
might be that the element subdivision might not be sufficiently fine to 
represent the deformation field, and especially the shear band localization 
mode. Calculations with finer meshes are desirable. 

In this study, the characteristic length I is fixed as 1 = 3da , which is the 
approximation suggested for the crack-band theory (Bazant and Oh 1983). 
The effect of changing 1 has not been explored, but the estimate 1 = 3d" is 
certainly a crude guess and the value 1 would better be identified by fitting 
of more extensive test data on the effects of both the height-to-width ratio 
and the specimen size for the same height-to-width ratio. But such com­
prehensive test data are lacking. 

It is interesting to compare the cyclic calculation results using the non local 
and local microplan.e models. Van Mier's (1984) cyclic uniaxial compressive 
test data for the specimen with height h = 100 mm were fitted in Fig. 4 
with a single finite element, and mesh B (100 x 100 mm) is then used along 
with the same material parameters given in Table 1. Fig. 9(b) shows the 
calculated stress-strain curves along with the previous result using a single 
finite element, for comparison ,(the load-displacement data were converted 
into average stress-strain data for the total specimen height). The differences 
between the nonlocal 25-element calculation, the local 25-element calcu­
lation, and the single-element calculation are seen to increase with increasing 
strain. However, the differences between the strain (En' Eyy, and 'Yn') dis­
tributions of the non local and local 25-element calculations' are very' small 
compared to differences in the results for different specimen heights. 

CONCLUSIONS 

1. The previously formulated non local microplane model for concrete is 
improved to describe the cyclic and rate-dependent behaviors. By contrast 
with the previous microplane model, the normal strain component on the 
microplane is not split into its volumetric and deviatoric parts; instead, the 
lateral normal strains are considered. The penalty is that the full range of 
Poisson's ratio cannot be covered, but the Poisson ratio values typical for 
concrete can be obtained. Furthermore, instead of one shear strain resultant 
on the microplane, the shear strain is represented by two shear components 
in the directions of two in-plane coordinates. This approach appears to 
eliminate some possibly unrealistic features of the calculated response on 
the microplanes (although this question cannot be decided by direct exper­
imental observations). 

2. The response of the normal strain component on the microplane is 
varied from hydrostatic response to plastic response and to softening re-
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sponse as a f~nction of lat~ral normal strain on the same microplane. As 
before, the mlcroplane strallls are the resolved components of the macro­
strain (kinematic constraint), but the response of the shear component is 
made to depend on the resolved normal component of the macroscopic 
str~ss tenso~ on the same microplane (which represents a static constraint). 
ThiS allows It to represent more closely the phYSical concept of friction. The 
values of peak stress, strain at peak, ductility, and the postpeak shape of 
the descending stress-strain curve for the microplane components, can be 
used to control the macroscopic response in an easily understandable man­
ner. In the case of monotonic loading tests, 10 microplane material param­
eters have to be identified by fitting test data. 

3 .. To mo?el rate depende~ce, a Maxwell-type rheologic model consisting 
o~ a hnear VISCOUS element With a constant relaxation time coupled in series 
With an elastoplastic-fracturing element is adopted for each microplane strain 
com~onent. The ex~onential ~Igorithm previously developed for creep (and 
prevlous~y also applied to a different mlcroplane model) is adapted to this 
f?rmulatlon to calculate the response for each microplane component in the 
time steps of numerical integration. 

4. Nonl~near unl~ading-reloadi~g hysteresis rules are developed for each 
e.lastoplastIc-fractunng element uSlllg the concept of back-stress and objec­
tive-stress. ~urthermore, cyclic rules are set up for the overall response of 
the generallz~d Maxwell mod.el or each microplane component, covering 
both the tensile and compressive stress ranges and general strain histories. 

5. The present ~icropla~e model de~cribes reasonably well the existing 
test data from cyclic ulllaxial compressive and tensile tests, triaxial com­
pressive tests, and the strain-rate effect in uniaxial compressive tests. The 
model also realistically describes the strain-softening, damage processes, the 
hysteretic properties during unloading and reloading, the confinement effect 
on the transition from so~ten~ng to hardening, and the hydrostatic response. 

6. A nonlocal generalizatIOn of the present microplane model can well 
repre~ent localiza~ion behavior and the effect of height-to-width ratio on 
ullla~I~1 compressive soft~ning: Generally, the numerical convergence of 
the flllite-element calculations IS not good for the local model, but is good 
for the nonlocal model. 
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