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The photochemical processes present during free-radical-based holographic grating formation are examined. A
kinetic model is presented, which includes, in a more nearly complete and physically realistic way, most of the
major photochemical and nonlocal photopolymerization-driven diffusion effects. These effects include: (i) non-
steady-state kinetics (ii) spatially and temporally nonlocal polymer chain growth (iii) time varying photon ab-
sorption (iv) diffusion controlled viscosity effects (v) multiple termination mechanisms, and (vi) inhibition. The
convergence of the predictions of the resulting model is then examined. Comparisons with experimental results
are carried out in Part II of this series of papers [J. Opt. Soc. Am. B 26, 1746 (2009)]. © 2009 Optical Society
of America

OCIS codes: 090.7330, 090.2900, 050.1940, 160.5335, 160.5470, 300.1030.
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. INTRODUCTION
he following paper is the first in a series of papers [1] in
hich we develop and examine a fully comprehensive the-
retical representation of the processes that occur during
ree-radical photopolymerizations. Photopolymer materi-
ls [2,3] and the photochemical kinetics associated with
hem [4] have been studied extensively in the literature of
olographic recording. With the growing interest in appli-
ations involving photopolymerization mechanisms [5–8],
he need for such a theoretical and physically realistic
epresentation is becoming ever more important.

The photochemical processes that are present during
hotopolymerization are extremely complex [3,4]; how-
ver, an understanding of these processes is of utmost im-
ortance if a practical model is to be developed. Reviewing
he assumptions made in developing the models currently
vailable in the literature [4] leads to the conclusion that
he following six physical effects must all be included: (i)
on-steady-state kinetics, (ii) spatially and temporally
onlocal polymer chain growth, (iii) time varying photon
bsorption, (iv) diffusion controlled viscosity effects, (v)
ultiple termination mechanisms, and (vi) inhibition. Re-

ently, such a model was proposed [9,10]. In this series of
apers the model is first developed and then verified ex-
erimentally for two significantly different free-radical
hotopolymer materials [1].
Part I of this series is structured as follows. In Section
we briefly review the photochemical processes involved

uring holographic grating formation and highlight some
f the assumptions previously made. In Section 3 the ki-
etic model, which includes the six effects identified
bove, is derived. From the resulting set of equations a
runcated set of coupled first-order differential equations
0740-3224/09/091736-10/$15.00 © 2
re then generated. Applying suitable initial conditions,
hese differential equations are then solved numerically,
nd simulations of the behavior of the monomer and poly-
er concentrations are predicted by using typical mate-

ial parameter values. In Section 4 the calculation of the
emporal evolution of the grating refractive index modu-
ation, using the Lorentz–Lorenz relation, is discussed. In
ection 5 comparisons of the predictions of the model, cal-
ulated with the retention of 4, 8, and 12 concentration
armonics, are made in order to assess the numerical con-
ergence of the model. Finally, in Section 6 we present a
rief summary.
In Part II of this series [1], using the model developed

ere, we examine the photopolymerization effects, both
uring and post-exposure (dark reactions), in two differ-
nt photopolymer materials: (i) acrylamide/polyvinyl alco-
ol (AA/PVA)[3,11] and (ii) an epoxy-resin-based material
eveloped by Trentler et al. [12]. The model is used to ex-
ract estimates of the physical parameter in both materi-
ls.

. PHOTOCHEMICAL PROCESSES
. Review of Kinetic Models
any of the models presented in the literature involve

he assumption of a pseudo-steady-state approximation
or macroradical concentration [4]. They operate by set-
ing the rate of generation of radicals through photoini-
iation, equal to the rate of bimolecular termination. Thus
he polymerization rate Rp is given by the expression

Rp = kpM•M = kp��Ri/ktM, �1�

here kp and kt are the kinetic constants of propagation
nd termination, respectively, R is the rate of decomposi-
i

009 Optical Society of America



t
a
m
m
n

c
d
c
r
e
c
d
e
[
v
t
m
r
s
t

t
t
I
t
E
t
m
h
m
t
t
r
p
t

c

r

c

i

c

B
T
t

I
c
p
t
r
i
c
m
r
[

s
h
t
g
t
[
t

w
p
t
a
f
a
t
t

w
i
E
a
d

M. R. Gleeson and J. T. Sheridan Vol. 26, No. 9 /September 2009 /J. Opt. Soc. Am. B 1737
ion of the initiator species, � is the initiator efficiency,
nd M and M• are the instantaneous concentrations of
onomer and of all macroradicals, respectively. The term
acroradical refers to all growing polymer chains, i.e.,
�0 monomer units that have an active tip [13].
When a photopolymer material with a low initiator con-

entration is exposed to a moderate intensity, the linear
ependence among the polymerization rate, the monomer
oncentration, and the square root dependence on the
ate of initiation have been found to agree quite well with
xperimentally determined rates [3,11]. In this case, the
oncentration of primary or initiator radicals, R• (radicals
erived directly from photocleavage of the initiator mol-
cule), is very low, and as a result macroradicals, Mn

•

13–16], are much more likely to undergo termination in-
olving another macroradical, i.e., bimolecular termina-
ion (chain–chain), rather than termination with a pri-
ary radical, i.e., primary termination (chain–primary

adical). Under these conditions, the steady-state as-
umption is valid, and Eq. (1) describes the polymeriza-
ion kinetics well.

However, studies have shown [17–19] that at high ini-
iation rates the dependence on initiation drops below
hat predicted by the square root dependence in Eq. (1).
n this case the steady-state assumption is violated, and
he deviation from the ideal kinetic behavior described by
q. (1) becomes pronounced. These effects have been at-

ributed to a phenomenon known as primary radical ter-
ination, i.e., primary termination [15,17–19]. At these

igher initiation rates, there is a significantly larger pri-
ary radical concentration, which, as a result, increases

he likelihood of primary termination. Furthermore, since
he primary radicals can act to limit the buildup of mac-
oradicals, they can effectively reduce the increase in the
olymerization rate that is normally seen during the au-
oacceleration process [19] (see Subsection 2.B).

To proceed, we begin by presenting a consistent set of
hemical reaction equations, which allow us to

(i) remove the steady-state approximation for macro-
adical concentration,

(ii) include spatially and temporally nonlocal polymer
hain growth,

(iii) include time varying photon absorption,
(iv) simultaneously include the effects of both primary,

.e., R•–M•, and bimolecular, i.e., M•–M•, termination,
(v) include the changes in the polymerization kinetic

onstants caused by increased viscosity,
(vi) include polymerization-inhibiting effects.

. Reaction Mechanisms
he kinetic model presented in this analysis is based on
he following four reaction processes [3,11,13,19–21].

Process I. Initiation.

I →
h�

2R•, �2a�

R• + M →
ki

M1
•, chain initiator. �2b�
Process II. Propagation.

Mn
• + M →

kp

Mn+1
• , growing polymer chain. �3�

Process III. Termination.

Mn
• + Mm

• →
ktc

Mn+m, dead polymer, �4a�

Mn
• + Mm

• →
ktd

Mn + Mm, dead polymer, �4b�

Mn
• + R• →

ktp

MnR, dead polymer. �4c�

Process IV. Inhibition.

R• + Z →
kz,R•

�R + Z•, and/or RZ•�, scavenged radical,

�5a�

Mn
• + Z →

kz,M•

�Mn + Z•, and/or MnZ•�, dead polymer.

�5b�

n the above set of chemical equations, I is the initiator
oncentration, h� indicates the energy absorbed from a
hoton, M is the monomer concentration, Z is the inhibi-
or concentration, and Mn, Mm, Mn+m, MnR, and MnZ•

epresent polymer species with no active propagating tip,
.e., dead polymers. The term dead polymer signifies the
essation of the growth of a propagating macroradical of n
onomer repeat units [13], while the term scavenged

adical signifies the removal of a primary radical
10,11,21–23].

Process I. Initiation. The initiation process involves two
teps: the first step is the production of free radicals by
omolytic dissociation of the initiator to yield a pair of ini-
iator (primary) radicals, R•, i.e., Eq. (2a). If we consider a
rating formed by the interference of two plane waves,
he spatial distribution of irradiance is cosinusoidal
10,11,15,16,23], and the equation governing Eq. (2a) for
he rate of primary radical production is

Ri�x,t� = Ri�t��1 + V cos�Kx�� = 2�Ia�t��1 + V cos�Kx��,

�6�

here � is the number of primary radicals produced per
hoton absorbed, the inclusion of the factor of 2 follows
he convention that indicates that two primary radicals
re produced for every photon absorbed [13], V is the
ringe visibility, K=2� /� is the grating vector magnitude,
nd � is the grating period. The time varying absorbed in-
ensity, Ia�t� �Einstein/cm3 s�, is given by an adaptation of
he Beer–Lambert equation [10,23,24]

Ia�t� =
I0�

d � �exp��dA0� − 1�exp�− ��I0�t�

1 + �exp��dA0� − 1�exp�− ��I0�t�
� , �7�

here d (cm) is the layer thickness, A0 �mol/cm3� is the
nitial photosensitizer/initiator concentration, � (mol/
instein) is the quantum yield, � �cm2/mol� is the molar
bsorption coefficient, and I0� �Einstein/cm2 s� is the inci-
ent intensity [10,23,24].
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The second step in the initiation process is chain initia-
ion, Eq. (2b), in which the primary radicals produced as a
esult of the absorption of photons react with the mono-
er to produce the chain initiating species M1

•

3,11,13–16,19,20]. The kinetic rate constant for this step
s ki �cm3 mol−1 s−1�, i.e., the chain initiation kinetic con-
tant.

Process II. Propagation. The propagation step described
n Eq. (3) shows a monomer being added to a growing

acroradical chain of n repeat monomeric units, where
he propagation rate kinetic constant is denoted kp
cm3 mol−1 s−1�.

Process III. Termination. In Eq. (4) three possible ter-
ination reactions are presented. Equations (4a) and (4b)

epresent the bimolecular termination mechanisms,
here two growing macroradicals come together and ter-
inate. This method of termination can occur either by

ombination �ktc�, Eq. (4a), or by disproportionation �ktd�,
q. (4b). Since the specific mode of termination does not
ffect the polymerization kinetics, both will be treated in
his analysis by use of a single lumped rate constant, kt
ktc+ktd �cm3 mol−1 s−1�.
Equation (4c) presents the third possible termination
echanism examined, primary radical termination. In

his step, a growing macroradical reacts with a primary
adical to form an inactive polymer chain or dead poly-
er. The kinetic rate constant for this step will in general

e different from that for the bimolecular termination
tep for two main reasons:

(i) The reactivity of the primary radical can be very dif-
erent from that of the chain end radical (radical reactiv-
ty can depend on molecular size [13]).

(ii) The primary radicals will be much more mobile, as
hey are much smaller than the growing macroradicals,
nd therefore the diffusion controlled effects (caused by
iscosity changes due to polymerization) of the two reac-
ions will be quite different.

In the analysis presented here the effects of primary
adical recombination will be neglected, as it has been
hown that these events are negligible when compared
ith other polymerization kinetic reactions [17,25].
The kinetic rate constants kp and kt in Eqs.(3), (4a),

nd (4b), are in general dependent on the viscosity of a
hotopolymer material. As polymerization proceeds, the
esulting increase in viscosity of the material (due to den-
ification and cross linking) can cause a significant reduc-
ion in the mobility of large molecules, such as the grow-
ng macroradical chains. When the diffusional limitations
ecome large enough to restrict the diffusion of these
rowing macroradical chains, they can no longer diffuse
nto close enough proximity to react with other macro-
adicals, and as a result the termination rate, kt, de-
reases. This decrease in termination leads to a buildup
n macroradical concentration, which subsequently
auses a sudden increase in the rate of polymerization,
hich is known as autoacceleration (gel or Trommsdorff
ffect) [15,18,19,26]. Once termination drops below a criti-
al level [18,19,26], a different mechanism will become
ominant; this mechanism is known as reaction-diffusion.
Reaction-diffusion-controlled termination arises when

ermination is controlled by the ability of smaller mono-
er molecules to diffuse to the restricted active macro-
adical tips. It occurs when the termination of a macro-
adical is faster and is more likely to take place because of
he continued growth of a propagating chain (until it en-
ounters another macroradical for bimolecular termina-
ion) than it is likely to diffuse to and thus locate another
acroradical chain for termination by bimolecular termi-
ation. Since the controlling step in this termination
echanism relies on macroradical chain growth (propaga-

ion through available monomer), the termination kinetic
onstant becomes dependent on the propagation kinetic
onstant, as indicated in Eq. (8b) below.

As viscosity effects begin to increase further, the mobil-
ty of even small molecules, such as the unreacted mono-

er, becomes limited. Under these conditions, the mono-
er can no longer easily diffuse to the reactive sites, and

s a result the propagation rate kp, and consequently the
ate of polymerization, decreases. This effect is known as
utodeceleration [13,18,19,26]. Following the analysis of
hotopolymerization kinetics presented by Goodner et al.
18,19], the effects of viscosity changes on the propagation
nd termination kinetic constants can be expressed as

kp =
kp0

1 + exp �Ap	 1

fv −
1

fcp
v 
� , �8a�

kt =
kt0

1 + �RDkpM

kt0

+ exp 
− At� 1

f
v

−
1

fct
v ���

−1
, �8b�

here kp0 and kt0 are the propagation and termination ki-
etic constants in the absence of diffusional limitations.
n these equations, fv is the fractional free volume of the
ystem [18,19,26–28], and fcp

v and fct
v are the critical frac-

ional free volumes at which both propagation and termi-
ation begin to be diffusionally controlled. Ap and At are
he parameters that govern the rate at which propagation
nd termination rates decrease in the diffusion controlled
egions. RD is the reaction-diffusion parameter, which is
efined as the termination kinetic constant in the
eaction-diffusion region divided by the product of the
ropagation kinetic constant and the instantaneous unre-
cted monomer concentration M [18,19,30,31,29].
As the monomer is converted to polymer, the resulting

ncrease in the material viscosity causes a reduction in
he free volume of the material, resulting in diffusional ef-
ects. This variation in fractional free volume can be de-
cribed by using the equation

fv = fm
v �m + fp

v�1 − �m�, �9�

here fm
v = fTgm

v +�m�T−Tgm� and fp
v = fTgp

v +�p�T−Tgp�
18,30–32]. In these equations fm

v and fp
v are the fractional

ree volumes of pure monomer and pure polymer, respec-
ively (where “pure” refers to the values obtained in the
bsence of any other material components), �m and �p are
he thermal coefficients of expansion, Tgm and Tgp are
heir glass transition temperatures, fTgm and fTgp repre-
ent their fractional free volumes at the glass transition
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emperatures, and T (K) represents the local temperature
18,19,30–32]. �m is the volume fraction of monomer,
hich decreases during polymerization [15,16,33]. Note

hat the expressions for the diffusion controlled kinetics
f both ki and ktp �cm3 mol−1 s−1� will be of the same form
s that presented for kp in Eq. (8a) [18,19,29].
Process IV. Inhibition. The final reaction mechanism,

resented in Eq. (5), is inhibition caused by the reaction
f the primary radicals and macroradicals with an inhibi-
or such as dissolved oxygen in the photopolymer material
11,13,16,21–23,34–36]. These radical-consuming reac-
ions tend to

(i) suppress the creation of macroradicals by scaveng-
ng primary radicals, Eq. (5a), and/or

(ii) inhibit the macroradicals that are created, Eq. (5b).

his process therefore acts to stop the production of poly-
er chains and most obviously causes an inhibition or

ead-band period at the start of grating growth. This in-
ibition period will continue until there is a sufficiently

ow concentration of inhibitor in the material to allow po-
ymerization to occur [11,13,16,21–23]. The kinetics pre-
ented in Eq. (5) are simplified by assuming that Z•, MZ•,
nd RZ• do not reinitiate polymerization and also that
hey terminate without regeneration, i.e., they are re-
oved from any possible future reactions.
Previously [10,11,16], it was assumed that the effect of

nhibition during exposure was due solely to the initially
issolved oxygen present within the photopolymer layer.
owever, when the photopolymer is exposed, the initial

oncentration of dissolved inhibiting oxygen reacts with
he radicals produced in the illuminated regions. This
onuniform irradiance causes inhibitor concentration
radients, and hence a diffusion of oxygen from dark re-
ions to bright regions occurs. As the relative size of oxy-
en molecules are small compared with the surrounding
aterial, it can be assumed that the oxygen is relatively

ree to diffuse rapidly, resulting in a one-dimensional
tandard diffusion equation for the concentration of in-
ibitor,

dZ�x,t�

dt
=

d

dx�Dz

dZ�x,t�

dx � − kz,R•Z�x,t�R•�x,t�

− kz,M•Z�x,t�M•�x,t�, �10�

here Z�x , t� is the instantaneous inhibiting oxygen con-
entration and Dz is the diffusion constant of oxygen in
he dry material layer, which in this analysis will be as-
umed to be time and space independent. The inhibition
ate constants, kz,R• and kz,M•, in the reactions presented
n Eqs.(5a) and (5b) will in general have different values
of reactivity) due to the differences in their relative mo-
ecular sizes [13]; however, in this analysis, for the sake of
implicity they will be treated as being equal, i.e., kz
kz,R•=kz,M•. The initial condition for this diffusion equa-

ion is Z�x ,0�=Z0, for −	
x
	, where Z0 is the initial
oncentration of dissolved oxygen that can be measured
y using a dissolved oxygen probe [35]. The inhibition
ate constant will not have a significant dependence on
ree volume, as oxygen is a very small molecule and very
obile; therefore the inhibition rate constant can be ex-
ressed as

kz = kz,0 exp�− Ez/RT�, �11�

here in this equation kz,0 �cm3 mol−1 s−1� is the Arrhen-
us pre-exponential factor, Ez=18.23�103 �J mol−1� is the
ctivation energy of oxygen, R=8.31 �J K−1 mol−1� is the
niversal gas constant, and T (K) is the local temperature
36].

. MODEL DEVELOPMENT
n order to combine the kinetic mechanisms presented in
ection 2, a new set of governing coupled differential
quations are required. The equation governing the con-
entration of primary radicals is

dR•�x,t�

dt
= Ri�x,t� − kiR

•�x,t�u�x,t� − ktpR•�x,t�M•�x,t�

− kzR
•�x,t�Z�x,t�, �12�

here u�x , t� is the free-monomer concentration (earlier
enoted M). This equation states that the rate of change
f primary radical concentration is equal to the amount of
rimary radicals generated by photon absorption minus
he amounts removed by (a) the initiation of macroradi-
als (b) primary termination with growing polymer
hains, and (c) inhibition by oxygen.

Including both types of termination mechanism (pri-
ary and bimolecular) and the effects of inhibition, the

quation governing macroradical concentration is

dM•�x,t�

dt
= kiR

•�x,t�u�x,t� − 2kt�M•�x,t��2

− ktpR•�x,t�M•�x,t� − kzZ�x,t�M•�x,t�,

�13�

here the squared term represents the effects of bimo-
ecular termination. The generation term in this equation
ppears as the removal term due to macroradical initia-
ion in Eq. (12).

When the layer is exposed to the interference fringe
attern, monomer reacts with the primary radicals pro-
uced by photon absorption. The nonuniform irradiance
reates monomer concentration gradients, and as a result
onomer diffuses from the dark regions to the monomer-

epleted exposed regions. This enables us to represent the
onomer concentration by using the following one-

imensional diffusion equation:

du�x,t�

dt
=

d

dx�Dm�x,t�
du�x,t�

dx � − kiR
•�x,t�u�x,t�

−�
−	

	

G�x,x��F�x�,t�u�x�,t�dx�, �14�

here F�x , t� is the polymerization rate and Dm�x , t� rep-
esents the monomer diffusion constant. G�x ,x�� is the
onlocal material spatial response function given by
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G�x,x�� =
1

�2��
exp�− �x − x��2

2�
� , �15�

here � is the constant nonlocal response parameter nor-
alized with respect to the grating period, �

3,9,11,15,16,37]. This nonlocal response function repre-
ents the effect of initiation at location x� on the amount
f monomer polymerized at location x [3,16,37]. The ini-
ial monomer concentration for −	
x
	 is u�x ,0�=U0
mol/cm3�.

Previously, in [15,38–40], a nonlinear relationship was
ssumed to exist between the polymerization rate, F�x , t�
nd the recording intensity. This nonlinearity was ac-
ounted for using the parameter 
, resulting in the poly-
erization rate

F�x,t� = F0�1 + V cos�Kx��
 = ��I0�
�1 + V cos�Kx��
,

�16�

here � was assumed to be a material constant. For vis-
bility V=1 and nonlinearity parameter 
= 1

2, the poly-
erization rate was represented by a Fourier series [41].
As this square root dependence of polymerization rate

n the rate of initiation, and therefore irradiance, derives
rom the steady-state approximation for macroradical
oncentration [see Eq. (1)], it is necessary to suitably ad-
ust the expression for the polymerization rate so that it is
xpressed as a function of the solution to the non-steady-
tate equation for monomer radical concentration, Eq.
13). In this case

F�x,t� = kpM•�x,t�, �17�

here the effective propagation rate, kp, is dependent on
aterial viscosity effects. The spatial distribution of the

olymerization rate is accounted for by the generation or
roduction of primary radicals in the areas exposed to the
osinusoidal irradiance, Eq. (6). As the generation of both
he primary radicals and monomer radicals and the re-
oval of monomer and inhibiting oxygen are dependent

n the spatial distribution of exposure irradiance, their
oncentrations will also be periodic even functions of x.
hus the expressions in Eqs.(10) and (12)–(14) can all be
ritten as Fourier series

X�x,t� = �
j=0

	

Xj�t�cos�jKx�, �18�

here X represents R•, M•, u, Z, and Dm. A set of first-
rder coupled differential equations can then be obtained
y gathering the coefficients of the various cosinusoidal
patial contributions and writing the equations in terms
f these time varying spatial harmonic amplitudes. As-
uming that harmonics of order greater than j=3 are neg-
igible, we obtain sets of first-order coupled differential
quations, Eqs.(20)–(23), which must be solved with the
ollowing initial conditions:
Z0�t = 0� = Z0,

u0�t = 0� = U0,

nd

uj�0�t = 0� = Rj�0
• �t = 0� = Mj�0

• �t = 0� = 0. �19�

Radical Concentration. Substituting Eqs.(6) and (18),
nto Eq. (12), we gather the coefficients of the various co-
inusoidal spatial contributions. Retaining only the first
our concentration harmonic amplitudes, the following
rst-order coupled differential equations governing the
rimary radical concentration harmonics, Rj

•, are derived:

dR0
•�t�

dt
= Ri�t� − ktp�M0

•�t�R0
•�t� +

1

2
M1

•�t�R1
•�t�

+
1

2
M2

•�t�R2
•�t� +

1

2
M3

•�t�R3
•�t�� − ki�R0

•�t�u0�t�

+
1

2
R1

•�t�u1�t� +
1

2
R2

•�t�u2�t� +
1

2
R3

•�t�u3�t��
− kz�R0

•�t�Z0�t� +
1

2
R1

•�t�Z1�t�� , �20a�

dR1
•�t�

dt
= VRi�t� − ktp�M1

•�t�R0
•�t� + �M0

•�t�

+
1

2
M2

•�t��R1
•�t� +

1

2
�M1

•�t� + M3
•�t��R2

•�t�

+
1

2
M2

•�t�R3
•�t�� − ki�R1

•�t�u0�t� + �R0
•�t�

+
1

2
R2

•�t��u1�t� +
1

2
�R1

•�t� + R3
•�t��u2�t�

+ R2
•�t�u3�t�� − kz�R1

•�t�Z0�t� + R0
•�t�Z1�t�

+
1

2
R2

•�t�Z1�t�� , �20b�

dR2
•�t�

dt
= − ktp�M2

•�t�R0
•�t� +

1

2
�M1

•�t� + M3
•�t��R1

•�t�

+ M0
•�t�R2

•�t� +
1

2
M1

•�t�R3
•�t�� − ki�R2

•�t�u0�t�

−
1

2
�R1

•�t� + R3
•�t��u1�t� + R0

•�t�u2�t�

+
1

2
R1

•�t�u3�t�� − kz�R2
•�t�Z0�t� +

1

2
�R1

•�t�

+ R3
•�t��Z1�t�� , �20c�



E
l
p

i
f

M. R. Gleeson and J. T. Sheridan Vol. 26, No. 9 /September 2009 /J. Opt. Soc. Am. B 1741
dR3
•�t�

dt
= − ktp�M3

•�t�R0
•�t� +

1

2
M2

•�t�R1
•�t� +

1

2
M1

•�t�R2
•�t�

+ M0
•�t�R3

•�t�� − ki�R3
•�t�u0�t� +

1

2
R2

•�t�u1�t�

+
1

2
R1

•�t�u2�t� +
1

2
R0

•�t�u3�t�� − kz�R3
•�t�Z0�t�

+
1

2
R2

•�t�Z1�t�� . �20d�

Macroradical Concentration. Substituting Eqs.(18) into
q. (13) under the same initial conditions gives the fol-

owing differential equations governing the harmonic am-
litudes of the macroradical concentration, Mj

•:

dM0
•�t�

dt
=

ki

2
�2R0

•�t�u0�t� + R1
•�t�u1�t� + R2

•�t�u2�t�

+ R3
•�t�u3�t�� − kt�2M0

•�t�2 + M1
•�t�2 + M2

•�t�2

+ M3
•�t�2� −

ktp

2
�2M0

•�t�R0
•�t� + M1

•�t�R1
•�t�

+ M2
•�t�R2

•�t� + M3
•�t�R3

•�t�� − kz�2M0
•�t�Z0�t�

+ M1
•�t�Z1�t��, �21a�

dM1
•�t�

dt
= − 2kt�2M0

•�t�M1
•�t� + M1

•�t�M2
•�t� + M2

•�t�M3
•�t��

− ktp�M1
•�t�R0

•�t� + �M0
•�t� +

1

2
M2

•�t��R1
•�t�

+
1

2
�M1

•�t� + M3
•�t��R2

•�t� +
1

2
M2

•�t�R3
•�t��

+ ki�R1
•�t�u0�t� + �R0

•�t� +
1

2
R2

•�t��u1�t�

+
1

2
�R1

•�t� + R3
•�t��u2�t� +

1

2
R2

•�t�u3�t��
− 2kz�M1

•�t�Z0�t� + M0
•�t�Z1�t� +

1

2
M2

•�t�Z1�t�� ,

�21b�

dM2
•�t�

dt
= − kt�M1

•�t�2 + 4M0
•�t�M2

•�t� + 2M1
•�t�M3

•�t��

− ktp�M2
•�t�R0

•�t� +
1

2
�M1

•�t� + M3
•�t��R1

•�t�

+ M0
•�t�R2

•�t� +
1

2
M1

•�t�R3
•�t�� + ki�R2

•�t�u0�t�

+
1

2
�R1

•�t� + R3
•�t��u1�t� + R0

•�t�u2�t�
+
1

2
R1

•�t�u3�t�� − kz�2M2
•�t�Z0�t� + M1

•�t�Z1�t�

+ M3
•�t�Z1�t��, �21c�

dM3
•�t�

dt
= − 2kt�M1

•�t�M2
•�t� + 2M0

•�t�M3
•�t��

− ktp�M3
•�t�R0

•�t� +
1

2
M2

•�t�R1
•�t� +

1

2
M1

•�t�R2
•�t�

+
1

2
M0

•�t�R3
•�t�� + ki�R3

•�t�u0�t� +
1

2
R2

•�t�u1�t�

+
1

2
R1

•�t�u2�t� + R0
•�t�u3�t�� − kz�2M3

•�t�Z0�t�

+ M2
•�t�Z1�t��. �21d�

Monomer Concentration. Substituting Eqs.(15) and (18)
nto Eq. (14), we obtain the following coupled equations
or the monomer concentration harmonics, uj:

du0�t�

dt
= −

kp

2
�2M0

•�t�u0�t� + M1
•�t�u1�t� + kpM2

•�t�u2�t�

+ M3
•�t�u3�t�� −

ki

2
�2R0

•�t�u0�t� + R1
•�t�u1�t�

+ kpR2
•�t�u2�t� + R3

•�t�u3�t��, �22a�

du1�t�

dt
= − S1kp�M1

•�t�u0�t� + �M0
•�t� +

1

2
M2

•�t��u1�t�

+
1

2
�M1

•�t� + M3
•�t��u2�t� +

1

2
M2

•�t�u3�t��
− ki�R1

•�t�u0�t� + �R0
•�t� +

1

2
R2

•�t��u1�t�

+
1

2
�R1

•�t� + R3
•�t��u2�t� + R2

•�t�u3�t��
− K2��Dm,0�t� −

1

2
Dm,2�t��u1�t� + �Dm,1�t�

− Dm,3�t��u2�t� −
3

2
Dm,2�t�u3�t�� , �22b�

du2�t�

dt
= − S2kp�M2

•�t�u0�t� +
1

2
�M1

•�t� + M3
•�t��u1�t�

+ M0
•�t�u2�t� +

1

2
M1

•�t�u3�t�� − ki�R2
•�t�u0�t�

+
1

2
�R1

•�t� + R3
•�t��u1�t� + R0

•�t�u2�t�

+
1

2
R1

•�t�u3�t�� − K2�Dm,1�t�u1�t� − Dm,3�t�u1�t�
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+ 4Dm,0�t�u2�t� + 3Dm,1�t�u3�t��, �22c�

du3�t�

dt
= − S3kp�M3

•�t�u0�t� +
1

2
M2

•�t�u1�t� +
1

2
M1

•�t�u2�t�

+ M0
•�t�u3�t�� − ki�R3

•�t�u0�t� +
1

2
R2

•�t�u1�t�

+
1

2
R1

•�t�u2�t� + R0
•�t�u3�t��

− 3K2�3Dm,0�t�u3�t� + Dm,1�t�u2�t�

+
1

2
Dm,2�t�u1�t�� , �22d�

here Si=exp�−i2K2� /2� [16,39,40].
Inhibitor Concentration:Combination of Eqs.(18) with

q. (10) yields similar first-order coupled equations for
he oxygen harmonics. However, in this case, because of
he high mobility of the oxygen molecules, i.e., Dz�Dm, it
s assumed that a time varying diffusion parameter is not
ecessary and that only two harmonic amplitudes must
e retained:

dZ0�t�

dt
= − kz��2M0

•�t� + R0
•�t��Z0�t� + �M1

•�t�

+
1

2
R1

•�t��Z1�t�� , �23a�

dZ1�t�

dt
= − kz��2M1

•�t� + R1
•�t��Z0�t� + �2M0

•�t�

+ M2
•�t� + R0

•�t� +
1

2
R2

•�t��Z1�t��
− K2DzZ1�t�. �23b�

hese first-order coupled differential equations are then
olved numerically with the initial conditions presented
n Eq. (19). The concentration of polymerized monomers
repeat monomer units) after an exposure of duration t is
iven by

N�x,t� =�
0

t�
−	

+	

G�x,x��F�x�,t��u�x�,t��dx�dt�

=�
0

t�
−	

+	

kpG�x,x���
l=0

	

Ml
•�t�cos�lKx��

��
j=0

	

uj�t�cos�jKx��dx�dt, �24�

hich yields the following first two polymer concentration
patial-harmonic components:
N0�t� =
1

2�0

t

kp�2M0
•�t��u0�t�� + M1

•�t��u1�t�� + M2
•�t��u2�t��

+ M3
•�t��u3�t���dt�, �25a�

N1�t� =
S1

2 �0

t

kp�2M1
•�t��u0�t�� + �2M0

•�t�� + M2
•�t���u0�t��

+ �M1
•�t�� + M3

•�t���u2�t�� + M2
•�t��u3�t���dt�. �25b�

n numerically calculating the polymer harmonic concen-
rations, higher-order harmonics of monomer concentra-
ions, i.e., uj�3, are assumed to be negligible. Once the
onomer harmonics values are known, the polymer har-
onic amplitudes can be calculated by substitution into
q. (25).

. DIFFRACTION EFFICIENCY AND
EFRACTIVE INDEX MODULATION
uring the formation of a thick transmission type holo-
raphic phase grating the photopolymerization taking
lace is typically not observed directly. It is the time vary-
ng grating diffraction efficiency, ��t�, that is measured in
eal time by probing the grating during formation with
ight of a wavelength that lies outside the range of ab-
orption of the photosensitizer but replays the grating at
he Bragg condition, i.e., is on-Bragg. Using first-order
lectromagnetic coupled wave theory [42], the relation-
hip between the diffraction efficiency, ��t�, and the first
armonic of the grating refractive index modulation,
1�t�, is given by

��t� = sin2��dn1�t�

� cos �
� , �26�

here d is the thickness of the material layer, � is the
avelength of the probe–replay laser, and � is the on-
ragg angle associated with that wavelength. More rigor-
us models are available that include multiwave compo-
ents, higher-order (ni�1) grating harmonics, [43], and
he effects of nonuniform gratings [44].

In order to theoretically predict the temporal evolution
f the refractive index modulation, n1�t�, during holo-
raphic exposure, it is necessary to know (a) the refrac-
ive index of the material layer before exposure, ndark, (b)
he refractive index values of the individual components
f the material at the probe wavelength, and (c) their time
arying concentrations or volume fractions (see Part II
1]).

We begin by examining the average refractive index of
he material layer, n, which is dependent on the refractive
ndices of the individual material components and their
olume fractions. Building on work by Kelly et al. [45],
his relationship can be expressed by using the Lorentz–
orenz relation [9,15,16,33,45]:

n2 − 1

n2 + 2
= ��m�

nm
2 − 1

nm
2 + 2

+ ��p�
np

2 − 1

np
2 + 2

+ ��b�
nb

2 − 1

nb
2 + 2

+ ��H�
nH

2 − 1

nH
2 + 2

,

�27�

here nm, np, nb, and nH are the refractive indices of
onomer, polymer, background material, and holes, re-
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pectively, where it is assumed that nH=1 (i.e., in vacuo).
�m�, ��p�, ��b�, and ��H� are the respective volume fractions
f these components, where the volume fraction is given
y �i=xivi /�ixivi, where xi is the mole fraction and vi is
he molar volume of the ith component. The material is
herefore modeled as being made up of monomer, polymer
monomer repeat units), holes, and an unchanging back-
round material. In this way, the collapse [45] (or diffu-
ion [33]) of the holes will result in an overall reduction in
olume, but the total volume fraction is by definition con-
erved [9,15,16,33,45,46],

��m��t� + ��p��t� + ��b��t� + ��H��t� = 1. �28�

owever, in this paper we have neglected all material
welling and shrinkage effects [15,16,33,45], and there-
ore the concentration of holes is assumed negligible.
hus, the temporal evolution of the index modulation can
e written as [15,33]

n1�t� =
�ndark

2 + 2�2

6ndark
��1

�m��t�	nm
2 − 1

nm
2 + 2

−
nb

2 − 1

nb
2 + 2
 + �1

�p��t�

�	np
2 − 1

np
2 + 2

−
nb

2 − 1

nb
2 + 2
� , �29�

here ndark is the refractive of the material before expo-
ure. �1

�m��t� and �1
�p��t� are the time varying first-

armonic volume fraction components of monomer and
olymer, respectively, values of which are obtained by
olving Eqs.(22)–(25). At grating growth saturation, when
here is no monomer left to be polymerized, i.e., �1

�m�=0,
q. (29) reduces to n1�t= tsat���1

�p��tsat�.

. THEORETICAL MODEL PREDICTIONS
he predictions of the model presented in Section 3 are
ow discussed. Numerical results describing the behavior
f the monomer and polymer concentrations are exam-
ned, and n1�t� is then calculated by using Eq. (29). Com-
arisons of the results of simulations performed retaining
, 8, and 12 harmonics are made in order to assess the nu-
erical convergence of the method.

ontinuous Exposures
n Part II [1], the general photokinetic model is applied to
haracterize photopolymer material behavior. Before car-
ying out this procedure we examine the general behavior
redicted by our model.
In all the theoretical simulations presented here, it is

ssumed that the effect of time varying viscosity changes
s negligible. As a result the kinetic parameter values cho-
en for kp, kt, ktp, kz, ki, and Dm are assumed constant and
re given appropriate values or assigned search ranges
in the case of numerical fitting) that are typical for ma-
erials similar to AA/PVA photopolymers [13–16,18,19].

All analyses assume layers of thickness d=100 �m, ex-
osed with an average incident intensity of Ii
2 mW/cm2. In order to predict the time variation of ab-
orbed intensity during exposure, Ia�t�, in Eq. (7), and
hus the generation of primary radicals with time, it is
ecessary to convert the exposure intensity, I0�, into the
ppropriate units, �Einstein/cm2 s�, by using

I0� = Ii	 �

Nahc
Tsf. �30�

n this equation �=532 nm is the wavelength of the ex-
osing light, Na=6.02�1023 mol−1 is Avogadro’s constant,
=3�108 ms−1 is the speed of light, h=6.62�10−34 Js is
lank’s constant, and Tsf is an experimentally estimated

oss parameter that takes into account Fresnel and scat-
er losses [10,16,24].

Since all the simulations presented in this section are
enerated assuming the same exposure intensity and ma-
erial thickness, the values used to predict the time varia-
ion in absorbed intensity, using Eq. (7), are as follows:
=2�108 cm2/mol, �=0.021 mol/Einstein, and Tsf=0.74.
=0.2 is the number of radicals produced per photon ab-

orbed, Eq. (6). These values appear in the literature
10,16] and were estimated from fits to standard AA/PVA
xperimental data.

The set of four harmonic coupled differential equations
resented in Section 3, i.e., Eqs. (20), (21), and (23), com-
ined with Eqs. (25), (26), and (29), are solved for the ini-
ial conditions given in Eq. (19), with U0=2.83
10−3 mol/cm3 and Z0=1�10−7 mol/cm3. The other pa-

ameters used are as follows: kp=1.6�106 cm3 mol−1 s−1,
t=9�107 cm3 mol−1 s−1, ktp=1�1011 cm3 mol−1 s−1, ki
5�107 cm3 mol−1 s−1, Dm=2�10−11cm2 s−1, kz,0=5
108 cm3 mol−1 s−1, and Dz=5�10−8cm2 s−1. The spatial

requency assumed in these simulations is
000 lines/mm; the parameter S1, which represents the
ffect of nonlocality in the coupled differential equations,
as chosen to have a value of S1=0.94. This corresponds

o a nonlocal response length of ���=54 nm
3,9,11,15,16,37].

Plots of the amplitudes of the first two harmonics of the
onomer and polymer concentrations, as a function of

ime, are presented in Figs. 1 and 2, respectively. In both
lots the solid curve represents the solutions when four
armonics are retained during the numerical solution of
he coupled differential equations, i.e., Rj

•, Mj
•, and uj for


 j
4. The short-dashed curves represent the solutions
enerated with retention of 8 harmonics, and the long-
ashed lines represent the solutions generated with 12

ig. 1. Predictions of the amplitudes of the first two harmonics
f monomer concentration, u0 and u1, when 4 (solid curve), 8
short-dashed curve), and 12 (long-dashed curve), harmonics are
etained during the simulations.
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armonics. In all cases two harmonics of the inhibitor
oncentration are retained, i.e., Zj for 0
 j
1.

As can be clearly seen in both figures there is a good
eneral agreement between the simulations generated us-
ng 4, 8, and 12 harmonics. For both the monomer and the
olymer concentration harmonic amplitudes the differ-
nces between the 4 and 8 harmonic simulations (2.5%
aximum) are greater than those between the 8 and 12

armonic simulations (1% maximum). This suggests that
he system is numerically stable and that the model con-
erges rapidly with the inclusion of higher-order harmon-
cs.

In order to simulate the temporal evolution of grating
efractive index modulation for 4, 8, and 12 harmonics, as
resented in Fig. 3, we use the refractive indices values
m=1.4719, nb=1.4957, and ndark=1.4948. The refractive

ndex of polymer in AA/PVA was previously estimated to
ave a value of np=1.52 [15,16]. The first-harmonic vol-
me fraction components of monomer and polymer �1

�m�

nd �1
�p� were obtained by using Eq. (27).

. CONCLUSIONS
ollowing a detailed discussion of free-radical photopoly-
erization, a kinetic model, which includes most of the

hotochemical and mass transport effects that take place
uring holographic grating formation, has been pre-

ig. 3. Comparison of the simulated growth curves for the ho-
ographic grating refractive index modulation, for a 2 mW/cm2

xposure, for 4 (full curve), 8 (short-dashed curve), and 12 (long-
ashed curve) harmonics.

ig. 2. Amplitudes of polymer concentration, N0 and N1, when 4
solid curve), 8 (short-dashed curve), and 12 (long-dashed curve),
armonics are retained.
ented. The model includes the effects of: (i) non-steady-
tate kinetics, (ii) spatially and temporally nonlocal poly-
er chain growth, (iii) time varying photon absorption,

iv) diffusion controlled viscosity effects, (v) multiple ter-
ination mechanisms, and (vi) inhibition.
The resulting one-dimensional integro-differential non-

ocal photopolymerization-driven-diffusion equations are
ewritten as a set of coupled first-order differential equa-
ions and solved numerically. The model is shown to con-
erge satisfactorily with the retention of a sufficient num-
er of concentration harmonics.
In [4] the development of models in this area is briefly

xamined, and, as outlined, the model presented here con-
istently combines several results appearing elsewhere in
he literature. However, several completely novel ideas
lso appear. Two examples of this are (a) the elimination
f the steady-state assumption, which makes differentia-
ion between the bimolecular and primary termination
echanisms unnecessary, and (b) the elimination of the

eparate inclusion of a nonlocal temporal response [15].
Much remains to be done. One possible list of physical

rocesses and effects that are not yet included in this
odel are given in [4]. However, before further generali-

ation is attempted, it is necessary to compare the predic-
ions of the model to reproducible experimental data for
ifferent photopolymer materials. The initial results of
uch a comparison are presented in Part II of this series
f papers [1].
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