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Abstract: Nonlocal generalization of the standard (classical) probability theory of a continuous
distribution on a positive semi-axis is proposed. An approach to the formulation of a nonlocal
generalization of the standard probability theory based on the use of the general fractional calculus
in the Luchko form is proposed. Some basic concepts of the nonlocal probability theory are proposed,
including nonlocal (general fractional) generalizations of probability density, cumulative distribution
functions, probability, average values, and characteristic functions. Nonlocality is described by the
pairs of Sonin kernels that belong to the Luchko set. Properties of the general fractional probability
density function and the general fractional cumulative distribution function are described. The trun-
cated GF probability density function, truncated GF cumulative distribution function, and truncated
GF average values are defined. Examples of the general fractional (GF) probability distributions,
the corresponding probability density functions, and cumulative distribution functions are described.
Nonlocal (general fractional) distributions are described, including generalizations of uniform, degen-
erate, and exponential type distributions; distributions with the Mittag-Leffler, power law, Prabhakar,
Kilbas–Saigo functions; and distributions that are described as convolutions of the operator kernels and
standard probability density.

Keywords: non-local probability; probability theory; nonlocal theories; general fractional calculus;
fractional derivatives; fractional integrals
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1. Introduction

Fractional calculus involving differential and integral operators of the non-integer
order (see [1–7]) has been actively used in recent decades to describe nonlocal systems and
processes in physics (for example, see the handbooks [8,9] and books [10–17]). Fractional
calculus has a rich history, which was first described in 1868 by Letnikov in his work [18],
and then continued by other authors in book [1] and papers [19–24].

Nonlocal models are also studied in modern statistical physics, including the following
areas (A) fractional physical kinetics and fractional anomalous diffusion; (B) statistical
physics of lattices with long-range interactions; (C) fractional statistical mechanics. Let
us note some reviews, books, and works on statistical physics, in which nonlocal models
were considered.

(A) Fractional kinetics has been described in many reviews and books [13,17,25–27],
and [28–32]. Regarding anomalous and fractional diffusion, there are many works [13,17,33–37].
These works use fractional calculus to describe nonlocality in space and time.

(B) The lattice models of statistical physics, which take into account long-range inter-
actions, began with the work of Dyson [38–40] in 1969–1971, and other scientists in [41–45],
and then began to be actively developed. Remarkable properties of lattice models of
systems with long-range interactions have been rigorously proven in works by [46,47].
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These properties involve the continuous limits of lattice models of systems with power
law types of long-range interactions that can be described by the equations with fractional
derivatives of non-integer orders. The mapping of lattice models into continuous models is
defined by a special transform operator [10,46–51]. The models with long-range interactions
are used in nonlinear dynamics to describe processes with spatial nonlocality [52–59].

(C) In statistical mechanics, the power law type of the nonlocality can be described
using methods of integro-differential equations with non-integer order derivatives [60–62]
and [63–66]. In these works, fractional generalizations of some equations of statistical
mechanics are suggested. To obtain these equations, the conservation of probability in
the phase space is used [60,61]. The Liouville equations with fractional derivatives (with
respect to coordinates and momenta) are derived in works [60–64]. The use of fractional
calculus to construct a non-local generalization of the normalization conditions for the
density of the distribution and a generalization of the definition of the average value were
first proposed in 2004 [67–69].

Many models consider fractional differential equations that describe nonlocal statisti-
cal systems and processes. However, in many works, these equations are simply postulated
and are not derived strictly from the basic laws and equations. This is largely due to the
fact that these equations can be rigorously derived by introducing certain assumptions
concerning the elements of probability theory for the nonlocal case. Because of this, it is
important to understand the possibility of generalization of the standard probability theory
to the nonlocal case.

As a mathematical tool for constructing basic concepts of the nonlocal probability
theory, one could use fractional calculus instead of standard mathematical analysis, which
uses integrals and derivatives of integer orders. Fractional differential equations of non-
integer orders are powerful mathematical tools to describe nonlocal systems and processes.
Unfortunately, in the theory of integrals and derivatives of non-integer orders, a narrow set
of operator kernels is used, which is mainly of the power type.

The use of integral and integro-differential operators with the general form of operator
kernels is very important to describe the widest possible types of nonlocalities in space.
However, the use of integral and integro-differential operators of general forms has a
significant drawback. The disadvantage is the lack of mutual consistency between integral
and integro-differential operators, which leads to the fact that these operators do not form
a general calculus.

As a generalization of FC, one can use the general fractional calculus (GFC) that is
based on the concept of kernel pairs, which was proposed by Sonin [70] in an 1884 arti-
cle [71] (see also [72]). Recently, the GFC and its applications have been actively developed
by Kochubei [73–75], Samko and Cardoso [76,77], Luchko and Yamamoto [78,79], Kochubei
and Kondratiev [80,81], Sin [82], Kinash and Janno [83,84], Hanyga [85], Giusti [86],
Luchko [87–93], Tarasov [94–99], Al-Kandari, Hanna and Luchko [100], and Al-Refai and
Luchko [101]. A very important form of the GFC was proposed by Luchko in 2021 [87–89].
In articles [87,88], the fundamental theorems for the general fractional integrals (GFIs) and
the general fractional derivatives (GFDs) were proved. The general fractional calculus with
functions of several variables (the multivariable) GFC and the general fractional vector
calculus (GFVC) was proposed in 2021 [95].

The concept of the nonlocal probability theory (NPT) can be considered in a broad
sense, namely, as a statistical theory of systems with nonlocality in space and time. Note
that the theory of stochastic or random processes with nonlocality in time (with fading
memory) is well known [102–107], and is actively used to describe economic processes.

To take into account nonlocality in the probability theory, it is necessary to generalize
basic concepts of the standard (classical) probability theory. Such nonlocal generalizations
must not only be correctly defined but also mutually consistent in order to form a self-
consistent mathematical theory. At present, there is no mathematically correct and self-
consistent “nonlocal probability theory”, if we do not include the so-called “quantum
nonlocality” in the concept of nonlocality.
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In this article, Luchko’s GFC and the GFVC are proposed to construct the nonlocal
generalization of standard (classical) probability theory. The nonlocal probability theory
is considered a theory in which nonlocalities in space can be described by the pairs of
Sonin kernels from the Luchko sets. In the nonlocal probability theory, it is assumed that
properties of the probability density and cumulative distribution function at any point
P in the space depending on the properties of the probability density and cumulative
distribution function in all other points in the space in addition to properties at point P.
This paper proposes a generalization of integral and differential forms of the equations of
the probability density and cumulative distribution functions to the nonlocal case. These
equations have the form of fractional integral and differential equations with GFD and GFI
with Sonin kernels from the Luchko set.

Let us note some mathematical features of the proposed approach. First of all, it should
be emphasized that GF differential operators are nonlocal, since they are, in fact, integro-
differential operators. In addition, the fractional and the general fractional derivatives of
the Riemann–Liouville type of a constant function are not equal to zero. The standard
Leibniz rule (the product rule) and the chain rule for fractional derivatives of the non-
integer order and GF derivatives do not hold [108,109]. In addition, a violation of the
chain rule leads to the fact that the operators defined in different orthogonal curvilinear
coordinate (OCC) systems (Cartesian, cylindrical, and spherical) are not related to each
other by coordinate transformations. At the same time, the equations defining these
nonlocal operators in the OCC are correct for different coordinate systems [95] since mutual
consistency between integral and integro-differential operators in OCC is based on the
fundamental theorems of GFC. The requirement of mutual consistency of the nonlocal
generalizations of integral and differential operators, which is expressed as a generalization
of fundamental theorems, imposes restrictions on the properties of operator kernels and
their applications [87,95,110–112]. A consistent formulation of the nonlocal probability
theory should also be based on the basic theorems of some nonlocal calculus, which can be
the general fractional calculus.

Let us briefly describe the content of this article.
In Section 2, nonlocal generalizations of the probability density function, the cumula-

tive distribution function, and probability are proposed. The properties of these functions
are described and proved.

In Section 3, relationships between local and nonlocal quantities are described to
explain the concept of nonlocality. This section does not consider questions of constructing
a nonlocal probability theory. It only describes what exactly is meant under nonlinearity in
this paper.

In Section 4, nonlocal analogs of uniform and degenerate distributions, which are
called general fractional uniform and degenerate distributions, are described.

In Section 5, general fractional distributions with some special functions are described.
The GF distributions with the Mittag-Leffler function, the power law function, the Prab-
hakar function, and the Kilbas–Saigo function are suggested. Examples of GF distributions
that can be represented as convolutions of the operator kernels, which describe nonlocal-
ity and standard probability density, are considered. A property of non-equivalence of
equations with GFD and their solutions in different spaces is described.

In Section 6, general fractional distributions of the exponential types are suggested as
a generalization of the standard exponential distributions by using the solution of linear
GF differential equations.

In Section 7, truncated GF distributions and moment functions are defined. The trun-
cated GF probability density function, truncated GF cumulative distribution function, and
the truncated GF average values and moments, are considered. Two examples of the
calculation of the truncated GF average value are given.

A brief conclusion is given in Section 7.
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2. Toward Nonlocal Probability Theory
2.1. Remarks about the Concept of the Nonlocal Probability Theory

Let us give remarks about the concept of the nonlocal probability theory.

• Requirements of the nonlocality Theory
To describe nonlocality in space, integral operators and integro-differential operators
should be used. Moreover, the kernels of these operators must depend on at least
two points in space. If these kernels are dependent on only one point, then they
could be interpreted as densities of states that are often used in statistical physics.
The density of states (DOS) describes the distribution of permitted states in space
and the probability density function (PDF) describes the placement of particles by
these permitted states. In this case, it is obvious that such kernels cannot describe
nonlocality in space.
For example, let functions F(x) and f (x) be related by the equation

F(x) =

ˆ x

0
M(u) f (u) du, (1)

where M(x) is a kernel, which can be interpreted as the density of states. Such a
relationship of functions f (x) and F(x) cannot be interpreted as nonlocal since the
equation can be represented in the form

dF(x)
dx

= M(x) f (x). (2)

Equation (2) is a differential equation of an integer (first) order, in which the functions
are determined by properties in an infinitesimal neighborhood of the considered point
with coordinate x. Because of this, we can formulate the requirement of nonlocality in
the following form. The equations that describe nonlocality cannot be represented as
an equation or a system of a finite number of differential equations of an integer order.
It is possible to consider the kernel in the form M(x, u), instead of M(u); that is,

F(x) =

ˆ x

0
M(x, u) f (u) du. (3)

In the general case, Equation (3) cannot be represented as a differential equation of the
integer order for a wide class of operator kernels M(x, u).
Therefore, to take into account nonlocality, the operator kernels must depend on at
least two points in space (M(P1, P2), K(P1, P2)). In this case, operator kernels can
have physical interpretations of the nonlocal density of states in space. For simplicity,
one can consider the dependence on the distance between points or the difference in
the coordinates of these points. In the one-dimensional case, this leads, for example,
to operator kernels of the form (M(P, P′) = M(x1 − x2), K(P, P′) = K(x1 − x2)).

• Requirement of Self-Consistency of Theory
For the mathematical self-consistency of the theory, the integral and integro-differential
operators must be mutually consistent and must form some calculus. In order to
explain this requirement, consider the following.
Suppose that the generalized cumulative distribution function F can be obtained from
the generalized probability density function f by the action of some nonlocal integral
operator ÎM, i.e.,

F = ÎM f . (4)
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Suppose also that the generalized probability density function f can be obtained from
the generalized cumulative distribution function F by the action of some nonlocal
integro-differential operator D̂K, i.e.,

f = D̂K F. (5)

If the operators are not mutually consistent, then the sequential action of these op-
erators leads to the mathematical non-self-consistency of the theory. The non-self-
consistency of the theory is expressed in the fact that the substitution of the first
equation into the second, as well as the substitution of the second equation into the
first, will not result in identities. This is expressed in the form of inequalities

f = D̂K F = D̂K ÎM f 6= f , (6)

F = ÎM f = ÎM D̂K F 6= F. (7)

In the standard probability theory, the requirement of self-consistency is satisfied by
the virtue of the first and second fundamental theorems of the mathematical analysis.

The proposed two requirements can be satisfied by using the general fractional calculus
(GFC) in the Luchko form.

• (1) The requirement of the nonlocality in this case is realized as follows. In the GFC,
the integral operators and integro-differential operators are represented as Laplace
convolutions, in which operator kernels are differences in the coordinates of two
different points (M(P, P′) = M(x1 − x2), K(P, P′) = K(x1 − x2)). The proposed
approach to the nonlocal probability theory can be characterized as an approach,
in which nonlocality is described by the pair of kernels (Mx(x), Kx(x)) from the
Luchko sets, and equations with GFI and GFD. In GFC, operator kernels from the
Luchko sets cannot be represented as the kernel pairs (Mx(x) = 1, Kx(x) = δ(x)),

• (2) The requirement of self-consistency in this case is realized as follows. In the GFC,
the integral operators and integro-differential operators are called the general frac-
tional integrals (GFIs) and the general fractional derivatives (GFDs). These operators
satisfy the first and second fundamental theorems of GFC.

In this paper, to construct a nonlocal generalization of standard probability theory
(see books [113–117] and handbook [118–120]), the general fractional calculus (GFC) in the
Luchko form [87,88] is proposed. Because of this, restrictions on function spaces, which
can be used in nonlocal theory, are dictated by the restrictions that are used in the GFC.
Therefore, one can consider a generalization of a special case of the standard probability
theory, in which only continuous distributions on the positive semi-axis are considered.
Obviously, in such a standard theory, a large number of probability distributions are left
out of consideration, including, for example, the standard uniform distribution.

2.2. Standard Continuous Distributions on the Positive Semi-Axis

In this subsection, some equations of the standard probability theory will be written out
to simplify further references. As an example, the one-dimensional continuous distributions
on the positive semi-axis are used for these equations.

Let us consider a probability distribution of one random variable X on the set R+ =
(0, ∞). Let the function fX(x) belong to the set C(0, ∞). For a function fX(x) to be a
probability density function (PDF), it must satisfy [113], p. 3, the non-negativity condition
fX(x) ≥ 0 and the normalization condition

fX(x) ≥ 0,
ˆ ∞

0
fX(x) dx = 1. (8)
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Using the fact that continuous functions fX(x) ∈ C(0, ∞) are integrable, the distribu-
tion function FX(x) can be defined by the integration of the first-order. For each probability
density function fX(x) ∈ C(0, ∞), one can put in correspondence [113], p. 3, its cumulative
distribution function FX(x) defined by

FX(x) =

ˆ x

0
fX(u) du. (9)

Function (9) satisfies all standard properties of the cumulative distribution function.
It is a non-decreasing continuous function that takes values from 0 to 1. Since fX(x)
belongs to the set C(0, ∞), Function (9) is continuously differentiable, i.e., FX(x) ∈ C1(0, ∞).
Then, the probability density function fX(x) can be obtained by the action of the first-
order derivative

fX(x) =
d

dx
FX(x). (10)

This statement is proved by the substitution of (9) into Equation (10), which gives the
identity

fX(x) =
d

dx
FX(x) =

d
dx

ˆ x

0
fX(u) du = fX(x) (11)

by the first fundamental theorem of calculus in the form

d
dx

ˆ x

0
f (u) du = f (x). (12)

Substitution of (10) into Equation (9) should also give the identity

FX(x) =

ˆ x

0
fX(u) du =

ˆ x

0

dFX(u)
du

du =

ˆ x

0
dFX(u) = FX(x) − FX(0) (13)

which is satisfied by the second fundamental theorem of calculus, if FX(x) ∈ C1(0, ∞).
Substitution of (10) into non-negativity and normalization conditions gives

dFX(x)
dx

≥ 0, FX(∞) = 1. (14)

The probability for the region [a, b] ⊂ R0,+ = [0, ∞) is described by the equation

P([a, b]) = FX(b) − FX(a), (15)

where FX(x) is defined by Equation (9).

2.3. Toward Generalizations of Standard PDF and CDF for Nonlocal Cases

Despite the fact that Equation (9) uses an integral operator, the connection of functions
FX(x) and fX(x) can be interpreted as local. This is due to the fact that the relationships
of these functions, which are described by Equation (9), can be represented as differential
equations of the first-order (10). Differential equations of integer powers for each point are
given by the properties of functions in an infinitely small neighborhood of this point.

To take into account a nonlocality in the probability theory, integral and integro-
differential operators with kernels, which depend on at least two points, should be used.
For simplicity, one can consider the dependence on the distance between points or the
difference in the coordinates of these points, M(x, u) = M(x− u) and K(x, u) = K(x− u).
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As candidates for nonlocal analogs of Equations (9) and (10), one can consider the
following equations

F(x) =

ˆ x

0
Mx(x− u) f (u) du, (16)

f (x) =
d

dx

ˆ x

0
Kx(x− u) F(u) du. (17)

Instead of Equation (17), one can also consider the equation

f (x) =

ˆ x

0
Kx(x− u) F(1)(u) du, (18)

where F(1)(x) = dF(x)/dx.
For the kernels

Mx(x) = h(x), Kx(x) = δ(x), (19)

where h(x) is the Heaviside step function and δ(x) is the Dirac delta function, Equations (16)
and (17) (or (18)) give standard Equations (9) and (10), respectively.

The properties of operator kernels and integrands must be such that Equations (16)
and (17) exist. In this case, these equations must be mutually consistent, such that the
substitution (substituting one equation into another) should give the identities. These
restrictions must also be imposed on the operator kernels Mx(x) and Kx(x). These restric-
tions on operator kernels and function spaces are described by fundamental theorems of
the general fractional calculus. The main restrictions, which can be used for these purposes,
are proposed by Luchko [87,88] in the form of the following conditions.

The main restrictions are Sonin’s condition and Luchko’s conditions.

Definition 1 (Sonin’s condition). Let functions Mx(x) and Kx(x) satisfy the condition

(Mx ∗ Kx)(x) :=
ˆ x

0
Mx(x− u)Kx(u) du = {1} (20)

for all x ∈ (0, ∞), where ∗ denoted the Laplace convolution (see [4], p. 19, and [113], p. 6-7). In
condition (20), {1} denotes the function that is identically equal to 1 on [0, ∞) [87], p. 3.

Then, the Sonin condition is satisfied.

In order for Functions (16), (17) to exist, condition (20) to be satisfied, and the nonlocal
analog of the fundamental theorem of calculus be proved, one can use Luchko’s conditions.

Definition 2 (Luchko’s first condition). Let functions Mx(x), Kx(x) be represented in the form
the functions Mx(x), Kx(x) can be represented in the form Mx(x) = xα m(x), and Kx(x) =
xβ k(x) for all x > 0, where α, β ∈ (−1, 0), and m(x), k(x) ∈ C[0, ∞).

Then, the functions Mx(x), Kx(x) belong to the set C−1,0(0, ∞), and the first Luchko condition
is satisfied.

Definition 3 (Luchko’s second condition). Let function fX(x) be represented as fX(x) =
xa h1(x) for all x > 0, where a > −1, and h1(x) ∈ C[0, ∞). Then, the set of such functions is
denoted as C−1(0, ∞),

Let a function FX(x) satisfy the condition dFX(x)/dx ∈ C−1(0, ∞). Then, the set of such
functions is denoted as C1

−1(0, ∞).
Let functions fX(x), FX(x) satisfy the condition fX(x) ∈ C−1(0, ∞), FX(x) ∈ C1

−1(0, ∞).
Then, the second Luchko condition is satisfied.

In the proposed approach to nonlocal probability theory, it will be assumed that
nonlocality is described by the kernel pairs that belong to the Luchko set.
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Definition 4 (Luchko set). A pair of kernels (Mx(x), Kx(x)) belongs to the Luchko set, if the
Sonin condition and Luchko’s first condition are satisfied.

Note the following inclusions

C[0, ∞) ⊂ C−1(0, ∞) ⊂ C(0, ∞). (21)

It should be also noted that kernels (19) do not belong to the Luchko set.
Equations (16) and (17), in which the pair of kernels (Mx(x), Kx(x)) belong to the

Luchko set and functions f (x) and F(x) satisfy Luchko’s second condition, can be written by
using the general fractional integral (GFI) and general fractional derivatives (GFDs) [87,88].

Definition 5 (General fractional integral). Let f (x) ∈ C−1(0, ∞) and Mx(x), Kx(x) ∈
C−1,0(0, ∞). If Mx(x) and Kx(x) satisfy the Sonin condition (20), then the general fractional
integral Ix

(M)
is defined by the equation

Ix
(Mx)

[u] f (u) = (Mx ∗ f )(x) =

ˆ x

0
du Mx(x− u) f (u). (22)

Definition 6 (General fractional derivatives). Let f (x) ∈ C1
−1(0, ∞) and Mx(x), Kx(x) ∈

C−1,0(0, ∞). If Mx(x) and KX(x) satisfy the Sonin condition (20), then the general fractional
derivative Dx

(Kx)
of the Riemann–Liouville (RL) type is defined by the equation

Dx
(Kx)

[u] f (u) =
d

dx
(Kx ∗ f )(x) =

d
dx

ˆ x

0
du Kx(x− u) f (u), (23)

and the general fractional derivative Dx,∗
(Kx)

of the Caputo type is defined by the equation

Dx,∗
(Kx)

[u] f (u) = (Kx ∗ f (1))(x) =

ˆ x

0
du Kx(x− u) f (1)(u), (24)

where f (1)(x) = d f (x)/dx.

Using the definitions of GFI and GFD, Equations (16)–(18) can be represented in the
forms

F(x) = Ix
(Mx)

[u] f (u), (25)

f (x) = Dx
(Kx)

[u] F(u), (26)

f (x) = Dx,∗
(Kx)

[u] F(u). (27)

Substitution of expression (25) into expression (26) gives the identity

f (x) = Dx
(Kx)

[u] F(u) = Dx
(Kx)

[u] Iu
(Mx)

[w] f (w) = f (x), (28)

if the pair of kernels (Mx, Kx) belongs to the Luchko set and f (x) belongs to the space
C−1(0, ∞). This identity follows from the first fundamental theorem of GFC for the GFD of
the Riemann–Liouville type [87,88].

Definition 7 (Luchko’s third condition). Let functions Mx(x) and Kx(x) be kernels of the GFI
and GFD, respectively, and let this pair of kernels belong to the Luchko set.

Let a function f (x) be represented as a GFI with the kernel Kx(x), such that

f (x) = Ix
(Kx)

[u] ϕ(u) (for all x > 0, (29)

where ϕ(x) ∈ C−1(0, ∞).
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Then, the function f (x) belongs to the set C−1,(K)(0, ∞), and the third Luchko condition
is satisfied.

It should be noted that using the GFD of the Caputo type

Dx,∗
(Kx)

[u] F(u) =

(
Kx ∗

dF(x)
dx

)
=

ˆ x

0
du Kx(x− u)

dF(u)
du

(30)

one can consider an action of the GFD (30) on Function (25), which gives the identity

f (x) = Dx,∗
(Kx)

[u] F(u) = Dx,∗
(Kx)

[u] Iu
(Mx)

[w] f (w) = f (x), (31)

if f (x) belongs to the space C−1,(K)(0, ∞) and the kernel pair (Mx, Kx) belongs to the
Luchko set. This identity follows from the first fundamental theorem of GFC for the GFD
of the Caputo type [87,88].

A function f (x) that belongs to the set C−1,(K)(0, ∞) is a continuous function on the
positive semi-axis, for which the following inclusions are satisfied

C−1,(K)(0, ∞) ⊂ C−1(0, ∞) ⊂ C(0, ∞). (32)

Theorem 1 (First fundamental theorem for the GFC). Let a kernel pair (Mx, Kx) belong to the
Luchko set. If f (x) belongs to the space C−1(0, ∞), then

Dx
(Kx)

[u] Iu
(Mx)

[w] f (w) = f (x) (33)

for all x > 0.
If f (x) belongs to the space C−1,(K)(0, ∞), then

Dx.∗
(Kx)

[u] Iu
(Mx)

[w] f (w) = f (x) (34)

for all x > 0.

Proof. Theorem 1 is proved in [87,88] (see Theorem 3 in [87], p. 9, and Theorem 1
in [88], p. 6).

Substitution of expression (26) into expression (25) gives the identity

F(u) = Ix
(Mx)

[u] f (u) = Ix
(Mx)

[u] Du
(Kx)

[w] F(w) = F(M)
X (u)(x), (35)

if the pair of kernels (Mx, Kx) belongs to the Luchko set and f (x) belongs to the space
C−1(0, ∞). This identity follows from the second fundamental theorem of GFC for the GFD
of the RL-type [87,88].

Theorem 2 (Second fundamental theorem for the GFC). Let a kernel pair (Mx, Kx) belong to
the Luchko set. If F(x) belongs to the space C1

−1(0, ∞), then

Iu
(Mx)

[u] Du,∗
(Kx)

[w] F(w) = F(x) − F(0) (36)

Iu
(Mx)

[u] Du
(Kx)

[w] F(w) = F(x) (37)

for all x > 0.

Proof. Theorem 2 is proved in [87,88] (see Theorem 4 in [87], p. 11, and Theorem 2 in [88],
p. 7).
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Note that the equation

Dx
(Kx)

[u] F(u) = Dx,∗
(Kx)

[u] F(x) + Kx(x) F(0) (38)

holds for all x > 0, if F(x) ∈ C1
−1(0, ∞). Using Equation (38), one can see that the

functions
fRL(x) = Dx

(Kx)
[u] F(u), fC(x) = Dx,∗

(Kx)
[u] F(u) (39)

coincide, if F(0) = 0.

2.4. General Fractional (GF) Probability Density Function

The Luchko conditions ensure the existence of GFI, GFD, and the fulfillment of the
fundamental theorems of GFC for these operators, but do not guarantee the fulfillment of
the probabilities density properties for f (x). In order for a function f (x) to be a probability
density, it is necessary to impose additional conditions on the function.

Definition 8 (General fractional (GF) probability density). Let a pair of kernels (Mx(x), Kx(x))
belong to the Luchko set.

Let f (x) be a function that satisfies the following conditions.

(1) The function f (x) is a continuous function on the positive semi-axis (0, ∞), such that

f (x) ∈ C−1,(K)(0, ∞). (40)

(2) The function f (x) is a non-negative function ( f (x) ≥ 0) for all x > 0.
(3) The function f (x) satisfies the normalization condition

0 < N(Mx, f ) < ∞, (41)

where
N(Mx, f ) := lim

x→∞
Ix
(Mx)

[u] f (u) = lim
x→∞

ˆ x

0
Mx(x− u) f (u) du. (42)

Then, the function
fX(x) = N−1(Mx, f ) f (x) (43)

is called the GF probability density. The set of such functions is denoted by the symbol C(M)
−1 (0, ∞).

One can define the standard probability density function in the following form. In
Definition (8), one can consider that the function fX(x) belongs to the set C−1(0, ∞) instead
of condition (40), and the function fX(x) satisfies the standard normalization condition
instead of condition (41).

Definition 9 (Standard probability density function). Let f (x) be a function that satisfies the
following conditions.

(1) The function f (x) is a continuous function on the positive semi-axis (0, ∞), such that

f (x) ∈ C−1(0, ∞). (44)

(2) The function f (x) is a non-negative function ( f (x) ≥ 0) for all x > 0.
(3) The function f (x) satisfies the condition

lim
x→∞

ˆ x

0
fX(u) du = 1. (45)

Then, such a function fX(x) is called the standard probability density, and the set of such
functions is denoted as C({1})

−1 (0, ∞).
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Note that the kernels Mx(x) and Kx(x), a pair of which belongs to the Luchko set, are
non-negative and non-increasing functions [87,88].

Remark 1. Note that C({1})
−1 (0, ∞) cannot be considered as a subset of C(M)

−1 (0, ∞) since the kernel
Mx(x) = {1} for all x > 0 cannot be a kernel of a pair from the Luchko set.

2.5. General Fractional (GF) Cumulative Distribution Function

Let us formulate some restrictions on the nonlocal generalization of the standard
cumulative distribution function. In this case, the definitions will not be formulated in max-
imum generality, and will consider only a simplified case of continuity and differentiability
at all points of an open interval (0, ∞).

Definition 10 (General fractional (GF) cumulative distribution function). Let a pair of kernels
(Mx(x), Kx(x)) belong to the Luchko set.

If fX(x) ∈ C(M)
−1 (0, ∞), then the function F(M)

X (x) that is defined by the equation

F(M)
X (x) = Ix

(Mx)
[u] fX(u) =

ˆ x

0
Mx(x − u) fX(u) du (46)

is called the GF cumulative distribution function. The set of such functions is denoted as C(M)
CDF(0, ∞).

If fX(x) ∈ C({1})
−1 (0, ∞), then the function FX(x) that is defined by the equation

FX(x) =

ˆ x

0
fX(u) du (47)

is called the standard cumulative distribution function. The set of such functions is denoted as
C({1})

CDF (0, ∞).

The following theorem is important for describing the properties of the GF cumulative
distribution functions (46).

Theorem 3 (The Luchko theorem about set C−1,(K)(0, ∞)). Let a pair (Mx(x), Kx(x)) belong
to the Luchko set.

If f (x) ∈ C−1,(K)(0, ∞), then

lim
x→0+

Ix
(Mx)

[u] f (u) = 0, Ix
(Mx)

[u] f (u) ∈ C1
−1(0, ∞). (48)

The inverse statement is also satisfied: If conditions (48) are satisfied, then
f (x) ∈ C−1,(K)(0, ∞).

Proof. The statements of this theorem are proven by Luchko in [87], (see comments on p.
9, and Remark 1 on p. 10 of [87]).

Using the Luchko theorem (Theorem 3) and the properties of functions fX(x) ∈
C(M)
−1 (0, ∞), one can prove the following properties of functions (46); the following proper-

ties the GF cumulative distribution functions eqrefDEF-FM can be proved.

Theorem 4 (Property of GF cumulative distribution functions). Let a pair (Mx(x), Kx(x))
belong to the Luchko set and a function fX(x) belong to the set C(M)

−1 (0, ∞).

Then, the function F(M)
X (x), which is defined by Equation (46), satisfies the following proper-

ties.
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(A) The function F(M)
X (x) belongs to the set C1

−1(0, ∞) i.e.,

dF(M)
X (x)
dx

∈ C−1(0, ∞). (49)

(B) The behavior of the function F(M)
X (x) at zero is described as

lim
x→0+

F(M)
X (x) = 0. (50)

(C) The behavior of the function F(M)
X (x) at infinity is described as

lim
x→+∞

F(M)
X (x) = 1. (51)

(D) The GF derivatives of the Caputo type of F(M)
X (x) is a non-negative function

Dx,∗
(Kx)

[u] F(M)
X (u) ≥ 0. (52)

(E) The GF derivatives of the Riemann–Liouville type of F(M)
X (x) is a non-negative function

Dx
(Kx)

[u] F(M)
X (u) ≥ 0. (53)

Proof. (A+B) By Definition 8 of a GF probability density function fX(x) ∈ C(M)
−1 (0, ∞),

the function fX(x) belongs to the set C−1,(K)(0, ∞). This means (see Definition 7) that the
function fX(x) can be represented as

fX(x) = Ix
(Kx)

[u] ϕ(u) (54)

for all x > 0, where ϕ(x) ∈ C−1(0, ∞). According to the Luchko theorem (Theorem 3), such
functions have two following important properties

Ix
(Mx)

[u] fX(u) ∈ C1
−1(0, ∞), (55)

lim
x→0+

Ix
(Mx)

[u] fX(u) = 0. (56)

Using Definition 10, the GF cumulative distribution function F(M)
X (x) is defined by the

equation
F(M)

X (x) = Ix
(Mx)

[u] fX(u), (57)

where fX(x) ∈ C−1,(K)(0, ∞). Using Equation (57), the properties (55) and (56) can be
rewritten as

F(M)
X (x) ∈ C1

−1(0, ∞), (58)

lim
x→0+

F(M)
X (x) = 0. (59)

These properties coincide with properties A and B.
(C) By Definition 8, the GF probability density function fX(x) satisfies the normaliza-

tion condition
lim

x→∞
Ix
(Mx)

[u] fX(u) = 1. (60)
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Using Equation (57), which defines a GF cumulative distribution function F(M)
X (x)

(see Definition 10), Equation (60) can be rewritten in the form

lim
x→∞

F(M)
X (x) = 1 (61)

This property coincides with property C.
(D) Using (58), one case see that F(M)

X (x) ∈ C1
−1(0, ∞). For such functions there exists

a GF derivative of the Caputo type (24) (see Definition 6).
Using Definition 10, the GF cumulative distribution function F(M)

X (x) is defined by
Equation (57). Then, the GFD of the Caputo type of Equation (57) has the form

Dx,∗
(Kx)

[u] F(M)
X (u) = Dx,∗

(Kx)
[u] Iu

(Mx)
[w] fX(w), (62)

where fX(x) ∈ C−1,(K)(0, ∞).
Using the first fundamental theorem for the GFC (Theorem 1) for the GFD of the

Caputo type, the equality

Dx,∗
(Kx)

[u] Iu
(Mx)

[w] fX(w) = fX(x) (63)

is satisfied, if fX(x) belongs to the set C−1,(K)(0, ∞). Therefore, Equations (62) and (63) give

Dx,∗
(Kx)

[u] F(M)
X (u) = fX(x). (64)

By Definition 8, the GF probability density function fX(x) satisfies the property

fX(x) ≥ 0. (65)

Using Equation (64), the inequality (65) can be represented in the form

Dx,∗
(Kx)

[u] F(M)
X (u) ≥ 0. (66)

This property coincides with property D.
(E) Similar to the proof of property D for the GFD of the Caputo type, the proof for the

GFD of the Riemann–Liouville type can be realized. Using the first fundamental theorem
of GFC (Theorem 1) for the GFD of the Riemann–Liouville type, the equality

Dx
(Kx)

[u] Iu
(Mx)

[w] fX(w) = fX(x) (67)

is satisfied, if fX(x) belongs to the set C−1(0, ∞). Taking into account the inclusion

C−1,(K)(0, ∞) ⊂ C−1(0, ∞), (68)

one can state that the first fundamental theorem for the GFC for the GFD of the Riemann–
Liouville type is satisfied for fX(x) ∈ C−1,(K)(0, ∞). Therefore, for the GFD of the Riemann–
Liouville type, one can obtain

Dx
(Kx)

[u] F(M)
X (u) ≥ 0. (69)

This property coincides with property E.
This ends the proof.

Remark 2. It should be emphasized that the properties described in Theorem 4 hold for any pair of
operator kernels from the Luchko set. It should also be noted that the fact that the GF probability
density function belongs to the set C−1,(K)(0, ∞) ⊂ C−1(0, ∞) is important to prove these
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properties. Note that the condition fX(x) ∈ C−1,(K)(0, ∞) also guarantees the fulfillment of the
first fundamental theorem of GFC.

Corollary 1 (GF probability density through GF distribution function). Let a pair (Mx(x),
Kx(x)) belong to the Luchko set and the function F(M)

X (x) belongs to the set C(M)
−1 (0, ∞).

Then, the functions, which are defined by the equations

f (Kx)
X,C (x) := Dx,∗

(Kx)
[u] F(M)

X (u), (70)

f (Kx)
X,RL(x) := Dx

(Kx)
[u] F(M)

X (u), (71)

where Dx,∗
(Kx)

is the GFD of the Caputo type and Dx
(Kx)

is the GFD of the Riemann–Liouville type,
and are the same

f (Kx)
X,RL(x) = f (Kx)

X,C (x) (72)

for x ∈ (0, ∞), and belong C1
−1(0, ∞). Then, one can use the notation f (Kx)

X (x) or fX(x) for
functions (70) and (71) describe the GF PDF of the random variable X on a positive semi-axis.

Proof. The proof is based on the identity connecting the GF derivatives of two types in the
form

Dx
(Kx)

[u] F(M)
X (u) = Dx,∗

(Kx)
[u] F(M)

X (u) + Kx(x) F(M)
X (0) (73)

that is satisfied if F(M)
X (x) ∈ C1

−1(0, ∞) [87,88] (see Equation (49) in [87], p. 8, and
Equation (29) in [88], p. 6).

Using Equations (70) and (71), Equality (73) leads to the equation

f (Kx)
X,C (x) := f (Kx)

X,RL(x) − Kx(x) F(M)
X (0). (74)

Using that the property of the function fX(x) ∈ C(M)
−1 (0, ∞), in the form (50), Equa-

tion (74) gives Equality (72), if fX(x) ∈ C(M)
−1,(K)(0, ∞).

This ends the proof.

2.6. General Fractional (GF) Probability for Region [a, b]

The GF probability for the region [a, b] ⊂ R0,+ can be described by an expression
similar to Equation (15) in the form

P(M)([a, b]) = F(M)
X (b) − F(M)

X (a), (75)

where F(M)
X (x) is defined by Equation (25). Equation (75) can be represented in the form

P(M)([a, b]) = I(Mx)
[a,b] [x] fX(x), (76)

where fX(x) ∈ C(M)
−1 (0, ∞) and I(Mx)

[a,b] is the GFI that is defined in [95] by the equation

I(Mx)
[a,b] [x] f (x) := Ib

(Mx)
[u] f (u) − Ia

(Mx)
[u] f (u), (77)

if a > 0, and, for a = 0, by the equation

I(Mx)
[0,x] [x] f (x) := Ix

(Mx)
[u] f (u). (78)

As a result, one can propose the following definitions.
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Definition 11 (GF probability). Let a pair (Mx(x), Kx(x)) belong to the Luchko set, a function
fX(x) belong to the set C(M)

−1 (0, ∞), and function F(M)
X (x) belong to the set C(M)

CDF(0, ∞).
Then, the real value P(M)([a, b]) is defined by the equation

P(M)([a, b]) = I(Mx)
[a,b] [x] fX(x) = F(M)

X (b) − F(M)
X (a), (79)

where b > a ≥ 0, is called the GF probability of a random variable X being in the interval
[a, b] ⊂ [0, ∞).

Remark 3. It should be emphasized that the GF cumulative distribution function is not non-
decreasing (in the standard sense) for all x > 0, in the general case. Only the general fractional
derivative of this function F(M)

X (x) is non-negative. The first-order derivative of this function must

not be nonnegative for all x > 0. This means that the function F(M)
X (x) can be decreased at some

intervals. For F(M)
X (x) ∈ C(M)

CDF(0, ∞), the non-decreasing function in the standard sense is only
the GF integral Ix

(Kx)
[u] fX(u) for all x > 0 since

d
dx

Ix
(Kx)

[u] F(M)
X (u) = Dx

(Kx)
[u] F(M)

X (u) ≥ 0. (80)

Therefore, there may exist such an interval [a, b] ⊂ R+ that the first-order derivative of the
function F(M)

X (x) is negative. Then, on this interval, the function F(M)
X (x) decreases in the standard

sense, and. This means that
F(M)

X (b) < F(M)
X (a), (81)

where b > a ≥ 0, and the GF probability (79) can be negative

P(M)([a, b]) = F(M)
X (b) − F(M)

X (a) ≤ 0. (82)

At the same time, the non-decreasing condition

Ia
(Kx)

[u] F(M)
X (u) < Ib

(Kx)
[u] F(M)

X (u) (83)

should be satisfied and
I(Kx)
[a,b] [x] P(M)((0, x]) ≥ 0 (84)

for every [a, b] ⊂ [0, ∞), since

I(Kx)
[a,b] [x] P(M)((0, x]) = I(Kx)

[a,b] [x] F(M)
X (x) = Ib

(Kx)
[x] F(M)

X (x) − Ia
(Kx)

[x] F(M)
X (x) ≥ 0 (85)

Therefore, it is important to consider not only the general case, in which the GF
probability on the interval can be negative, but also the special case, when the GF probability
on the interval is non-negative.

2.7. Condition for the GF probability Density Function to be Non-Negative

The GF probability density functions ( f (x) ∈ C(M)
−1 (0, ∞)) are non-negative functions

( f (x) ≥ 0) for all x > 0 that satisfy the GF normalization conditions. The GF probability
density functions belong to the set C−1,(K)(0, ∞). This property means that the function
f (x) can be represented as

f (x) = Ix
(Kx)

[u] ϕ(u) = (Kx ∗ ϕ)(x), (86)

where ϕ(x) ∈ C−1(0, ∞).
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The non-negativity of the function f (x) means the non-negativity of the convolution

(Kx ∗ ϕ)(x) ≥ 0 (for all x > 0), (87)

where the GFD kernel Kx(x) is the non-negative function Kx(x) ≥ 0 for all x > 0.
The properties of the non-negativity of the kernel Kx(x) from the Luchko set and the

non-negativity of the convolution (86) do not guarantee the non-negativity of the function
ϕ(x). In the general case, the function ϕ(x) need not be non-negative in all points of the
positive semi-axis. The function ϕ(u) can also take negative values at some intervals.

Therefore, it is important to consider two following cases for the GF probability
densities and GF cumulative distributions:

(A) The function ϕ(x) is non-negative on the positive semi-axis, i.e., the condition

ϕ(x) ≥ 0 (for all x > 0) (88)

holds. Further, it will be proved that condition (87) will be satisfied in this case.
(B) The function ϕ(x) can be negative on some intervals of the positive semi-axis, i.e., con-

dition (88) is violated. In this case, the condition of non-negativity of the convolution
(87) must be satisfied for all x > 0.

Theorem 5 (Non-negativity of GFI). Let a pair (Mx(x), Kx(x)) belong to the Luchko set.
Let f (x) belong to the set C−1,(K)(0, ∞), i.e., the function fX(x) can be represented as

f (x) = Ix
(Kx)

[u] ϕ(u), (89)

where ϕ(x) ∈ C−1(0, ∞).
Then, if the function ϕ(x) is non-negative for all x > 0, then the function f (x) is also

non-negative for all x > 0; that is

ϕ(x) ≥ 0 (for all x > 0) ⇒ f (x) ≥ 0 (for all x > 0). (90)

Proof. Using that the kernels (Kx(x), Mx(x)), which belong to the Luchko set, are non-
negative functions for all x > 0 and the assumption that ϕ(x) is the non-negative function
for all x > 0, the convolution

(Kx ∗ ϕ)(x) = Ix
(Kx)

[u] ϕ(u) =

ˆ x

0
Kx(x− u) ϕ(u) du (91)

is the non-negative function for all x > 0 by the definition of the integral. Therefore,
Function (89) is also non-negative for all x > 0.

This ends the proof.

Note that the statement, which is opposite to the statement of Theorem 5, is not
true; that is, the statement that ϕ(x) ≥ 0 for all x > 0, if f (x) ≥ 0 for all x > 0 is not a
true statement.

Using Theorem 5, the following property can be proved.

Theorem 6 (Non-negativity of the GF probability density function). Let a pair (Mx(x),
Kx(x)) belong to the Luchko set.

Let ϕ(x) belong to the set C({1})
−1 (0, ∞), i.e., the function ϕ(x) is a standard probability density

function in the sense of Definition 9, and the following conditions are satisfied

ϕ(x) ∈ C−1(0, ∞), (92)

ϕ(x) ≥ 0 (for all x > 0), (93)
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lim
x→∞

ˆ x

0
ϕ(u) du = 1. (94)

Then, function f (x), which can be represented as

f (x) = Ix
(Kx)

[u] ϕ(u) (95)

belongs to the set C(M)
−1 (0, ∞), i.e., the function f (x) is the GF probability density function in the

sense of Definition 8.

Proof. (1) If ϕ(x) ∈ C({1})
−1 (0, ∞), then ϕ(x) ∈ C−1(0, ∞). Therefore, Function (95) satis-

fies the condition f (x) ∈ C−1,(K)(0, ∞) that follows directly from the definition of the
set C−1,(K)(0, ∞).

(2) The statement that the assumption of the non-negativity of a function ϕ(x) for all
x > 0 leads to the non-negativity of Function (95) is proven as Theorem 5.

(3) The GF integration of Equation (94) gives

Ix
(Mx)

[u] f (u) = Ix
(Mx)

[u] Iu
(Kx)

[w] ϕ(w). (96)

Using the associativity of the Laplace convolution and the Sonin condition
((Mx ∗ Kx)(x) = {1} for all x > 0), one can obtain

Ix
(Mx)

[u] Iu
(Kx)

[w] ϕ(w) = (Mx ∗ (Kx ∗ ϕ))(x) =

((Mx ∗ Kx) ∗ ϕ)(x) = ({1} ∗ ϕ)(x) =

ˆ x

0
ϕ(u) du. (97)

Therefore,

Ix
(Mx)

[u] f (u) =

ˆ x

0
ϕ(u) du. (98)

If ϕ(x) belongs to the set C({1})
−1 (0, ∞), then the standard normalization condition

lim
x→∞

ˆ x

0
ϕ(u) du = 1 (99)

is satisfied.
Using Equation (98), condition (99) can be written as

lim
x→∞

Ix
(Mx)

[u] f (u) du = 1. (100)

This ends the proof.

Theorem 6 states that

ϕ(x) ∈ C({1})
−1 (0, ∞), and f (x) ∈ C−1,(K)(0, ∞) ⇒ f (x) ∈ C(M)

−1 (0, ∞). (101)

Remark 4. Note that the statement opposite to the statement of Theorem 6 is not true, since the
non-negativity of the function fX(x) for all x > 0 does not lead to the non-negativity of the function
ϕ(x) for all x > 0.

2.8. Condition for the GF Probability to be Non-Negative: Complete the GF Probability

Let us describe conditions for the GF probability density functions, for which the GF
probability is non-negative.

Definition 12 (Set of functions C+
−1,(K)(0, ∞)). Let functions Mx(x) and Kx(x) be kernels of

GFI and GFD, respectively, and let the pair of these kernels belong to the Luchko set.
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Let a function f (x) ∈ C−1,(K)(0, ∞) satisfy the following condition

Dx
(Mx)

[u] f (u) ≥ 0 (for all x > 0). (102)

Then, the set of such functions is denoted as C+
−1,(K)(0, ∞).

The set of functions, for which condition (102) is violated, is denoted as C−−1,(K)(0, ∞).

Theorem 7 (Property of set C+
−1,(K)(0, ∞)). Let functions Mx(x) and Kx(x) be kernels of the

GFI and GFD, respectively, and let this pair of kernels belong to the Luchko set.
Let a function f (x) belong to the set C+

−1,(K)(0, ∞).
Then, the function f (x) can be represented as a GFI with the kernel Kx(x), such that

f (x) = Ix
(Kx)

[u] ϕ(u) (for all x > 0, (103)

where ϕ(x) ∈ C−1(0, ∞) and
ϕ(x) ≥ 0 (104)

for all x > 0.

Proof. If a function f (x) belongs to the set C+
−1,(K)(0, ∞), then f (x) satisfies the condition

Dx
(Mx)

[u] f (u) ≥ 0 (105)

for all x > 0. Substitution of Equation (103) into Equation (105) gives

Dx
(Mx)

[u] Iu
(Kx)

[w] ϕ(w) ≥ 0. (106)

Using the first fundamental theorem of GFC, Equation (106) takes the form ϕ(w) ≥ 0
for all x > 0.

Definition 13. [Complete the GF probability density function, and C(M),+
−1 (0, ∞)]

Let functions Mx(x) and Kx(x) be kernels of the GFI and GFD, respectively, and let this pair
of kernels belong to the Luchko set.

Let a function f (x) be the GF probability density function (i.e., f (x) ∈ C(M)
−1 (0, ∞)) that

satisfies the condition
f (x) ∈ C+

−1,(K)(0, ∞) ⊂ C−1,(K)(0, ∞). (107)

Then, the function f (x) is called the complete GF probability density function, and the set of
such functions is denoted as C(M),+

−1 (0, ∞) or C(M),+
PDF (0, ∞).

The function f (x) ∈ C(M)
−1 (0, ∞), for which the condition f (x) ∈ C+

−1,(K)(0, ∞) is not

satisfied (i.e., f (x) ∈ C−−1,(K)(0, ∞)) will be called the non-complete GF probability density function,

and the set of such functions is denoted as C(M),−
−1 (0, ∞) or C(M),−

PDF (0, ∞).

Note that the set C(M),+
−1 (0, ∞) is the subset of C(M)

−1 (0, ∞) and

C+
−1,(K)(0, ∞) ∪ C−−1,(K)(0, ∞) = C−1,(K)(0, ∞). (108)

Definition 14 (Complete the GF cumulative distribution function and C(M),+
CDF (0, ∞)). Let

functions Mx(x) and Kx(x) be kernels of the GFI and GFD, respectively, and let this pair of kernels
belong to the Luchko set.

Let a function f (x) be complete GF probability density function (i.e., f (x) ∈ C(M),+
−1 (0, ∞)).
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Then, the function F(M)(x), which is defined by the equation

F(M)
X (x) = Ix

(Mx)
[u] f (u), (109)

is called the complete GF cumulative distribution function and the set of such functions is denoted
as C(M),+

CDF (0, ∞).

If f (x) ∈ C(M),−
−1 (0, ∞)), then function (109) is called the non-complete GF cumulative

distribution function, and the set of such functions is denoted as C(M),−
CDF (0, ∞).

Definition 15 (Complete GF probability). Let a pair of (Mx(x), Kx(x)) belong to the Luchko
set, function fX(x) belongs to the set C(M),+

−1 (0, ∞), and function F(M)
X (x) belongs to the set

C(M),+
CDF (0, ∞).

Then, the real value P(M)([a, b]), which is defined by the equation

P(M)([a, b]) = I(Mx)
[a,b] [x] fX(x) = F(M)

X (b) − F(M)
X (a), (110)

where b > a ≥ 0, is called the complete GF probability of a random variable X being in the interval
[a, b] ⊂ [0, ∞).

If F(M)
X (x) belongs to the set C(M),−

CDF (0, ∞), then the value (110) is called the non-complete
GF probability of the interval [a, b] ⊂ [0, ∞).

Let us prove that the complete GF cumulative distribution function is non-decreasing
and the complete GF probability of all intervals is non-negative.

Theorem 8 (Non-decreasing GF cumulative distribution function). Let functions Mx(x)
and Kx(x) be kernels of the GFI and GFD, respectively, and let this pair of kernels belong to the
Luchko set.

Let a function f (x) be a complete GF probability density function, i.e., f (x) ∈ C(M),+
−1 (0, ∞).

Then, the GF cumulative distribution function, which is defined by the equation

F(M)
X (x) = Ix

(Mx)
[u] f (u), (111)

satisfies the standard non-decreasing condition in the form

d
dx

F(M)
X (x) ≥ 0 (112)

for all x > 0, the GF probability is non-negative

P(M)([a, b]) ≥ 0 (113)

for all [a, b] ⊂ [0, ∞), where b > a ≥ 0.

Proof. If f (x) ∈ C(M),+
−1 (0, ∞), then the function f (x) can be represented as

f (x) = Ix
(Kx)

[u] ϕ(u), (114)

where ϕ(x) ∈ C−1(0, ∞), and
ϕ(x) ≥ 0 (115)

for all x > 0. Substitution of Equation (114) into Equation (111) gives

F(M)
X (x) = Ix

(Mx)
[u] Iu

(Kx)
[w] ϕ(w). (116)
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Using the associativity of the Laplace convolution

F(M)
X (x) = (Mx ∗ (Kx ∗ ϕ))(x) = ((Mx ∗ Kx) ∗ ϕ)(x) =

({1} ∗ ϕ)(x) =

ˆ x

0
ϕ(u) du. (117)

Then, inequality (112) takes the form

d
dx

F(M)
X (x) =

d
dx

ˆ x

0
ϕ(u) du ≥ 0 (118)

for all x > 0.
Using the first fundamental theorem of the standard calculus, the inequality (118) is

written as
d

dx
F(M)

X (x) = ϕ(x) ≥ 0 (119)

for all x > 0.
Inequality (119) means that the GF cumulative distribution Function (111) is a non-

decreasing function on the interval (0, ∞). Then,

F(M)
X (b) ≥ F(M)

X (a), (120)

if b > a ≥ 0.
Using Definition 15, inequality (120) shows that inequality (113) holds for all [a, b] ⊂

[0, ∞), where b > a ≥ 0.

Corollary 2. Let functions Mx(x) and Kx(x) be kernels of the GFI and GFD, respectively, and let
this pair of kernels belong to the Luchko set.

Let a function f (x) be a complete GF probability density function, i.e., f (x) ∈ C(M),+
−1 (0, ∞),

and F(x) be a complete GF cumulative distribution function, i.e., F(x) ∈ C(M),+
CDF (0, ∞), defined by

the equation
F(M)

X (x) = Ix
(Mx)

[u] f (u). (121)

Then, the GF probability

P(M)([a, b]) = F(M)
X (b) − F(M)

X (a), (122)

where b > a ≥ 0 satisfies the standard properties of the standard probability theory.
Let Ak, k ∈ N be intervals, such that Ak = [ak, bk], where bk > ak ≥ 0. Then, the following

properties of the complete GF probability density are satisfied.

(1) The non-negativity,
P(M)(Ak) ≥ 0 (123)

for every Ak.
(2) The normalization

P(M)((0, ∞)) = 1. (124)

(3) If Ak ⊂ Aj, then
P(M)(Ak) ≤ P(M)(Aj). (125)

(4) If Ak ∩ Aj = ∅, then

P(M)(Ak ∩ Aj) = P(M)(Ak) + P(M)(Aj). (126)



Mathematics 2022, 10, 3848 21 of 82

(5) If Ak ∩ Aj 6= ∅, then

P(M)(Ak ∪ Aj) = P(M)(Ak) + P(M)(Aj) − P(M)(Ak ∩ Aj). (127)

(6) For every Ak and Aj,

P(M)(Ak ∪ Aj) ≤ P(M)(Ak) + P(M)(Aj). (128)

Proof. The proof of these properties follows directly from the properties of the GF cumula-
tive distribution function and Equation (122) that defines the GF probability.

The conditional GF probability is defined by the equation

P(M)(Ak|Aj) =
P(M)(Ak ∩ Aj)

P(M)(Aj)
, (129)

where P(M)(Aj) 6= 0.

Remark 5. It should be noted that for the GF probability density functions from a set C(M),−
−1 (0, ∞),

the GF probability on the interval can be negative for some intervals. However, the GF probability

P(M)([0, x]) ≥ 0 (130)

for all x > 0. This property is true because it is described as the Laplace convolution of two
non-negative functions

P(M)([0, x]) = (Mx ∗ fX)(x) =

ˆ x

0
Mx(x− u) fX(u) du, (131)

where the GFI kernel Mx(x) ≥ 0 for all x > 0, and the GF probability density function fX(x) ≥ 0
for all x > 0. This statement does not depend on which of the two subsets C(M),+

−1 (0, ∞) or

C(M),−
−1 (0, ∞) is considered.

The negativity of the GF probability on the interval is due to the fact that nonlocality
affects the change in the probability density. This influence leads to the fact that the
distribution function may decrease in some regions. Such influence of the nonlocality
is in some sense similar to the behavior of the Wigner distribution function in quantum
statistical mechanics [121,122] and some non-Kolmogorov probability models [123–126].
This property of the nonlocality in the proposed generalization of the standard probability
theory should not be excluded from consideration. Because of this, it is proposed in the
theory of probability not to be limited only to sets C(M),+

−1 (0, ∞) and C(M),+
CDF (0, ∞). It is

useful to study and consider wider sets C(M)
−1 (0, ∞) and C(M)

CDF(0, ∞).
It should be emphasized that the proposed non-local probability theory cannot be

reduced to a standard theory that uses classical probability densities and distribution
functions. This impossibility is analogous to the fact that fractional calculus and general
fractional calculus cannot be reduced to standard calculus, which uses standard integrals
and derivatives.

2.9. Operator Kernels in Nonlocal Probability Theory

In the standard probability theory, the dimension of the probability density is always
the inverse of the dimension of the random variable

[ fX(x)] = [x]−1. (132)
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The standard cumulative distribution function and probability are dimensionless
quantities

[FX(x)] = [P(x)] = [1]. (133)

For the correct use of the general fractional calculus in the construction of the nonlocal
generalization of probability theory, it is necessary to specify the physical dimensions of
the GF integral and GF derivative.

For reasons of convenience, it is proposed to use the following requirement. To
preserve the standard physical dimension of quantities, the dimension of the DFD and
DFI should coincide with the dimension of the derivative and integral of the first order,
respectively. Then, the dimensions of the kernels Mx(x), Mx(x), My(y) of the GF integrals
and dimensions of the kernels Kx(x), Kx(x), Ky(y) of the GF derivatives are the following

[Mx] = [1], [Kx] = [x]−1, (134)

where [1] denotes a dimensionless quantity.
The mathematical property that a pair of kernels (Mx, Kx) belongs to the Luchko set,

then the kernel pair (Mx,new = Kx, Kx,new = Mx) also belongs to the Luchko set, is violated,
if the assumption (134) is used. However, this property of interchangeability of the operator
kernels cannot be applied to the physical dimensions of these kernels, since GFI-kernel
Mx(x) is [Mx] = 1, and GFD-kernel Kx(x) has [Kx] = [x]−1.

Therefore, the mathematical property of interchangeability should be somewhat re-
formed by using the following property of the variability of the kernel dimension.

The Sonin condition for the kernels Mx(x) and Kx(x) that belong to the Luchko set
has the form ˆ t

0
Mx(x− u)Kx(u) du = 1. (135)

One can see the following property: If the kernel pair (Mx, Kx) belongs to the Luchko
set, then the kernel pair (Mx,new = λMx, Kx,new = λ−1Kx) with λ > 0 also belongs to the
Luchko set.

As a result, the following proposition is proved.

Theorem 9 (Interchangeability of Operator Kernels). Let a kernel pair (Mx(x), Kx(x)) belong
to the Luchko set.

Then the kernel pair (Mx,new = λ−1Kx(x), Kx,new = λMx(x)) with λ > 0 and [λ] = [x]−1

also belongs to the Luchko set.

Let us give examples of kernel pairs (Mx(x), Kx(x)) that belong to the Luchko set and
have physical dimensions [Mx(x)] = [1] and [Kx(x)] = [x]−1. In these examples, λ > 0,
[λ] = [x]−1, 0 < α ≤ β < 1, and x > 0.

• Example 1. The power law nonlocality:

Mx(x) = hα(λx) =
(λ x)α−1

Γ(α)
, Kx(x) = λ h1−α(λx) =

λ (λ x)−α

Γ(1− α)
. (136)

• Example 2. The Gamma distribution nonlocality:

Mx(x) = hα,λ(λ x) =
(λ x)α−1

Γ(α)
e−λ x, Kx(x) = λ h1−α,λ(λx) +

λ

Γ(1− α)
γ(1− α, λx). (137)

• Example 3. The two-parameter Mittag-Leffler nonlocality:

Mx(x) = (λ x)β−1 Eα,β[−(λ x)α], Kx(x) =
λ (λ x)α−β

Γ(α− β + 1)
+

λ (λ x)−β

Γ(1− β + 1)
. (138)



Mathematics 2022, 10, 3848 23 of 82

• Example 4. The Bessel nonlocality:

Mx(x) = (
√

λ x)α−1 Jα−1(2
√

λ x), Kx(x) = λ (
√

λ x)−α I−α(2
√

λ x). (139)

• Example 5. The hypergeometric Kummer nonlocality:

Mx(x) = (λx)α−1Φ(β, α;−λ x), Kx(x) =
λ sin(πα)

π
(λ x)−α Φ(−β, 1− α;−λ x). (140)

• Example 6. The cosine nonlocality:

Mx(x) =
cos(2

√
λ x)√

π λ x
, Kx(x) =

λ cosh(2
√

λ x)√
π λ x

. (141)

Remark 6. Note that this list of examples can be expanded by using kernel pairs of the form
(Mx,new = λ−1Kx(x), Kx,new = λMx(x)) for each pair (Mx(x), Kx(x)) of examples. For example,
using the kernel pair (138), one can consider the following new pair

Mx(x) =
(λ x)α−β

Γ(α− β + 1)
+

(λ x)−β

Γ(1− β + 1)
, Kx(x) = λ (λ x)β−1 Eα,β[−(λ x)α]. (142)

In these examples, the following special functions are used: γ(β, x) is the incom-
plete gamma function (see Section 9 in [127], pp. 134–142); Eα,β[x] is the two-parameter
Mittag-Leffler function (see Section 3 in [128], pp. 17–54, [129] and Section 1.8 in [4], pp.
40–45); Jν(x) is the Bessel function (see Section 7.2.1 in [127], pp. 3–5, and Section 1.7 in [4],
pp. 32–39); Iν(x) is the modified Bessel function (see Section 7.2.2 in [127], p. 5, and Sec-
tion 1.7 in [4], pp. 32–39); Φ(β, α; x) is the confluent hypergeometric Kummer function
(Section 1.6 in [4], pp. 29–30).

Remark 7. Note that GFD and GFI, in which kernels are standard probability density functions
up to the numerical factors, can be interpreted as integer-order derivatives and integrals with
continuously distributed lag [130]. For example, the GFI with the kernels Mx(x) and the GFD with
kernels Kx,new(x) = λMx(x), which are defined in Equations (137) and (138), can be used to take
into account a continuously distributed lag as a special form of nonlocality.

Remark 8. It should be emphasized that kernels (19) do not belong to the Luchko set. At the same
time, it should be noted that general fractional calculus is a generalization of fractional calculus of
the Riemann–Liouville fractional integrals, the Riemann–Liouville and Caputo fractional derivatives
of the order α. These operators are defined by kernels (136). In the GFC, the kernel pair (136) does
not belong to the Luchko set, if α = 1. The GFI with the kernel M(x) from the pair (136) is the
Riemann–Liouville fractional integral of the order α:

Ix
(hα)

[u] f (u) = λα−1 (Iα
0+ f )(x) (143)

for x > 0.
Then, the GFD of the RL type is the Riemann–Liouville fractional derivative of the order α:

Dx
(h1−α)

[u] F(u) = λ−α (Dα
0+F)(x). (144)

For the Riemann–Liouville fractional integral, Equation (143) is also used for α = 0 and
α = 1, where the relations

(I1
0+ f )(x) =

ˆ x

0
f (u) du, (I0

0+ f )(x) = f (x) (145)
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hold true. For the Riemann–Liouville fractional derivative, Equation (144) is also used for α = 0
and α = 1, where the relations

(D1
0+F)(x) =

dF(x)
dx

, (D0
0+F)(x) = F(x) (146)

also hold true.
Therefore, the function h1(x) = {1} can be interpreted as the Heaviside step function.
Therefore, the function h0(x) can be interpreted as a kind of Dirac delta function that plays the

role of unity with respect to multiplication in form of the Laplace convolution [87], p. 7.
As a result, using power law kernels (136), we obtain the consideration of a nonlocal probability

theory in the framework of a fractional calculus approach, which uses the fractional integral and
derivatives of an arbitrary order α > 0. In the framework of this calculus, the standard probability
theory can be considered a special case, when the order α of operators is equal to integer values.

It should also be noted that fractional integrals and derivatives of generalized functions and
distributions were described in Section 8 of Chapter 2 in book [1], pp. 145–160, including generalized
functions on the test function space in the framework of the Schwartz approach.

2.10. Multivariate Probability Distribution

The proposed approach to the consideration of the univariate probability distribution
can be extended to multivariate probability distributions.

In the two-dimensional space (x, y), one can consider a multivariate probability distri-
bution consisting of random variables X and Y on the set

R2
0,+ = {(x, y) : x ≥ 0, y ≥ 0}. (147)

The probability density fXY(x, y) ∈ C−1(R2
0,+) is non-negative ( fXY(x, y) ≥ 0) and is

normalized ˆ ∞

0
dx
ˆ ∞

0
dx fXY(x, y) = 1. (148)

If fXY(x, y) ∈ C−1(R2
0,+), then the cumulative distribution function FXY(x, y) is de-

fined by the integration

FXY(x, y) =

ˆ x

0
dx
ˆ y

0
dy fXY(x, y). (149)

If FXY(x, y) ∈ C1
−1(R2

0,+), then the density fXY(x, y) is defined by the differentiation

fXY(x, y) =
d

dy
d

dx
FXY(x, y). (150)

Expressions (25) and (26) can be generalized for the region W ⊂ R2
+ such that

W := {(u, w) : 0 ≤ u ≤ x, 0 ≤ w ≤ y}. (151)

For region (151), a generalization of Equations (25) and (26) for R2
+ has the form

F(M)
XY (x, y) = I(M)

W [u, w] fXY(u, w) = Ix
(Mx)

[u]Iy
(My)

[w] fXY(u, w), (152)

fXY(x, y) = D(K)
W [u, w] F(M)

XY (u, w) = Dy
(Ky)

[w]Dx
(Kx)

[u] F(M)
XY (u, w), (153)

where fXY(x, y) ∈ C(M)
−1 (R2

+) and F(M)
XY (x, y) ∈ C1

−1(R2
+).

Remark 9. It should be emphasized that the sequence of actions of the GF derivatives must be the
reverse of the action of GF integrals in Equations (152) and (153), i.e., the xy-sequence of GFI and
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yx-sequence of GFD. In general fractional calculus, this requirement is due to the need to fulfill the
identity after substituting expression (152) into expression (153) in the form

fXY(x, y) = Dy
(Ky)

[w]Dx
(Kx)

[u] F(M)
XY (u, w) =

Dy
(Ky)

[w]Dx
(Kx)

[u] Iu
(Mx)

[u′]Iw
(My)

[w′] fXY(u′, w′) =

Dy
(Ky)

[w]Iw
(My)

[w′] fXY(x, w′) = fXY(x, y), (154)

where the first fundamental theorem of GFC is used twice (first on x, and then on y). Identity (154)
holds if the pairs of kernels (Mx, Kx) and (My, Ky) belong to the Luchko set and fXY(x, y) belongs
to C−1(R2

+).

Remark 10. The action of the GFD of the Caputo type with respect to x on GF distribution function
FY(y), which depends on y, and vice versa, gives zero

Dx,∗
(Kx)

[x′] F
(My)
Y (y) = 0, Dy,∗

(Ky)
[y′] F(Mx)

X (x) = 0, (155)

since the action of the GFD of the Caputo type on a constant function is equal to zero.
The GFD of the Riemann–Liouville type of a constant function is not equal to zero

Dx
(Kx)

[u] 1 6= 0. (156)

For the GFD of the Riemann–Liouville type, the following equation is satisfied

Dx
(Kx)

[u] 1 = Kx(x) (157)

since
Dx
(Kx)

[u] 1 =
d

dx

ˆ x

0
Kx(x− u) 1 du =

d
dx

ˆ x

0
Kx(ξ) dξ = Kx(x).

Therefore, the action of the GFD of the Riemann–Liouville type with respect to x on the GF

distribution function F
(My)
Y (y) 6= 0, and vice versa cannot give zero

Dx
(Kx)

[x′] F
(My)
Y (y) = FY(y) Dx

(Kx)
[x′] 1 = Kx(x) F

(My)
Y (y), (158)

Dy
(Ky)

[y′] F(M)
X (x) = F(M)

X (x) Dy
(Ky)

[y′] 1 = Ky(y) F(M)
X (x). (159)

A consequence of this property is the following non-standard equality. If the function fXY(x, y)
has the form

f (x, y) = f1(x) + f2(y), (160)

then
Dx
(Kx)

[x′] f (x′, y) = Dx
(Kx)

[x′] f1(x′) + f2(y)Kx(x), (161)

Dy
(Ky)

[y′] f (x, y′) = Dy
(Ky)

[y′] f2(y′) + f1(x)Ky(y). (162)

These facts should be taken into account for multivariate GF probability distributions.

It should be noted that the standard product (Leibniz) rule is violated for GFD. There-
fore, the following inequalities exist

Dx
(Kx)

[u] f (u) g(u) 6= f (x) Dx
(Kx)

[u] g(u) + g(x) Dx
(Kx)

[u] f (u). (163)

The GF derivative of the Caputo type satisfies a similar inequality.
Note that the GF differential equations can describe nonlocality in the space due to the

fact that these equations are actually integro-differential, which depends on the region.
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2.11. General Fractional Average (Mean) Values

In this subsection, nonlocal generalizations of the standard (local) average value are
proposed for continuous distributions on the semi-axis.

First, let us briefly write out the standard formulas that define the average values of
the function A(X) of a random variable X, which is distributed with a density fX(x) on
the semi-axis.

Let fX(x) ∈ C({1})
−1 (0, ∞) be a standard probability density function, A(X) be a func-

tion of a random variable X, such that A(x) fX(x) ∈ C−1(0, ∞), and the function

FX(x) =

ˆ x

0
fX(u) du ∈ C({1})

CDF (0, ∞) (164)

be the standard cumulative distribution function. Then, the standard average value is
described as

〈A(X)〉 = E[A(X)] := lim
x→∞

ˆ x

0
A(u) dFX(u) = lim

x→∞

ˆ x

0
A(u) fX(u) du. (165)

In constructing definitions of the nonlocal generalizations of the standard expression
(165), one should take into account the need to satisfy the following properties in addition
to linearity. For the GF average values of the function A(X) of the random variable X on
the semi-axis R+, the following properties should be satisfied.

The first property is the normalization condition for the unit function of a random
variable

〈 {1} 〉(M) = E(M)[{1}] = 1 (166)

that should be satisfied for all types of the average GF values. Equation (166) can be
interpreted as a normalization condition of the GF probability density.

The second property is the principle of correspondence with the definition of the
standard (local) average value with the GFI kernel Mx(x) equal to unit for all x > 0,
i.e., M(x) = {1} for all x > 0,

〈 A(X) 〉({1}) = E({1})[A(X)] = lim
x→∞

ˆ x

0
A(x) dF({1})

X (x) = lim
x→∞

ˆ x

0
A(x) fX(x) dx (167)

that should be satisfied for all types of GF average values. Note that the operator kernel
Mx(x) = {1} does not belong to the Luchko set. Therefore, the correspondence principle is
verified by substituting the power kernel Mx(x) = hα(λx), which belongs to the Luchko
set together with the kernel Kx(x) = λh1−α(λx), and considering the limit α→ 1−.

Let us define three types of GF average values of function A(X), for which the first
property (166) and the second property (167) are satisfied. These properties can be easily
proven (verified) by direct substitution of the identity function {1} for the function A(X)
and by the described limit passage α→ 1+ for the operator kernel Mx(x).

Definition 16 (GF average values of function A(X)). Let a pair (Mx(x), Kx(x)) belong to the
Luchko set.

Let fX(x) ∈ C(M)
−1 (0, ∞) be a GF probability density, A(X) be a function of a random variable

X, and the function
F(M)

X (x) = Ix
(Mx)

[u] fX(u) ∈ C(M)
CDF(0, ∞) (168)

is the GF cumulative distribution function.
Let A(x) fX(x) ∈ C−1(0, ∞). Then, the value

〈A(X)〉T1,(M) = ET1,(M)[A(X)] := lim
x→∞

ˆ x

0
Mx(x− u) A(u) dF({1})

X (u) (169)
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is called the GF average (mean) value of the first type for the function A(X) of the random variable
X.

Let A(x)
(

Dx
(Mx)

[u] fX(u)
)
∈ C−1(0, ∞). Then, the value

〈A(X)〉T2,(M) = ET2,(M)[A(X)] := lim
x→∞

ˆ x

0
A(u) dF(M)

X (u) (170)

is called the GF average (mean) value of the second type for the function A(X) of the random
variable X.

Let A(x)
(

Dx
(Mx)

[u] fX(u)
)
∈ C−1(0, ∞). Then, the value

〈A(X)〉T3,(M) = ET3,(M)[A(X)] := lim
x→∞

ˆ x

0
Mx(x− u) A(u) dF(M)

X (u) (171)

is called the GF average (mean) value of the third type for the function A(X) of the random variable
X.

The proposed GF average values can be represented by using the notations of the
general fractional calculus in the following forms.

(1) For the GF average value of the first type, one can use the fact that the condition

F({1})
X (x) ∈ C({1})

CDF (0, ∞) leads to F({1})
X (x) ∈ C1

−1(0, ∞). Then, the equation

F({1})
X (x) =

ˆ x

0
fX(u) du, (172)

leads to the equality

d
dx

F({1})
X (x) =

d
dx

ˆ x

0
fX(u) du = fX(x). (173)

Therefore, Equation (169) can be written as

〈A(X)〉T1,(M) = ET1,(M)[A(X)] = lim
x→∞

ˆ x

0
Mx(x− u) A(u) fX(u) du =

lim
x→∞

Ix
(Mx)

[u]
(

A(u) fX(u)
)

. (174)

(2) For the GF average value of the second type, one can use the fact that the condition

F(M)
X (x) ∈ C(M)

CDF(0, ∞) leads to F(M)
X (x) ∈ C1

−1(0, ∞). Then, Equation (168) gives the
equality

d
dx

F(M)
X (x) =

d
dx

Ix
(Mx)

[u] fX(u) = Dx
(Mx)

[u] fX(u), (175)

where Dx
(Mx)

[u] is the FG derivative RL type with the kernel Mx(x) instead of the
kernel Kx(x). Therefore, Equation (170) can be written as

〈A(X)〉T2,(M) = ET2,(M)[A(X)] := lim
x→∞

ˆ x

0
A(u)

(
Du
(Mx)

[w] fX(w)
)

du. (176)

(3) For the GF average value of the third type, similarly to the second type, one can use
Equation (175). Therefore, Equation (171) can be written as

〈A(X)〉T3,(M) = ET3,(M)[A(X)] = lim
x→∞

ˆ x

0
Mx(x− u) A(u)

(
Du
(Mx)

[w] fX(w)
)

du =

lim
x→∞

Ix
(Mx)

[u]
(

A(u)
(

Du
(Mx)

[w] fX(w)
))

. (177)
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Let us make some remarks about the proposed three types of GF average values.
Using the GF average value of the first type (174), in fact, in addition to the “old

density function” fX(x), “new density function” fnew,X(x) = A(x) fX(x) should be also
finite at x → ∞. The following conditions should satisfy at the same time

lim
x→∞

Ix
(Mx)

[u]
(

A(u) fX(u)
)

< ∞, (178)

lim
x→∞

Ix
(Mx)

[u] fX(u) < ∞, (179)

and
lim

x→0+
Ix
(Mx)

[u] fX(u) = 0, (180)

for which it is necessary to find the conditions of the parameters. For most GF
probability density functions and operator kernels, for which the analytical expressions are
known, the average value (174) gives a finite value at A(X) = {1} only. Because of this,
the GF mean value that is derived by a simple replacement of the first-order integral with a
general fractional integral

Ix
({1})[u]

(
A(u) fX(u)

)
→ Ix

(Mx)
[u]
(

A(u) fX(u)
)

(181)

leads to a not-very useful characteristic of the nonlocal distribution. Such a definition of
the GF average value can be used for truncated GF average values over finite intervals
[a, b] ⊂ R+ of truncated GF distributions. Such distributions and their corresponding to
truncated GF average values are discussed in Section 7.

Using the notation of the GF mean value through integration with the GF cumulative
distribution functions (see equations (169), (170) and, (171)), it becomes clearer that the
second and third types of GF mean value are more adequate generalizations of the standard
average values.

Due to the fact that Equations (170) and (171) contain the differentials of the GF
cumulative distribution function dF(M)

X (u), the Riemann–Liouville type of GF derivative
should be used in Equations (176) and (177).

It should also be emphasized that the GF derivative, which is used in Equations (170)
and (171), contains the kernel Mx(x), instead of the GFD kernel Kx(x). Because of this,
in the limit case Mx(x) = {1}, which is described in the correspondence principle, the GF
derivative does not give the standard derivative of the first order, but the function itself

Dx
(Mx)

[u] fX(u) =
d

dx

ˆ x

0
Mx(x− u) fX(u) du =

d
dx

ˆ x

0
fX(u) du = fX(x). (182)

The proposed three types of average values can be combined into one generalized
form with two different operator kernels.

Definition 17 (GF average values with two kernels). Let two kernel pairs (M1(x), K1(x)) and
(M2(x), K2(x)) belong to the Luchko set.

Let fX(x) ∈ C(M2)
−1 (0, ∞) be a GF probability density, A(X) be a function of a random

variable X, such that
A(x)

(
Dx
(M2)

[u] fX(u)
)
∈ C−1(0, ∞), (183)

and the function
F(M2)

X (x) = Ix
(M2)

[u] fX(u) ∈ C(M2)
CDF (0, ∞) (184)

is the GF cumulative distribution function.
Then, the value

〈A(X)〉(M1),(M2)
= E(M1),(M2)

[A(X)] := lim
x→∞

ˆ x

0
M1(x− u) A(u) dF(M2)

X (u) (185)
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is called the GF average (mean) value with two kernels for the function A(X) of the random variable
X.

Equation (185) can be written as

〈A(X)〉(M1),(M2)
= E(M1),(M2)

[A(X)] = lim
x→∞

ˆ x

0
M1(x− u) A(u)

(
Du
(M2)

[w] fX(w)
)

du =

lim
x→∞

Ix
(M1)

[u]
(

A(u)
(

Du
(M2)

[w] fX(w)
))

. (186)

All three types of GF average values are particular cases of their proposed generaliza-
tion, if we include in the considerations the operator kernel {1} as the limiting case of the
power law kernels.

(1) If M1(x) = M2(x) = {1}, Equation (185) gives the standard average value (165)

〈A(X)〉({1}),({1}) = 〈A(X)〉. (187)

(2) If M1(x) = M(x) and M2(x) = {1}, Equation (185) gives the GF average value of the
first type

〈A(X)〉(M),({1}) = 〈A(X)〉T1,(M). (188)

(3) If M1(x) = {1} and M2(x) = M(x), Equation (185) gives the GF average value of the
second type

〈A(X)〉({1}),(M) = 〈A(X)〉T2,(M). (189)

(4) If M1(x) = M2(x) = M(x), Equation (185) gives the GF average value of the third
type

〈A(X)〉(M),(M) = 〈A(X)〉T3,(M). (190)

(5) If M1(x) 6= {1}, M2(x) 6= {1} and M2(x) 6= M2(x), Equation (185) does not coincide
with the three types of average GF values.

The use of two operator kernels M1(x) and M2(x) in Definition 17 can be interpreted
as follows. The first kernel M1(x) describes the influence of the nonlocality on the function
of random variables (on “classical observable” in the physical interpretation). The second
kernel M2(x) describes the influence of the nonlocality on the probability density (on the
distribution of states in the physical interpretation).

For the GF average (mean) value with two kernels E(M1),(M2)
[Xn] for the case M1(x) 6=

{1}, there are problems in finding examples, for which these GF average values are non-
zero finite values. Therefore, these GF average values with M1(x) 6= {1} can be used to
consider truncated GF distributions on finite intervals [a, b] ⊂ R+.

Because of this, it seems that the most interesting for use in applications are the
non-truncated GF average values of the second type.

Let us give two examples of average values of the second type.

• Example 1. Using the operator kernels

Mx(x) = hα,λ(λ x) =
(λ x)α−1

Γ(α)
e−λ x, Kx(x) = λ h1−α,λ(λx) +

λ

Γ(1− α)
γ(1− α, λx), (191)

and the GF probability density function

fX(x) = λ {1} (192)

that describes the uniform GF distributions (for details see Section 4), the GF average
value of the second type has the form

〈Xn〉T2,(M) = ET2,(M)[X
n] = lim

x→∞
λ

ˆ x

0
un MX(u) du =
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λ−n

Γ(α)
lim

x→∞
γ(α + n, λ x) =

λ−nΓ(α + n)
Γ(α)

. (193)

• Example 2. Using the operator kernels

Mx(x) =
(λ x)α−β

Γ(α− β + 1)
+

(λ x)−β

Γ(1− β + 1)
, Kx(x) = λ (λ x)β−1 Eα,β[−(λ x)α], (194)

and the GF probability density function

fX(x) =
4λ2
√

π

ˆ x

0
(λ u)β+1 Eα,β[−(λ u)α] e−(λ u)2

du, (195)

the GF average value of the second type has the form

〈Xn〉T2,(M) = ET2,(M)[X
n] = lim

x→∞

4λ√
π

ˆ x

0
un e−(λ u)2

du =
4√
π

Γ
(

n + 3
2

)
. (196)

Remark 11. It should be noted that a generalization of the normalization condition and aver-
age value by using fractional integration of non-integer order was first proposed in [67–69] and
then it was used in papers [67–69] to describe complex physical systems in fractional statistical
mechanics [10,131–133]. These generalizations are proposed for the case of the power law nonlocal-
ity only.

The GF characteristic function of the real-valued random variable is defined by the GF
probability distribution.

Definition 18 (GF characteristic function). Let a pair (Mx(x), Kx(x)) belong to the Luchko set.
Let fX(x) ∈ C(M)

−1 (0, ∞) be a GF probability density, and the function

F(M)
X (x) = Ix

(Mx)
[u] fX(u) ∈ C(M)

CDF(0, ∞) (197)

is the GF cumulative distribution function.
Let the following conditions be satisfied

cos(t x)
(

Dx
(Mx)

[u] fX(u)
)
∈ C−1(0, ∞), (198)

sin(t x)
(

Dx
(Mx)

[u] fX(u)
)
∈ C−1(0, ∞), (199)

for all t ∈ R.
Then, the value

χX(t) := 〈exp{i t x}〉T2,(M) = ET2,(M)[e
i t x] =

lim
x→∞

ˆ x

0
cos(t u) dF(M)

X (u) + i lim
x→∞

ˆ x

0
sin(t u) dF(M)

X (u) (200)

is called the GF characteristic function of the second type for the random variable X.

Using the GF probability density function, Equation (200) can be defined by the
equation

χX(t) = lim
x→∞

ˆ x

0
cos(t u)

(
Dx
(Mx)

[u] fX(u)
)

du + i lim
x→∞

ˆ x

0
sin(t u)

(
Dx
(Mx)

[u] fX(u)
)

du. (201)

As a result, the GF characteristic Function (201) is the Fourier transform of the GF
derivative with the kernel Mx(x) of the GF probability density function.
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3. Relationship between Local and Nonlocal Quantities

This section will not consider the questions of constructing a nonlocal probability
theory. Here, an explanation of the nonlocality will be given.

The purpose of this section is to describe the relationship between nonlocal and local
concepts, but, first of all, to point out the differences between nonlocal theory and the
standard (local) theory.

In this section, the following relationships are described.

• A relationship between the functions

F(M)(x) =

ˆ x

0
Mx(x− u) f (u) du, (202)

and

F({1})(x) =

ˆ x

0
f (u) du, (203)

where f (x) ∈ C−1(0, ∞).
• A relationship between the functions

f (K)RL (x) =
d

dx

ˆ x

0
Kx(x− u) F(u) du, (204)

f (K)C (x) =

ˆ x

0
Kx(x− u)

dF(u)
du

du, (205)

where F(x) ∈ C1
−1(0, ∞) and F(0+) = 0.

• A relationship between functions (202) and f (x) ∈ C−1(0, ∞).
• A relationship between the functions

f (K)(x) =
d

dx

ˆ x

0
Kx(x− u) F(u) du, (206)

and

f (x) =
dF(x)

dx
, (207)

where F(x) ∈ C1
−1(0, ∞).

For convenience, the description begins with well-known mathematical facts and the-
orems.

3.1. Mean-Value Theorems for Integrals of the First Order

Let us describe the sets of functions, which are used in this section, and well-known
theorems, including the mean-value theorem. The following choice of sets of functions and
operator kernels is determined by the general fractional calculus, which will be used to
construct a nonlocal probability theory. Let functions f (x) and f (Kx)(x) belong to the set
C−1(0, ∞).

The set C−1(0, ∞) is the space of functions that are continuous on the positive real
semi-axis and can have an integrable singularity of a power function type at the point zero.
The condition f (x) ∈ C−1(0, ∞) means that f (x) ∈ C(0, ∞) and it can be represented as
f (x) = xa f1(x), where a ∈ (−1, ∞), f1(x) ∈ C[0, ∞). Note that there are the following
inclusions

C[0, ∞) ⊂ C−1(0, ∞) ⊂ C(0, ∞). (208)

The kernels of integral and integro-differential operators will be assumed to belong
to the subset C(−1,0)(0, ∞) of the set C−1(0, ∞). The condition g(x) ∈ C(−1,0)(0, ∞) means
that g(x) ∈ C(0, ∞) and it can be represented as g(x) = xa g1(x), where a ∈ (−1, 0) and
g1(x) ∈ C[0, ∞).
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In standard calculus, the Weierstrass extreme value theorem states that if a real-valued
function f (x) is continuous on the closed interval [a, b], then f (x) is bounded on that
interval. This means that there exist real numbers m1 and m2, such that

m1 ≤ f (x) ≤ m2 (209)

for all x ∈ [a.b] (see Theorem 3 in [134], p. 161). In addition, there is a point on the
interval at which the function takes its maximum value and a point where it assumes its
minimal value.

To describe connections of the nonlocal quantities with standard (local) quantities
one can use the first mean-value theorem for the integral (see Theorem 5 in [134], p. 352).
In [134], this name of the theorem is used for the somewhat more general proposition that
can be useful for the general fractional integral. Note that the kernels from the Luchko set
are nonnegative. The first mean-value theorem for the integral can be formulated in the
following form.

Theorem 10. (First mean-value theorem for integrals)
Let g(x), f (x) be integrable functions on [a, b] ⊂ (0, ∞),

m1 = inf
[a,b]

g(x), m2 = sup
[a,b]

g(x). (210)

If f (x) is nonnegative (or non-positive) on [a, b], then

ˆ b

a
g(x) f (x) dx = µ

ˆ b

a
f (x) dx, (211)

where µ ∈ [m1, m2]. If in addition, it is known that f (x) ∈ C[a, b], then there exists a point
ξ ∈ [a, b], such that ˆ b

a
g(x) f (x) dx = g(ξ)

ˆ b

a
f (x) dx. (212)

This theorem for the integral is proved in [134] (see Theorem 5 in [134], p. 352) for the
case R. The above statement of Theorem 10 is given for the positive semi-axis for use in
general fractional calculus.

The standard mean-value theorem can be considered as a corollary of Theorem 10 (see,
also Corollary 3 in [134], p. 352),

Corollary 3. Let g(x) be an integrable function on [a, b] ⊂ (0, ∞). If g(x) ∈ C[a, b], then there
exists a point ξ ∈ [a, b], such that

ˆ b

a
g(x) dx = g(ξ) (b − a). (213)

Proof. Let us consider the function f (x) = 1 for all x ∈ [0, ∞). One can see that this
function f (x) = 1 is a nonnegative function and f (x) ∈ C[a, b] for [a, b] ⊂ (0, ∞). Using
Theorem 10, Equation (212) with f (x) = 1 gives

ˆ b

a
g(x) dx = g(ξ)

ˆ b

a
dx = g(ξ) (b − a). (214)

This ends the proof.
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3.2. Expression of F(M)(x) in Terms of F(x)

Let a function f (x) belong to the set C−1(0, ∞), and a kernel Mx(x) belong to the
set C(−1,0)(0, ∞), such that Mx(x) ≥ 0 for all x > 0. Then, the following functions are
defined as

F(x) =

ˆ x

0
f (u) du, (215)

F(M)(x) =

ˆ x

0
Mx(x− u) f (u) du. (216)

Let us consider a relationship between function F(M)(x) and function F(x), which
are defined by Equations (216) and (215), respectively. Using the mean value theorems
and the additivity property of the first-order integral, one can write an equation relating
these functions.

Theorem 11 (Function F(M)(x) in terms of F({1})(x)). Let f (x) ∈ C−1(0, ∞) and Mx(x) ∈
C(−1,0)(0, ∞) be nonnegative functions for all x > 0.

Then, the function F(M)(x), which is defined by Equation (216), can be described as

F(M)(x) = lim
ε→0+

n

∑
k=0

Mx(x − ξk)
(

F(xk) − F(xk−1)
)

, (217)

where ξk ∈ [xk−1, xk] and 0 + ε = x0 < x1 < .. < xn = x− ε, and ε > 0, where F(x) is defined
by Equation (215).

If Mx(x) = 1 for all x ∈ R0,+, then Equation (217) gives

F({1})(x) = lim
ε→0+

(
F(x− ε) − F(0 + ε)

)
. (218)

Proof. Using the additivity property of the integral in Equation (216) of the function
F(M)(x), one can obtain

F(M)(x) =

ˆ x

0
Mx(x− u) f (u) du =

n

∑
k=0

ˆ xk

xk−1

Mx(x− u) f (u) du, (219)

where 0 + ε = x0 < x1 < .. < xn = x− ε.
Then, using Theorem 10 for g(x) = Mx(b − x) and the non-negativity of the GFI

kernel Mx(x) ≥ 0 for all x > 0, integrals (219) can be represented by the equations
ˆ xk

xk−1

Mx(x− u) f (u) du = Mx(x− ξk)

ˆ xk

xk−1

f (u) du, (220)

for all k = 0, 1, .., n, where ξk ∈ [xk−1, xk]. Using Equation (215), the integral in Equation (220)
can be written in the form

ˆ xk

xk−1

f (u) du =

ˆ xk

xk−1

dF(u) = F(xk) − F(xk−1). (221)

Substitution of Equation (221) into Equation (220), and then the resulting expression
into Equation (219) gives

ˆ x

0
Mx(x− u) f (u) du =

n

∑
k=0

Mx(x− ξk)
(

F(xk) − F(xk−1)
)

. (222)

Therefore, using the limit ε→ 0+ gives (217).
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If Mx(x) = 1 for all x ∈ R0,+, then Equation (222) gives
ˆ x

0
Mx(x− u) f (u) du = F(x− ε) − F(0 + ε). (223)

Therefore, Equation (223) gives (218).
This ends the proof.

Remark 12. Equation (217) allows to state that the function

P(M)([a, b]) = F(M)(b) − F(M)(a), (224)

where b > a ≥ 0, can be represented in the form

P(M)([a, b]) = lim
ε→0+

n

∑
k=0

(
Mx(b − ξk) (F(xk) − F(xk−1))−

Mx(a − ηk) (F(x′k) − F(x′k−1))
)

, (225)

if f (x) ∈ C(M)
−1 (0, ∞), where ξk ∈ [xk−1, xk] and 0 + ε = x0 < x1 < .. < xn = b − ε

ηk ∈ [x′k−1, x′k] and 0 + ε = x′0 < x′1 < .. < x′n = a− ε.
Equation (225) means that P(M)([a, b]) depends on the “trajectory” of changes in the function

F(x) in space, and not only on the initial and final points as in the standard (local) case

P({1})([a, b]) = F(b) − F(a), (226)

in which Mx(x) = 1 for all x > 0.

3.3. Expression of f (Kx)(x) in Terms of F(x)

Let a function F(x) belong to the set C1
−1(0, ∞), and a kernel Kx(x) belong to the set

C(−1,0)(0, ∞), such that Kx(x) ≥ 0 for all x > 0. Then, the following functions can be
defined.

f (x) =
d

dx
F(x), (227)

and

f (Kx)
C (x) =

ˆ x

0
du Kx(x− u)

dF(u)
du

, (228)

f (Kx)
RL (x) =

d
dx

ˆ x

0
du Kx(x− u) F(u). (229)

Equations (228) and (229) can be represented as a sum that is described by the follow-
ing Theorem.

Theorem 12. (Function f (Kx)(x) in terms of F(x))
Let F(x) ∈ C1

−1(0, ∞), F(0+) = 0, and Kx(x) ∈ C(−1,0)(0, ∞) be nonnegative functions
for all x > 0.

Then, functions (228) and (229) can be represented in the form

f (Kx)(x) = lim
ε→0+

n

∑
k=0

Kx(x− ηk)
(

F(xk) − F(xk−1)
)

, (230)

where 0 + ε = x0 < x1 < · · · < xn = x− ε, and ηk ∈ [xk−1, xk].
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Proof. Let us consider the function

f (Kx)(x) =
d

dx

ˆ x

0
Kx(x− u) F(u) du, (231)

where F(u) ∈ C−1(0, ∞). Then, one can use the equality

d
dx

ˆ x

0
Kx(x− u) F(u) du =

ˆ x

0
Kx(x− u) F(1)(u) du + Kx(x) F(0+), (232)

that holds if F(x) ∈ C1
−1(0, ∞) and Kx(x) ∈ C1

(−1,0)(0, ∞) [87], where F(1)(x) = dF(x)/dx.

If F(1)(x) ∈ C−1(0, ∞), the additivity property of the integral in Equation (232) can be
used to obtain

ˆ x

0
Kx(x− u) F(1)(u) du = lim

ε→0

n

∑
k=0

ˆ xk

xk−1

Kx(x− u) F(1)(u) du, (233)

where 0 + ε = x0 < x1 < · · · < xn = x− ε. Then, using Theorem 10 and the non-negativity
of the kernel Kx(x), integral (233) is represented by the equation

ˆ xk

xk−1

Kx(x− u) F(1)(u) du = Kx(x− ηk)

ˆ xk

xk−1

F(1)(u) du, (234)

where ηk ∈ [xk−1, xk]. Using Equation (227), the integral in Equation (234) can be written in
the form ˆ xk

xk−1

F(1)(u) du =

ˆ xk

xk−1

dF(u) = F(xk) − F(xk−1). (235)

Substituting of Equation (235) into Equation (234), and then the resulting expression
into Equation (233) gives

f (Kx)(x) =
d

dx

ˆ x

0
Kx(x− u) F(u) du =

lim
ε→0

n

∑
k=0

Kx(x− ηk)
(

F(xk) − F(xk−1)
)
+ Kx(x) F(0+). (236)

Using that F(0+) = 0, one can obtain (230).
This ends the proof.

Remark 13. In the general case, one can use the F(M)(x) instead of F(x) in Equation (230) of
Theorem 12.

3.4. Expression of F(M)(x) through f (x)

Using the mean value theorems and the additivity property of the first-order integral,
in addition to Theorem 11, one can prove an equation relating the functions F(M)(x)
through f (x).

Theorem 13 (Expression of F(M)(x) through f (x)). Let f (x) ∈ C−1(0, ∞) and Mx(x) ∈
C(−1,0)(0, ∞) be nonnegative functions for all x > 0.

Then, the function F(M)(x), which is defined by Equation (216), is described by the equation

F(M)(x) = lim
ε→0+

n

∑
k=0

Mx(x − ξk) f (ξk)∆xk, (237)

where
∆xk = xk − xk−1 (238)



Mathematics 2022, 10, 3848 36 of 82

and ξk ∈ [xk−1, xk] with 0 + ε = x0 < x1 < .. < xn = x− ε.
If f (K)(x) ∈ C−1(0, ∞), then the function

F(M)(x) =

ˆ x

0
Mx(x− u) f (K)(u) du (239)

can also be described by Equation (237) in the form

F(M)(x) = lim
ε→0+

n

∑
k=0

Mx(x − ξk) f (Kx)(ξk)∆xk. (240)

Proof. Using the additivity property of the first-order integral, Equation (216) can be
represented in the form

F(M)(x) = lim
ε→0+

n

∑
k=0

ˆ xk

xk−1

Mx(x− u) f (u) du, (241)

where 0 + ε = x0 < x1 < .. < xn = x− ε.
Then, using Corollary 3 for the function

g(u) = Mx(x− u) f (u) (242)

with a = xk−1 and b = xk, one can obtain
ˆ xk

xk−1

Mx(x− u) f (u) du = Mx(x− ξk) f (ξk)

ˆ xk

xk−1

du = Mx(x− ξk) f (ξk)∆xk, (243)

where ξk ∈ [xk−1, xk] and ∆xk = xk − xk−1.
Substitution of (243) into Equation (241) gives Equation (240).
This ends the proof.

3.5. Expression of Function f (Kx)(x) Via F(X)

Let us consider the relationship between the functions

f (K)(x) =
d

dx

ˆ x

0
Kx(x− u) F(u) du, (244)

and

f (x) =
dF(x)

dx
, (245)

where F(x) ∈ C1
−1(0, ∞).

Theorem 14. (Expression of function f (Kx)(x) via f (x))
Let F(x) ∈ C1

−1(0, ∞), F(0+) = 0, and Kx(x) ∈ C(−1,0)(0, ∞) be nonnegative functions
on R0,+.

Then, the function f (Kx)(x), which is defined by Equation (244), is described by the equation

f (Kx)(x) = lim
ε→0+

n

∑
k=0

Kx(x− ξk) f (ξk)∆xk, (246)

0 + ε = x0 < x1 < · · · < xn = x− ε, and ξk ∈ [xk−1, xk].
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Proof. Using Equations (245) and (232), the conditions F(x) ∈ C1
−1(0, ∞), F(0+) = 0,

and the function Equation (231) gives

f (Kx)(x) =
d

dx

ˆ x

0
Kx(x− u) F(u) du =

ˆ x

0
du Kx(x− u)

dF(u)
du

+ Kx(x) F(0+) =

ˆ x

0
Kx(x− u) f (u) du + Kx(x) F(0+) =

ˆ x

0
Kx(x− u) f (u) du. (247)

As a result, it is proved the equation

f (Kx)(x) =

ˆ x

0
Kx(x− u) f (u) du, (248)

where f (x) is defined by Equation (245).
Then, the additivity property of the integral in Equation (248) can be used to obtain

ˆ x

0
Kx(x− u) f (u) du = lim

ε→0+

n

∑
k=0

ˆ xk

xk−1

Kx(x− u) f (u) du, (249)

where 0 + ε = x0 < x1 < · · · < xn = x− ε.
Then, the mean value theorem is used to obtain

f (Kx)(x) = lim
ε→0+

n

∑
k=0

ˆ xk

xk−1

Kx(x− u) f (u) du = lim
ε→0+

n

∑
k=0

Kx(x− ξk) f (ξk)∆xk, (250)

where ξk ∈ [xk−1, xk].
This ends the proof.

4. Uniform and Degenerate GF Distributions
4.1. Uniform GF Distributions

Let us consider the function

fX(x) = c = const (251)

for x ≥ 0, and fX(x) = 0 for x < 0, i.e., fX(x) = x {1}, where 0 < c < ∞.
In the standard probability theory, Function (251) cannot be considered a probability

density function, since the normalization condition is violated

lim
x→∞

ˆ x

0
fX(u) du = lim

x→∞
c x = +∞. (252)

In the NPT, Function (251) can be used. Using the definition of the GF cumulative
distribution function F(M)

X (x) for Function (251), one can obtain

F(M)
X (x) = Ix

(Mx)
[u] fX(u) =

ˆ x

0
Mx(x − u) fX(u) du =

c
ˆ x

0
Mx(x − u) 1 du = c

ˆ x

0
Mx(w) dw.

As a result, if the kernel Mx(x) of the GFI satisfies the conditions

lim
x→0

ˆ x

0
Mx(u) du = 0. (253)
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lim
x→∞

ˆ x

0
Mx(u) du =

1
c

, (254)

then Function (251) describes a GF analog of uniform distribution.

Definition 19 (Uniform GF distribution). Let pair of kernels (Mx(x), Kx(x)) belong to the
Luchko set. If the kernel Mx(x) of the GFI belongs to the set C({1})

−1 (0, ∞), then the function

fX(x) = c {1} (255)

belongs to the set C(M)
−1 (0, ∞), i.e., it is the GF probability density function, where c ∈ R+.

Then, such functions are called the GF probability density functions of uniform GF distribu-
tions.

It can be seen that the conditions on the kernel of the GFI actually mean that this
kernel must describe the standard probability density function on the positive semi-axis up
to a constant. Obviously, not all operator kernels satisfy these properties.

4.2. Uniform GF Distribution for Gamma Type of Nonlocality

As an example of a GFI kernel, one can consider the kernel of the GFI in the following
pair (137) of the Luchko set in the form

Mx(x) = hα,λ(λ x) =
(λx)α−1

Γ(α)
e−λ x, (256)

where 0 < α < 1 and λ > 0.
The standard PDF for the gamma distribution is described by the function

λ hα,λ(λ x) = λ
(λx)α−1

Γ(α)
e−λ x. (257)

Therefore, the normalization condition of the uniform GF distribution

c
ˆ ∞

0
Mx(x) dx =

c
λ

ˆ ∞

0

λαxα−1

Γ(α)
e−λ x dx =

c
λ

(258)

gives c = λ. As a result, if nonlocality is described by the kernel pair (137), then the uniform
GF distribution is described by the functions

fX(x) = λ {1}, (259)

where λ > 0.
The GF cumulative distribution function F(M)

X (x) for the GF probability density (259)
has the form

F(M)
X (x) = Ix

(Mx)
[u] fX(u) =

1
Γ(α)

γ(α, λ x), (260)

where γ(β, x) is the incomplete gamma function (see Section 9 in [127], pp. 134–142).
As a result, one can give the following definition.

Definition 20 (Uniform GF distribution for Gamma distribution of the nonlocality). Nonlo-
cality is described by the kernel pair of the Luchko set

Mx(x) = hα,λ(λ x) =
(λ x)α−1

Γ(α)
e−λ x, (261)

Kx(x) = λ h1−α,λ(λ x) +
λ

Γ(1− α)
γ(1− α, λ x), (262)
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where γ(β, x) is the incomplete gamma function.
The GF probability density function

fX(x) = λ {1}. (263)

The GF cumulative distribution function

F(M)
X (x) =

1
Γ(α)

γ(α, λ x). (264)

The parameter values
α ∈ (0, 1), λ > 0. (265)

4.3. Uniform GF Distribution for Alpha-Exponential Nonlocality

Let us consider the GFI and GFD kernel pair (138) that belongs to the Luchko set. The
GFI kernel is

Mx(x) = (λ x)β−1 Eα,β[− (λ x)α], (266)

where 0 < α ≤ β < 1,
The GF probability density function is considered in form (251), i.e., fX(x) = c for all

x > 0. The GF normalization condition

lim
x→∞

ˆ x

0
Mx(x− u) fX(u) du = lim

x→∞

ˆ x

0
Mx(u) fX(x− u) du = 1 (267)

has the form

lim
x→∞

ˆ x
c λβ−1 uβ−1 Eα,β[− (λ u)α] du = 1. (268)

Using Equation (4.4.4) of [128], p. 61, in the form
ˆ x

0
uβ−1 Eα,β[− (λ u)α] du = xβ Eα,β+1[− (λ x)α], (269)

and GF normalization condition (268) takes the form

lim
x→∞

c λβ−1 xβ Eα,β+1[− (λ x)α] = 1. (270)

Note that the GF normalization condition (268) can be represented in the form

lim
x→∞

F(M)
X (x) = 1, (271)

where F(M)
X (x) is the GF cumulative distribution function

F(M)
X (x) = λ λβ−1 xβ Eα,β+1[− (λ x)α]. (272)

Using Theorem 4.3 of [128], p. 64, the asymptotic equation for the function Eα,β+1[− z]
has the form

Eα,β+1[− z] =
1

Γ(β − α + 1)
1
z
+ O(|z|−2) (|z| → ∞), (273)

which holds for 0 < α < 1. Therefore,

c λβ−1 xβ Eα,β+1[− (λ x)α] = xβ
( c λβ−1

Γ(β − α + 1)
1

(λ xα
+ O(|x|−2α)

)
=

=
c λβ−1−α

Γ(β − α + 1)
xβ−α + O(|x|β−2α) (x → ∞) (274)
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Then, GF normalization condition (270) takes the form

lim
x→∞

( c λβ−1−α

Γ(β − α + 1)
xβ−α + O(|x|β−2α)

)
= 1. (275)

As a result, the GF normalization condition holds, if

β − α = 0, 0 < α < 1, c = λα−β+1 Γ(β − α + 1) = λ. (276)

In this case, the kernel of GFI has the form

Mx(x) = (λ x)α−1 Eα,α[− (λ x)α], (277)

where α ∈ (0, 1).
The GF probability density function is fX(x) = λ for x > 0. Function (277) is also

called the alpha-exponential function [4], pp. 50–53. Note that the pair of kernels (138)
belongs to the Luchko set, if α = β ∈ (0, 1).

The GF cumulative distribution function is defined by Equation (272) with α = β ∈
(0, 1).

As a result, one can give the following definition.

Definition 21 (Uniform GF distribution for alpha-exponential nonlocality). Nonlocality is
described by the kernel pair of the Luchko set

Mx(x) = (λ x)β−1 Eα,β[− (λ x)α] (278)

Kx(x) =
λ (λ x)α−β

Γ(1 + α− β)
+

λ (λ x)−β

Γ(1− β)
, (279)

where 0 < α ≤ β < 1,
The GF probability density function

fX(x) = λ {1}. (280)

The GF cumulative distribution function

F(M)
X (x) = λ λα−1 xα Eα,α+1[− (λ x)α]. (281)

The parameter values
0 < α = β < 1. (282)

4.4. Degenerate GF Distribution (GF Delta Distribution)

The Heaviside step function (or the unit step function) is a piecewise function that can
be defined as

h(x) =

{
1 x > 0,
0 x ≤ 0.

(283)

The Dirac delta function can be interpreted as the derivative of the Heaviside function

δ(x) =
dh(x)

dx
. (284)

Therefore the Heaviside function can be considered the integral of the Dirac delta
function in the form

h(x) =

ˆ x

−∞
δ(u) du. (285)

At point x = 0, expression (285) can make sense only for some forms of defining the
integration of the delta function.
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By virtue of what has been said, the expressions (284) and (285) sometimes are in-
terpreted as the generalized probability density function and the cumulative distribution
function. In this interpretation, the Heaviside function is the cumulative distribution
function of a constant random variable, which is almost everywhere, and is zero.

As for the standard (local) case of a real-valued random variable, the degenerate
distribution is a one-point distribution, localized at a point x0 ∈ (−∞,+∞), [113], p. 83.
The cumulative distribution function of this distribution is described by the Heaviside step
function

FX(x) = h(x− x0) =

{
1 x ≥ x0,
0 x < x0.

(286)

Let us note that functions Mx(x) and Kx(x), which belong to the Luchko set, satisfy
the Sonin condition (1), which can be written as

(Mx ∗ Kx)(x) :=
ˆ x

0
Mx(x− u)Kx(u) du = h(x) =

{
1 x > 0,
0 x ≤ 0.

(287)

In the Luchko papers, the function h(x) is denoted as {1}. Using the Sonin condition
(287), it is easy to prove the following proposition.

Theorem 15. (Property of degenerate GF distribution)
Let a kernel pair (Mx(x), Kx(x)) belong to the Luchko set.
Then for each pair of kernels that belongs to the Luchko set, there is one GF probability density

function that is defined by equation

fX(x) =

{
Kx(x) x > 0,
0 x ≤ 0.

(288)

Function (288) satisfies the following conditions.

(1) fX(x) is a GF continuous function on the positive semi-axis (0, ∞), such that fX(x) ∈
C−1(0, ∞).

(2) fX(x) is a non-negative function ( fX(x) ≥ 0) for all x > 0.
(3) The function fX(x) satisfies the GF normalization condition

lim
x→∞

Ix
(Mx)

[u] fX(u) = 1. (289)

The GF cumulative distribution function has the form

F(M)
X (x) =

{
1 x > 0,
0 x = 0.

(290)

Note that if a kernel pair (Mx(x), Kx(x)) belongs to the Luchko set, then the kernel
pair (Mx,new(x) = λ−1Kx(x), Kx,new(x) = λMx(x)) belongs to the Luchko set. For this
kernel pair, the GF probability density function is defined by equation

fX(x) =

{
λ Mx(x) x > 0,
0 x ≤ 0.

(291)

The GF cumulative distribution function has the form

F(M)
X (x) =

{
1 x > 0,
0 x = 0.

(292)
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Function (288) can be interpreted as a GF probability density function and (290) can
be interpreted as a GF cumulative distribution function of a degenerate GF distribution on
the semi-axis [0, ∞).

As a result, one can give the following definition.

Definition 22 (Degenerate GF distribution for M(x) nonlocality). Nonlocality is described by
the kernel pair of the Luchko set

Mx(x), Kx(x) any kernel pair that belongs to the Luchko set. (293)

The GF probability density function

fX(x) = Kx(x), (x > 0). (294)

The GF cumulative distribution function

F(M)
X (x) = 1 (x > 0) and F(M)

X (0) = 0. (295)

The parameter values are defined by the condition that the kernel pair belongs to the Luchko set.

5. Special Functions in General Fractional Distributions
5.1. GF Distributions with Mittag-Leffler and Power Law Functions

Consider the following two examples of GF distributions, in which the probability
distribution function fX(x) and the kernel Mx(x) of the GF integral operator actually
change places. In these cases, conditions on the parameters will be searched, under which
the functions fX(x) satisfy the conditions imposed on the GF probability density.

(1) The first example is described by the GFI and GFD kernels

Mx(x) =
(λ x)µ−1

Γ(µ)
(296)

Kx(x) =
λ(λx)−µ

Γ(1− µ)
, (297)

where µ ∈ (0, 1) in order to Mx(x), Kx(x) ∈ C(−1,0)(0, ∞), and the GF probability
density

fX(x) = λ (λ x)β−1 Eα,β[− (λ x)α], (298)

where α > 0, and β ∈ R. In order for a Function (298) to belong to a set C−1(0, ∞),
the condition β > 0 must be satisfied.

(2) The second example is described by the GFI and GFD kernels (139) in the form

Mx(x) = (λ x)β−1 Eα,β[− (λ x)α] (299)

Kx(x) =
λ (λ x)α−β

Γ(1 + α− β)
+

λ (λ x)−β

Γ(1− β)
, (300)

where 0 < α ≤ β < 1, and the GF probability density

fX(x) = λ
(λ x)µ−1

Γ(µ)
. (301)

In order for Function (301) to belong to the set C−1(0, ∞), the condition µ > 0 must
be satisfied.
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The GF cumulative distribution function F(M)
X (x), which is defined as

F(M)
X (x) = Ix

(Mx)
[u] fX(u) =

ˆ x

0
Mx(x − u) fX(u) du, (302)

is described by the expression

F(M)
X (x) =

ˆ x

0

λµ+β−1

Γ(µ)
(x − u)µ−1 uβ−1 Eα,β[− (λ u)α] du. (303)

Note that the commutativity of the Laplace convolution
ˆ x

0
Mx(x − u) fX(u) du =

ˆ x

0
Mx(u) fX(x − u) du (304)

allows us to state that Equation (303) describes the GF cumulative distribution function for
both of these examples, if the parameters satisfy the conditions under which the functions
(298) and (301) belong to the set C(M)

−1 (0, ∞).
Then, using Equation (4.4.5) of [128], p. 61, in the form

1
Γ(µ)

ˆ x

0
(x− u)µ−1 uβ−1 Eα,β[− η uα] du = xβ−1+µ Eα,β+µ[− η xα], (305)

where µ > 0, β > 0, Equation (303) takes the form

F(M)
X (x) = (λ x)β−1+µ Eα,β+µ[− (λ x)α], (306)

where it is assumed that the parameters satisfy the conditions

µ > 0, α > 0, β > 0. (307)

Let us find the constraints on the parameters α, β, µ under which conditions

lim
x→0+

F(M)
X (x) = 0, (308)

lim
x→∞

F(M)
X (x) = 1 (309)

are satisfied for Function (306).
Using the definition of the two-parameter Mittag-Leffler function by Equation (4.1.1)

of [128], p. 56, in the form

Eα,β[z] =
∞

∑
k=0

zk

Γ(α k + β)
=

1
Γ(β)

+
∞

∑
k=1

zk

Γ(α k + β)
, (310)

where α > 0 and β ∈ R, one can see that

lim
x→0+

F(M)
X (x) = lim

x→0+
(λ x)β−1+µ 1

Γ(β)
+ lim

x→0+

∞

∑
k=1

(−1)k (λ x)kα+β−1+µ

Γ(α k + β)
. (311)

Therefore, property (308) is satisfied, if the inequality

β − 1 + µ > 0 (312)

holds.
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To prove property (309), one can use Theorem 4.3 of [128], p. 64, which gives the
asymptotic equation

Eα,β[− z] = −
m

∑
k=1

1
Γ(β− k α)

1
(−z)k + O(|z|−m−1) (|z| → ∞) (313)

that holds for 0 < α < 1.
Using (313), Function (306) satisfies the following asymptotic equation

F(M)
X (x) = (λ x)β−1+µ Eα,β+µ[− (λ x)α] =

1
Γ(β + µ − α)

(λ x)β−1+µ

(λ x)α
+ O(xβ−1+µ−2α) =

1
Γ(β + µ − α)

(λ x)β−1+µ−α + O(xβ−1+µ−2α) (314)

for x → ∞.
As a result, property (309) holds, if the following equality is satisfied

β − 1 + µ − α = 0. (315)

Using condition (315), Equation (314) takes the form

F(M)
X (x) =

1
Γ(1)

(λ x)0 + O(xβ−1+µ−2α) = 1 + O(xβ−1+µ−2α) (316)

for x → ∞, where β − 1 + µ − 2α = −α < 0. Therefore, property (309) is satisfied,
and F(M)

X (x) → 1 at x → ∞.

For case (315), inequality (312), which is used for F(M)
X (0+) = 0, is satisfied, since

β − 1 + µ = α > 0. (317)

In the first example, the conditions on the parameters have the form

0 < µ < 1, 0 < α < 1, 0 < β < 2, (318)

such that
β − 1 + µ − α = 0. (319)

Note that, for GF probability density (298), one can use not only the values α, β ∈ (0, 1),
and α < β, but also all values α ∈ (0, 1) and β > 0, such that

β − α ∈ (0, 1), (320)

since µ ∈ (0, 1).
Condition (320) allows us to consider a wider class of probability distributions with

0 < β < 2. For example, µ = 0.1, α = 0.9, β = 1.8. Note that the GF probability density
(298) cannot be considered for the case β = α. Function (298) with β = α describes the
standard probability density.

In the second example, the conditions on the parameters have the form

0 < α ≤ β < 1, 0 < α ≤ µ ≤ 1, (321)

such that
β − 1 + µ − α = 0. (322)
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Note that for the power law GF probability density (301) one can use β = α and µ = 1.
For µ = 1, the GF probability density (301) describes the uniform GF distribution.

It should be emphasized that GF probability density functions are not standard proba-
bility density functions, in general. For example, Function (298) is a standard PFD only for
β = α. Note that Function (301) cannot be considered a standard PFD on the positive semi-
axis.

As a result, one can give the following definitions.

Definition 23 (GF distribution of the Mittag-Leffler type for power law nonlocality). Non-
locality is described by the kernel pair of the Luchko set

Mx(x) =
(λ x)µ−1

Γ(µ)
(323)

Kx(x) =
λ(λx)−µ

Γ(1− µ)
, (324)

where 0 < µ 1.
The GF probability density function

fX(x) = λ (λ x)β−1 Eα,β[− (λ x)α], (325)

where α > 0, and β ∈ R.
The GF cumulative distribution function

F(M)
X (x) = (λ x)β−1+µ Eα,β+µ[− (λ x)α]. (326)

The parameter values

0 < µ < 1, 0 < α < 1, 0 < β < 2, (327)

such that
β − 1 + µ − α = 0. (328)

Definition 24 (The GF power law distribution for nonlocality of the Mittag-Leffler type).
Nonlocality is described by the kernel pair of the Luchko set

Mx(x) = (λ x)β−1 Eα,β[− (λ x)α] (329)

Kx(x) =
λ (λ x)α−β

Γ(1 + α− β)
+

λ (λ x)−β

Γ(1− β)
, (330)

where 0 < α ≤ β < 1.
The GF probability density function

fX(x) = λ
(λ x)µ−1

Γ(µ)
, (331)

where µ > 0.
The GF cumulative distribution function

F(M)
X (x) = (λ x)β−1+µ Eα,β+µ[− (λ x)α]. (332)

The parameter values

0 < α ≤ β < 1, 0 < α ≤ µ ≤ 1, (333)



Mathematics 2022, 10, 3848 46 of 82

such that
β − 1 + µ − α = 0. (334)

5.2. GF Distributions with Prabhakar Function

Let us consider the power law nonlocality that is described by the kernel pair (136)
that belongs to the Luchko set, where GFI kernel is

Mx(x) = hµ(λ x) =
(λ x)µ−1

Γ(µ)
(335)

with µ ∈ (0, 1).
Let us consider the function

f (x) = Cx xβ−1 Eγ
α,β[−η xα], (336)

where µ > 0, α > 0, β > 0, η > 0 (η 6= λ) and Eγ
α,β[z] is the Prabhakar function [135] that is

also called the three-parametric Mittag-Leffler function (see Section 5.1 in [129], p. 115-128).
The Prabhakar function is defined as

Eγ
α,β[z] =

∞

∑
n=0

(γ)n

n! Γ(α n + β)
zn, (337)

where α > 0, β > 0, γ > 0, and (γ)n is the Pochhammer symbol that is defined for any
non-negative integer n as

(γ)n =
Γ(γ + n)

Γ(γ)
. (338)

The Prabhakar function with γ = 1 is the two-parametric Mittag-Leffler function,
and the Prabhakar function with β = γ = 1 is the classical Mittag-Leffler function

Eγ
α,β[z] = Eα,β[z], Eγ

α,1[z] = Eα[z]. (339)

In order for Function (336) to be a GF probability density on R+, the GF normalization
condition should be satisfied. The GF normalization condition for Function (336) has the
form

lim
x→∞

Ix
(Mx)

[u] f (u) = 1, (340)

where the kernel Mx(x) is defined by (335).
In addition to this normalization condition, it is important to check the property

lim
x→0+

Ix
(Mx)

[u] f (u) = 0. (341)

The restrictions on the parameters α, β, γ, and Cx should be derived from conditions
(340) and (341).

The GF integral Ix
(Mx)

with kernel (335) is expressed through the Riemann–Liouville
fractional integral

Ix
(hµ)

[u] f (u) = λµ−1 (Iµ
0+ f )(x), (342)

where 0 < µ < 1.
In fractional calculus [1,4], the Riemann–Liouville fractional integral is defined for all

µ > 0.
Let us define a function F(x) that is the GF integral (342) of Function (336) in the form

F(x) = λµ−1 Ix
(hµ)

[u] f (u) = λµ−1
ˆ x

0

(x− u)µ−1

Γ(µ)
f (u) du. (343)
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Using Equation (5.1.47) of Theorem 5.5 in [129], p. 125, in the form

ˆ x

0

(x− u)µ−1

Γ(µ)
uβ−1 Eγ

α,β[−η uα] du = xβ+µ−1 Eγ
α,β+µ[−η xα], (344)

where µ > 0, α > 0, β > 0, η ∈ R, Function (343) takes the form

F(x) = Cx λµ−1 xβ+µ−1 Eγ
α,β+µ[−η xα]. (345)

Using Equation (337), one can see

F(x) ∼ Cx

Γ(β)
λµ−1 xβ+µ−1 (x → 0+). (346)

Therefore, condition (341) holds, if

β + µ − 1 > 0. (347)

An asymptotic expansion can be considered for real positive parameters [136,137].
Using Equation (5.1.31) of Theorem 5.4 in [129], p. 121, (see also [138,139]) for 0 < α < 2,
the following asymptotic expansion holds

Eγ
α,β[−x] ∼ h(x) ∼ x−γ

Γ(β− αγ)
, (348)

where h(x) is defined (see Equation (5.1.25) in [129], p. 119) in the form

h(x) ∼ x−γ

Γ(γ)

∞

∑
k=0

(−1)k Γ(γ + k)
Γ(β− α(γ + k))

x−k. (349)

Then, one can obtain

F(x) ∼ Cx

Γ(β + µ− α γ)
λµ−1 xβ+µ−1 (η xα)−γ =

Cxλµ−1

ηγΓ(β + µ− α γ)
xβ+µ−1−α γ x → ∞. (350)

The GF normalization condition (340) is satisfied, if

β + µ − 1 − α γ = 0. (351)

Cx = λ1−µ ηγ Γ(β + µ− α γ) = λ1−µ ηγ. (352)

Note that Function (336) is completely monotonic [140] (see also [129], p. 124), for the
following values of the parameters

0 < α ≤ 1, 0 < α γ ≤ β ≤ 1, η > 0. (353)

Therefore, Function (345) is completely monotonic for the case

0 < α ≤ 1, 0 < α γ ≤ β + µ ≤ 1, η > 0. (354)

The complete monotonicity of a function F(x) means that F(x) is continuous on (0, ∞),
infinitely differentiable on (0, ∞), and the condition (−1)ndnF(x)/dxn ≥ 0 is satisfied for
all n ∈ N and all x > 0. Because of this, for a completely monotonic function, there is
a first-order derivative (d/dz)Eγ

α,β+µ[−η z]. The first derivative of the function F(x) has
the form
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d
dx

F(x) = λµ−1 (β + µ− 1)xβ+µ−2 Eγ
α,β+µ[−η xα] + λµ−1 xβ+µ+α−2 α

(
dEγ

α,β+µ[−η z]

dz

)
z=xα

=

λµ−1 xβ+µ+α−2

(
(β + µ− 1) Eγ

α,β+µ[−η xα] + α

(
dEγ

α,β+µ[−η z]

dz

)
z=xα

)
. (355)

Then, Function (345) belongs to the set C1
−1(0, ∞), and, therefore, fX(x) belongs to the

set C−1,(K)(0, ∞), if the parameters satisfy the conditions

β + µ − 1 > 0, β + µ + α − 1 > 0. (356)

For the function fX(x) that belongs to the set C−1,(K)(0, ∞) one can use the Luchko
theorem. Then, the function fX(x) that belongs to the set C−1,(K)(0, ∞) has the properties

Ix
(Mx)

[u] f (u) ∈ C1
−1(0, ∞) and lim

x→0+
Ix
(Mx)

[u] f (u) = 0. (357)

Therefore, the following theorem is proved.

Theorem 16 (GF distribution of Prabhakar type). Let a kernel pair Mx(x), Kx(x) belong to the
Luchko set and a function fX(x) be defined by Equation (336) with the Prabhakar Function (337).

If the kernel pair Mx(x), Kx(x) is described by equation (136), then Function (336) describes
the GF cumulative distribution function for β + µ − 1 − α γ = 0, Cx = λ1−µ ηγ.

As a result, one can give the following definition.

Definition 25 (The GF distribution of Prabhakar type for power law nonlocality). Nonlocal-
ity is described by the kernel pair of the Luchko set

Mx(x) = hµ(λ x) =
(λ x)µ−1

Γ(µ)
, (358)

Kx(x) = λ h1−µ(λ x) =
λ(λ x)−µ

Γ(1− µ)
, (359)

where µ ∈ (0, 1).
The GF probability density function

fX(x) = λ1−µ ηγ xβ−1 Eγ
α,β[−η xα], (360)

where µ > 0, α > 0, β > 0, η > 0.
The GF cumulative distribution function

F(M)
X (x) = ηγ xα γ Eγ

α,α γ+1[−η xα]. (361)

The parameter values

α ∈ (0, 1), β + µ − 1 − α γ = 0. (362)

5.3. GF Distributions with Kilbas–Saigo Function

Let us consider the power law nonlocality that is described by the kernel pair (136)
that belongs to the Luchko set, where the GFI kernel is

Mx(x) = hα(λ x) =
(λ x)α−1

Γ(α)
(363)
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with α ∈ (0, 1).
Let us consider the function

f (x) = Cx xα c Eα,b,c[− η xα b], (364)

where function Eα,b,c[z] is called the Kilbas–Saigo function [129]. It is a generalization of
the classical Mittag-Leffler function that is proposed by Kilbas and Saigo [141], (see also [4],
p. 48, and Section 5.2 in [129], pp. 128–147) that is defined by the series

Eα,b,c[z] =
∞

∑
k=0

ak(α, b, c) zk, (365)

with

a0(α, b, c) = 1, ak(α, b, c) =
k−1

∏
j=0

Γ(1 + α(jb + c))
Γ(1 + α(jb + c + 1))

(k ∈ N), (366)

where α > 0, b > 0, c ∈ R such that α(k b + c) 6= −1,−2, ...
The Kilbas–Saigo function with b = 1 gives (see Equation (5.2.5) in [129], p. 129) the

two-parametric Mittag-Leffler function

Eα,1,c[z] = Γ(α c + 1) Eα,α c+ 1[z], (367)

and
Eα,1,0[x] = Eα[x]. (368)

In order for Function (364) to be a GF probability density on R+ the GF normalization
condition should be satisfied. The GF normalization condition for the GF probability
density Function (364) has the form

lim
x→∞

Ix
(Mx)

[u] f (u) = 1, (369)

where the kernel Mx(x) is defined by (363).
In addition to this normalization condition, it is important to check the property

lim
x→0+

Ix
(Mx)

[u] f (u) = 0. (370)

The restrictions on the parameters α, b, c, and Cx should be derived from conditions
(369) and (370).

The GF integral Ix
(Mx)

with kernel (363) is expressed through the Riemann–Liouville
fractional integral

Ix
(hα)

[u] f (x) = λα−1 (Iα
0+ f )(x), (371)

where 0 < α < 1.
In fractional calculus [1,4], the Riemann–Liouville fractional integral is defined for all

α > 0.
In order to prove that the function f (x) belongs to the set C−1,(K)(0, ∞) one can use

the Luchko theorem. According to this theorem, if a function f (x) satisfies the conditions

Ix
(Mx)

[u] f (u) ∈ C1
−1(0, ∞) and lim

x→0+
Ix
(Mx)

[u] f (u) = 0, (372)

then the function fX(x) belongs to the set C−1,(K)(0, ∞).

Theorem 17 (GF distributions of the Kilbas–Saigo type). Let a kernel pair Mx(x), Kx(x)
belong to the Luchko set and a function fX(x) be defined by Equation (364) with the Kilbas–Saigo
Function (365).
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If the kernel pair Mx(x), Kx(x) is described by Equation (136), then Function (364) describes
the GF probability distribution for c = b − 1, Cx = η λ1−α.

The GF probability density function has the form

fX(x) = η λ1−α xα (b−1) Eα,b,b−1[− η xα b], (373)

where
α ∈ (0, 1], b > 0. (374)

The GF cumulative distribution function has the form

F(M)
X (x) = 1 − Eα,b,b−1[− η xα b], (375)

Proof. An explicit expression for the GF cumulative distribution function can be derived
by using Equation (5.2.48) of Theorem 5.32 in [129], p. 141, in the form

ˆ x

0

(x− u)α−1

Γ(α)
uα c Eα,b,c[η xα b] du =

1
η

uα(c−b+1)
(

Eα,b,c[η xα b] − 1
)

(376)

for α > 0, b > 0, c > −1/α and η 6= 0.
Let us define the function

F(M)
X (x) = Ix

(hα)
[u] f (u) = λα−1 (Iα

0+ f )(x) = λα−1
ˆ x

0

(x− u)α−1

Γ(α)
uα c Eα,b,c[η xα b] du. (377)

Then, using Equation (376), the function F(M)
X (x) has the form

F(M)
X (x) =

Cx λα−1

η
xα(c−b+1)

(
1 − Eα,b,c[− η xα b]

)
. (378)

Using Equation (378), condition (369) can be written as

lim
x→∞

F(M)
X (x) =

Cxλα−1

η
lim

x→∞
xα(c−b+1)

(
1 − Eα,b,c[− η xα b]

)
= 1. (379)

In addition to this normalization condition, it should be considered the condition

lim
x→0+

F(M)
X (x) =

Cxλα−1

η
lim

x→0+
xα(c−b+1)

(
1 − Eα,b,c[− η xα b]

)
= 0. (380)

An asymptotic formula for Function (378) can be derived by using the results of
Boudabsa, Simon, and Vallois in the works [142,143]. The following three cases should be
considered:

(1) In the first case, one can consider the Kilbas–Saigo function with c = b − 1 and b > 0.
In Theorem 2 of [142], p. 9. (see also Proposition 4.12. in [143], p. 31), one can see the
following inequality

1
1 + x Γ(1− α)

≤ Eα,b,b−1[−x] ≤ 1

1 + x
Γ(α (b− 1) + 1)

Γ(α b + 1)

(381)

for all x ≥ 0 and every α ∈ (0, 1], b > 0.
Using Remark 4 of [142], p. 9, (see also Remark 4.13. in [143], p. 32), one can use the
asymptotic behaviors

1 − Eα,b,b−1[−x] ∼ Γ(1 + α (b− 1))
Γ(1 + α b)

x (x → 0), (382)
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and
Eα,b,b−1[−x] ∼ 1

Γ(1− α) x
(x → ∞). (383)

Then, Function (378) with c = b− 1 is described as

F(M)
X (x) =

Cxλα−1

η

(
1 − Eα,b,b−1[− η xα b]

)
∼ Cx λα−1 Γ(1 + α (b− 1))

Γ(1 + α b)
xα b (x → 0) (384)

F(M)
X (x) =

Cx λα−1

η

(
1 − Eα,b,b−1[− η xα b]

)
∼ Cxλα−1

η

(
1 − 1

Γ(1− α) η
x− α b

)
(x → ∞). (385)

Then, conditions (369) and (370) are satisfied for the parameters α b > 0. As a result,
one can obtain

α ∈ (0, 1], b > 0, c = b − 1, Cx = η λ1−α. (386)

(2) In the second case, one can consider the Kilbas–Saigo function with c = b − 1/α and
b > 0. In this case,

α (c − b + 1) = α

(
1 − 1

α

)
= α − 1.

Using Remark 4.13 in [143], p. 32, the following asymptotic equation is proved

1 − Eα,b,b−1/α[−x] ∼ Γ(α b)
Γ(α (b + 1))

x (x → 0). (387)

In Remark 8 of [142], p. 18, the following asymptotic equation is proved

Eα,b,b−1/α[−x] ∼ A(α, b) x−1−1/b (x → ∞), (388)

where
A(α, b) = (α b)α/b Γ(α + 1) G(1− α; α b) G(1 + α; α b), (389)

and G(a; b) is the Barnes double Gamma function (see Appendix A in [142], pp. 22–23).
Then, Function (378) with c = b− 1/α is described as

FX(x) =
Cxλα−1

η
xα−1

(
1 − Eα,b,b−1/α[− η xα b]

)
∼

Cxλα−1

η
xα−1 Γ(α b)η

Γ(α (b + 1))
η xα b ∼

Cx λα−1 Γ(α b)
Γ(α (b + 1))

xα b+α−1) (x → 0), (390)

and

F(M)
X (x) =

Cxλα−1

η
xα−1

(
1 − Eα,b,b−1/α[− η xα b]

)
∼

Cxλα−1

η

(
1 − A(α, b) (η xα b)−1−1/b

)
∼

Cxλα−1

η
xα−1

(
1 − η−1−1/b A(α, b) x− α (b+1)

)
(x → ∞). (391)

Then, conditions (370) and (370) are satisfied for the parameters

α − 1 = 0, α (b + 1) > 0. (392)
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As a result, one can obtain

α − 1 = 0, b > 0, c = b − 1. (393)

(3) In the third case, one can consider the Kilbas–Saigo function with c > b − 1/α and
α ∈ [0, 1], b > 0.
In Conjecture 4 of [142], p. 16, one can see the following inequality. For every
α ∈ (0, 1], b > 0, c > b− 1/α and x ≥ 0 one has

1

1 + x
Γ(1 + α (c− b))

Γ(1 + α (c + 1− b))

≤ Eα,b,c[−x] ≤ 1

1 + x
Γ(1 + α c)

Γ(1 + α (c + 1))

(394)

for all x ≥ 0.
In Proposition 6 of [142], p. 16, the following asymptotic equation is proved

Eα,b,c[−x] ∼ Γ(1 + α(c + 1− b))
Γ(1 + α(c− b)) x

(x → ∞) (395)

for α ∈ [0, 1], b > 0, c > b− 1/α. Then, Function (378) with c > b− 1/α is described
as

F(M)
X (x) =

Cx λα−1

η
xα(c−b+1)

(
1 − Eα,b,c[− η xα b]

)
∼

Cxλα−1

η
xα(c−b+1)

(
1− Γ(1 + α(c + 1− b))

Γ(1 + α(c− b))η
x− α b

)
(x → ∞). (396)

Then, conditions (370) and (370) are satisfied for the parameters

α (c − b + 1) = 0, α b > 0, Cx = η λ1−α. (397)

As a result, one can obtain

c = b − 1, b > 0, 0 < α ≤ 1 Cx = η λ1−α. (398)

Using representation (371), the first of two conditions (357) can be written as

d
dx

F(M)
X (x) ∈ C−1(0, ∞). (399)

The fulfillment of condition (399) and condition (370) allows us to state that the
function fX(x) belongs the set C−1,(K)(0, ∞).

It is known that the Kilbas–Saigo function Eα,b,c[−x] is completely monotonic for
some values of the parameters. The complete monotonicity of a function f (x) means
that f (x) is continuous on (0, ∞), infinitely differentiable on (0, ∞), and the inequality
(−1)ndn f (x)/dxn ≥ 0 is satisfied for all n ∈ N and all x > 0.

Using Theorem 1 in [142], p. 5, (see also Proposition 5.31 of [129], p. 141), one can see
that the Kilbas–Saigo function Eα,b,c[−x] with α > 0, b > 0 and c > −1/α is completely
monotonic on (0, ∞) if and only if α ≤ 1 and c > b− 1/α.

The first derivative of function F(M)
X (x) of the form (375) belongs to the set C−1(0, ∞),

the condition α b > 0 and α(c− b + 1) + αb− 1 > −1 should be satisfied. The fulfillment
of this condition and condition (370) leads to the statement that the function fX(x) belongs
the set C−1,(K)(0, ∞), if α ∈ (0, 1], b > 0, c = b− 1.

This ends the proof.
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As a result, one can give the following definition.

Definition 26 (The GF distribution of Kilbas–Saigo type for power law nonlocality). Nonlo-
cality is described by the kernel pair of the Luchko set

Mx(x) = hα(λ x) =
(λ x)α−1

Γ(α)
, (400)

Kx(x) = λ h1−α(λ x) =
λ(λ x)−α

Γ(1− α)
. (401)

The GF probability density function

fX(x) = η λ1−α xα (b−1) Eα,b,b−1[− η xα b]. (402)

The GF cumulative distribution function

F(M)
X (x) = 1 − Eα,b,b−1[− η xα b]. (403)

The parameter values
α ∈ (0, 1), b > 0. (404)

Remark 14. In the case of the kernels (136), the GFD of the RL type is the Riemann–Liouville
fractional derivative

Dx
(h1−α)

[x′] f (x′) = λ1−α (Dα
RL,0+ f )(x). (405)

The linear GF differential equation

Dx
(Mx)

[u] f (u) = ηx V(x) f (u) (406)

with the fractional derivative (405) take the form

(Dα
RL,0+ f )(x) = η V(x) f (x), (407)

where η = λα−1 ηx.
If V(x) ∈ L∞(0, x0) or if V(x) is bounded on [0, x0], then the Cauchy type problem for the

fractional differential Equation (407) and the condition (I1−α
RL,0+ f )(0+) = Cx ∈ R has a unique

solution f (x) in the space Lα(0, x0). This statement is proved in [4], p. 158, as Corollary 3.5. For
example, one can consider Equation (407) with V(x) = xβ.

In particular, there exists a unique solution f (x) ∈ Lα(0, x0) of the Cauchy type problem for
the equation

(Dα
RL,0 f )(x) = − η xβ f (x), (408)

and (I1−α
RL,0+ f )(0+) = Cx ∈ R, where x ∈ (0, x0) with η ∈ R and β ≥ 0.

The exact analytical solution of Equation (408) is given in [4], p. 227, as Example 4.3.
Therefore, the solution of Equation (408) has the form

f (x) =
Cx

Γ(α)
xα−1Eα,β/α+1,(β−1)/α+1[− η xα+β], (409)

if α ∈ (0, 1), β > −α and η ∈ R. If α = 1, then β > 0.

5.4. Convolutional GF Distributions from Standard Distributions

Using Definition 9 of the standard PDF and Theorem 6, one can prove the follow-
ing statement.
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Theorem 18 (GF distribution from standard distribution).
Let a pair (Mx(x), Kx(x)) belong to the Luchko set.
Let ϕ(x) be a standard probability density function in the sense of Definition 9.
Then, the functions

f (K)X (x) = Ix
(Kx)

[u] ϕ(u) =

ˆ x
Kx(x− u) ϕ(u) du, (410)

f (λM)
X (x) = Ix

(λMx)
[u] ϕ(u) = λ

ˆ x
Mx(x− u) ϕ(u) du (411)

are the GF probability density functions in the sense of Definition 8 for the kernel pairs (Mx(x),
Kx(x)) and (Mx,new = λ−1Kx(x), Kx,new = λMx(x)), respectively.

Proof. For Function (410), the statement of Theorem 18 is a direct consequence of Theorem 6
and Definition 9.

For Function (411), one must additionally use the statement of Proposition 9 according
to which the kernel pair (Mx,new = λ−1Kx(x), Kx,new = λMx(x)) with λ > 0 belongs to the
Luchko set, if the pair (Mx(x), Kx(x)) belongs to the Luchko set.

This ends the proof.

As a result, one can give the following definition.

Definition 27. The GF probability density functions of the form (410) and (411) are called the
complete GF probability density functions. The distribution functions (410) corresponding to them
are called the complete GF cumulative distributions functions.

Remark 15. Note that the statement of Theorem 18 is a direct consequence of Theorem 6. It is
separated into a special statement in order to emphasize the constructive nature of this statement.
Theorem 18 allows one to obtain (construct) GF probability density functions through the Laplace
convolutions of standard probability density functions on the semi-axis and operator kernels from
the Luchko set.

It should also be noted that when constructing the GF probability density functions, the con-
dition of non-negativity of the function ϕ(x) can be weakened. In order for functions (410) and
(411) to be GF probability density functions, it is sufficient to use the condition of non-negativity
of the convolution of function ϕ and the GFD kernel for all x > 0, instead of the requirement of
non-negativity of the function ϕ.

For example, one can consider the standard PDF of the Gamma distribution [113],
p. 47, on the positive semi-axis

ϕ(x) =
λβ

Γ(β)
xβ−1 e−λ x, (412)

where x > 0, and λ > 0 is the rate parameter, β > 0 is the shape parameter. Then, for any
kernel pair (Mx(x), Kx(x)) that belongs to the Luchko set, one can define the GF probability
density Functions (410) and (411) by the equations

f (K)X (x) =
λβ

Γ(β)

ˆ x
Kx(x− u) uβ−1 e−λ u du. (413)

f (λM)
X (x) =

λβ+1

Γ(β)

ˆ x
Mx(x− u) uβ−1 e−λ u du. (414)

In a particular case, for the Gamma distribution nonlocality (137) in the form

Mx(x) = hα,λ(λ x) =
(λ x)α−1

Γ(α)
e−λ x, Kx(x) = λ h1−α,λ(λx) +

λ

Γ(1− α)
γ(1− α, λx), (415)
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where α ∈ (0, 1), λ > 0, and the standard PDF in the form of the Gamma distribution (412),
the GF probability density functions (410) and (411) have the form

f (K)X (x) = λ h1−α+β,λ(λx) +
λβ+1

Γ(1− α)Γ(β)

ˆ x
γ(1− α, λ(x− u)) uβ−1 e−λ u du, (416)

f (λM)
X (x) =

λα+β

Γ(α + β)
xα+β−1 e−λ x, (417)

where α ∈ (0, 1), β > 0, λ > 0, and x > 0. Here, the following property [113], p. 47, is used
in the form

(hα,λ(λx) ∗ hβ,λ(λx)) =
1
λ

hα+β,λ(λx). (418)

Remark 16. Note that the GF probability density functions (416) and (414) correspond to different
nonlocalities, namely, to two different pairs of operator kernels (Mx(x), Kx(x)) and (Mx,new =
λ−1Kx(x), Kx,new = λMx(x)), respectively.

As the next example, one can consider the alpha-exponential function, which is
described in Section 4.3 as a standard PDF on the positive semi-axis in the form

ϕ(x) = λ (λ x)α−1 Eα,α[− (λ x)α], (419)

where λ > 0 and α > 0.
Then, for any pair (Mx(x), Kx(x)) that belongs to the Luchko set, one can define the

GF probability density functions (410) and (411) by the equations

f (K)X (x) = λα
ˆ x

Kx(x− u) uα−1 Eα,α[− (λ u)α] du, (420)

f (λM)
X (x) = λα+1

ˆ x
Mx(x− u) uα−1 Eα,α[− (λ u)α] du. (421)

As a standard probability distribution, for example, the following probability distribu-
tions on the semi-axis can be considered.

• For the chi-squared distribution, see Chapter 11 of [144], pp. 69–73.
• For the Erlang distribution, see Chapter 15 of [144], pp. 84–85, and Section 3.11 in

of [145], pp. 145–153.
• For the exponential distribution, see Chapter 17 of [144], pp. 88–92, and Section 3.9

of [145], pp. 133–136.
• For the Fisher–Snedecor distribution, see Chapter 20 of [144], pp. 102–106.
• For the Gamma distribution, see Chapter 22 of [144], pp. 109–113, and Section 3.10

of [145], pp. 136–142.
• For the inverse Gaussian (Wald) distribution, see Chapter 25 of [144], pp. 120–121, and

Sections 3.22 and 3.24a of [145], pp. 194–199, pp. 206–209.
• For the Rayleigh distribution, see Chapter 39 of [144], pp. 173–175, and Section 3.15

of [145], pp. 168–175.
• For the Weibull–Gnedenko distribution, see Chapter 46 of [144], pp. 193–201, and Sec-

tion 3.12 of [145], pp. 153–159.
• For the Nakagami distribution, see Section 3.18 of [145], pp. 179–182.
• For the Beta prime distribution (beta distribution of the second kind), see Section 3.19

of [145], pp. 182–186.
• For the Maxwell–Boltzmann distribution, see Section 3.17 of [145], pp. 175–179.

As a result, one can give the following definitions.
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Definition 28 (The GF convolutional fX-distributions for M and K nonlocalities). Nonlocal-
ity is described by the kernel pair of the Luchko set

Mx(x), Kx(x) any kernel pair that belongs to the Luchko set (422)

λ−1 Kx(x), λ Mx(x) any kernel pair that belongs to the Luchko set. (423)

The GF probability density function

f (K)X (x) =

ˆ x

0
Kx(x− u) fSt(u) du, (424)

f (λM)
X (x) = λ

ˆ x

0
Mx(x− u) fSt(u) du. (425)

The GF cumulative distribution function

F(M)
X (x) =

ˆ x

0
fSt(u) du, (426)

F(λ−1K)
X (x) =

ˆ x

0
fSt(u) du. (427)

The parameter values are defined by the condition that the kernel pair belongs to the Luchko
set, and fSt(x) belongs to the set C({1})

−1 (0, ∞).

Definition 29 (The GF convolutional Gamma distributions for Gamma nonlocalities). Non-
locality is described by the kernel pair of the Luchko set

Mx(x) = hα,λ(λ x) =
(λ x)α−1

Γ(α)
e−λ x, (428)

Kx(x) = λ h1−α,λ(λx) +
λ

Γ(1− α)
γ(1− α, λx). (429)

The GF probability density function

f (K)X (x) = λ h1−α+β,λ(λx) +
λβ+1

Γ(1− α)Γ(β)

ˆ x
γ(1− α, λ(x− u)) uβ−1 e−λ u du, (430)

f (λM)
X (x) = λ

(λ x)α+β−1

Γ(α + β)
e−λ x. (431)

The GF cumulative distribution function

F(M)
X (x) = F(λ−1K)

X (x) =
1

Γ(β)
γ(β, λx). (432)

The parameter values
α ∈ (0, 1), β > 0, λ > 0. (433)

5.5. GF Probability Density for Power Law Nonlocality

Let us consider the GF differential equation, the solution for which is the GF probability
density function.

Let nonlocality be described by the kernel pair (137) that belongs to the Luchko set,
where the GFI kernel has the form

Mx(x) = hα(λx) =
(λx)α−1

Γ(α)
, (434)
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where α ∈ (0, 1).
In this case, the GFD of the RL type is the Riemann–Liouville fractional derivative

Dx
(h1−α)

[x′] f (x′) = λ1−α (Dα
RL,0+ f )(x). (435)

Dx,∗
(h1−α)

[x′] f (x′) = λ1−α (Dα
C,0+ f )(x). (436)

Let us consider the simplest case of the linear fractional differential equation with the
Caputo fractional derivative. To solve these equations, one can use the results described
in [4].

The exact analytical solution of the equation with the Caputo fractional derivative

(Dα
C,0+ f )(x) = − η f (x), (437)

where η = ηx λ1−α and condition f (0) = Cx ∈ R is given in [4], p. 312, as Theorem 5.12.
If α ∈ (0, 1) and η ∈ R, then the solution of Equation (437) has the form

f (x) = f (0) Eα[− η xα], (438)

where Eα[z] is the classical Mittag-Leffler function (see Equation (3.1.1) in [128], p. 17) that
is defined as

Eα[z] =
∞

∑
k=0

zk

Γ(α k + 1)
, (439)

where α > 0 (in general, α ∈ C). For α = 1, solution (438) takes the well-known form

f (x) = f (0) exp(− η x). (440)

For Function (438), the probability density, which is a solution of Equation (437), has
the form

fX(x) = N(Mx, f ) f (x) = N(Mx, f ) f (0) Eα[− η xα], (441)

where η > 0.
Let us prove the following properties of the GF cumulative distribution function

F(M)
X (x) = Ix

(Mx)
[u] fX(u) du (442)

in the form
F(M)

X (0+) = lim
x→0

F(M)
X (x) = 0, (443)

F(M)
X (+∞) = lim

x→∞
F(M)

X (x) = 1. (444)

The GF normalization condition for probability density can be considered in the form
(444). For this purpose, the following well-known facts will be used.

• Using Equation (3.7.44) (Proposition 3.25) in [128], p. 50, the following equation is
satisfied

(Iα
0+Eα[η uα])(x) =

1
η

(
Eα[η xα] − 1

)
, (445)

where η 6= 0 and α > 0.
• Using Equation (3.4.15) (Proposition 3.6) in [128], p. 26, the following equation for the

asymptotics is satisfied

Eα[−z] = −
n

∑
k=1

(−z)k

Γ(1− αk)
+ O(|z|−n−1), |z| → ∞ (446)

for α ∈ (0, 2) and n is an arbitrary positive integer number.
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Using (446), the limit z→ ∞ has the form

lim
x→∞

Eα[− x] = 0. (447)

Using (445) and (446), the limit has the form

lim
x→∞

(Iα
0+[u]Eα[ηuα])(x) = − 1

η
. (448)

For the GFI kernel (434), the Riemann–Liouville fractional integration gives

F(M)
X (x) =

ˆ x

0
Mx(x− x′) fX(x′) dx′ =

ˆ x

0
Mx(x− x′) f (0) N(Mx, f ) Eα[− η (x′)α] dx′ =

λα−1 f (0) N(Mx, f ) (Iα
0+ Eα[− η (x′)α])(x) =

λα−1 f (0)
−1
η

(
Eα[− η xα] − 1

)
. (449)

As a result, it is proven that

F(M)
X (x) =

λα−1 f (0)
η

N(Mx, f )
(

1 − Eα[− η xα]
)

, (450)

where η = ηxλα−1.
Let us consider the limit

F(M)
X (+∞) = lim

x→∞
F(M)

X (x) =

lim
x→∞

λα−1 f (0)
η

N(Mx, f )
(

1 − Eα[− η xα]
)

=

λα−1 f (0)
η

N(Mx, f ). (451)

As a result, F(M)
X (+∞) should be equal to the unit, the normalizing coefficient is

defined as

N(Mx, f ) =
η

λα−1 f (0)
=

ηx λα−1

λα−1 f (0)
=

ηx

f (0)
, (452)

where f (0) 6= 0.
As a result, the GF probability density (441), which is a solution of Equation (437), has

the form
fX(x) = N(Mx, f ) f (x) =

η

λα−1 Eα[− η xα], (453)

and the GF cumulative distribution function

F(M)
X (x) = 1 − Eα[− η xα], (454)

where α ∈ (0, 1), and η = ηxλα−1 > 0.
For α = 1, probability density (453) has the form

fX(x) = η E1[− η x] = η exp(− η x), (455)

FX(x) = 1 − exp(− η x), (456)

that describes the well-known exponential distribution, where η = ηx > 0.
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To prove (443), one can use definition (439) to obtain

lim
x→0+

Eα[− η xα] = 1. (457)

Then, using Equation (454), one can see that

F(M)
X (0+) = 0. (458)

As a result, one can give the following definition.

Definition 30 (The GF Mittag-Leffler distribution for power law nonlocality). Nonlocality is
described by the kernel pair of the Luchko set

Mx(x) = hα(λx) =
(λx)α−1

Γ(α)
, Kx(x) = λ h1−α(λx) =

λ(λx)−α

Γ(1− α)
. (459)

The GF probability density function

fX(x) =
η

λα−1 Eα[− η xα]. (460)

The GF cumulative distribution function

F(M)
X (x) = 1 − Eα[− η xα]. (461)

The parameter values
α ∈ (0, 1), η = ηx λα−1 > 0. (462)

5.6. Non-Equivalence of Equations with GFD and Their Solutions in Different Spaces

Let us consider the space with new coordinates, such that

xnew = x2. (463)

In the standard (local) probability theory, equations for xnew and x are equivalent due
to the chain rule,

∂

∂xnew
=

∂

∂x2 =
1

2 x
∂

∂x
(464)

with an appropriate definition of the probability density function fX,new(x).
It is obvious that the equation for fX,1(x) that have the form

d fX,1(x)
dx

= − 2 η x fX,1(x), (465)

and the equation for fX,2(x2) in the form

d fX,2(x)
dx2 = − η fX,2(x2), (466)

are equivalent due to the chain rule (464). In view of this equivalence, it is not necessary to
use the xnew-space as something new, since it is enough to work in the standard x-space.

The solutions of Equations (465) and (466) have the form

fX,1(x) = fX,2(x2) = Nx exp
(
− η x2

)
, (467)

where Nx is normalization coefficient.
It can be seen that the solutions of the equations in different spaces (x-space and

xnew-space, where xnew = x2 ) are the same.
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A completely different situation in fractional calculus, where the standard chain rule
is violated.

For fractional calculus, the chain rule similar to (464) is violated [109]. Therefore, in the
nonlocal probability theory, it should be considered non-equivalent fractional differential
equations, and, in general, the following inequalities are satisfied for solutions

fX,1(x) 6= fX,2(x2). (468)

Let us consider the xnew-space and the fractional differential equation

(Dα
C,0+ fX)(x2) = − η λα−1 fX,2(x2), (469)

where xnew = x2.
The solution of Equation (469) has the form

fX(x2) = η Eα[− η λα−1 x2αx ], (470)

Note that E1[z] = exp(z) for αx = 1.
It should be emphasized that the solutions of fractional analogs of the Equations (465)

and (466) do not coincide in the general case. These solutions coincide only if the orders of
these equations are integers.

For example, x = p and

η =
1

KT
, λαx−1 γy =

1
2m

(471)

expression (470) looks similar to the standard form of the probability density of the standard
form of the Maxwell distribution

fP(p2) =
1

(π m k T)1/2 exp
(
− p2

2 m k T

)
, (472)

where p ∈ (0, ∞) instead of the standard p ∈ (−∞, ∞), and, therefore, there is no 2 in the
denominator of the normalized coefficients.

Remark 17. Note that one can also consider a more general case of a space, namely, a fractional
space, in which the coordinates of this space are

xnew = qα, ynew = pα, (473)

where x = q ≥ 0 and y = p ≥ 0, such that (xnew, ynew) ∈ R2
0,+.

Such spaces and dynamic systems in them were proposed in 2004 [67–69] and then used to
describe non-Hamiltonian dynamics in [10,131–133]. The use of such a space was also justified by the
use of fractional integral operators whose kernels have a power law form. Fractional generalization
of average values and reduced distribution functions are defined in these works. These papers
consider dynamical systems that are described by fractional powers of variables. The fractional
powers are considered as convenient ways to describe systems in the fractional dimensional space.
Dynamical systems, which are Hamiltonian systems in the space (xnew, ynew), are non-Hamiltonian
systems in the standard space (x, y). Generalizations of the Liouville and Bogoliubov hierarchy
equations for such systems are proposed. The generalized Fokker–Planck equation, generalized
transport equation, and generalized Chapman–Kolmogorov equation are derived from Liouville and
Bogoliubov equations for systems in space (xα, yα).

Remark 18. Note that a similar situation in the nonlocal (general fractional) vector calculus. The
violation of the standard chain rule leads to the fact that operators defined in different coordinate
systems (Cartesian, cylindrical, and spherical) cannot be related to each other by coordinate transfor-
mations. The GF integral and GF differential vector operators in the different orthogonal curvilinear
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coordinates (OCC) should be defined separately. The mutual consistency of these GF integral and GF
differential operators are expressed in the fulfillment of vector analogs of the fundamental theorems
of GFC, such as the GF gradient theorem, the GF Stock theorem, and the GF divergence (Gauss–
Ostrogradsky) theorem. These GF vector operators are suggested in [95] for OCC through the Lame
coefficients and these definitions can be used for all OCC. Equations for spherical, cylindrical, and
Cartesian coordinates are particular forms of equations written with the Lame coefficients, but these
expressions cannot be related to each other by coordinate transformations.

Note that one can consider probability distributions in cylindrical, spherical, and other OCC
by using equations that are proposed in [95]. For example, the proposed formulas allowed can be
used to calculate the probability of spherical regions with spherical symmetry of the nonlocality and
GF probability distribution.

6. General Fractional Distribution of Exponential Type

To simplify further constructions, let us first consider the exponential distribution in
the framework of standard probability theory.

6.1. Standard Exponential Distribution

The probability density function fX(x) of exponential distribution X ∼ Exp(λ) has
the form

fX(x) = λ exp(− λ x) (474)

for x ≥ 0, and fX(x) = 0 for x < 0, where λ > 0 is the rate parameter.
The cumulative distribution function FX(x) of exponential distribution is

FX(x) = 1 − exp(− λ x). (475)

Function (474) can be considered as a solution of the linear differential equation of the
first-order

d
dx

fX(x) = − λ fX(x). (476)

Taking into account the standard normalization condition in the form

lim
x→∞

ˆ x

0
fX(u) du = 1, (477)

one can obtain the normalization coefficient N = λ and solution in form (474).
Therefore, the probability density of the standard exponential distribution can be

defined as a solution of linear differential Equation (476), which satisfies normalization
condition (477) and property FX(x)→ 0 at x → 0+.

Integrating Equation (476) in the form
ˆ x

0
f (1)X (u) du = − λ

ˆ x

0
fX(u) du, (478)

and using the second fundamental theorem of the mathematical analysis (standard calculus)
in the form ˆ x

0
f (1)X (u) du = fX(x) − fX(0), (479)

where f (1)(x) = d f (x)/dx, one can obtain

fX(x) − fX(0) = − λ

ˆ x

0
fX(u) du. (480)

Then, using the definition of the standard cumulative distribution function FX(x) in
the form

FX(x) =

ˆ x

0
fX(u) du, (481)
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Equation (480) takes the form

fX(x) − fX(0) = − λ FX(x). (482)

Using Function (481), the normalization condition (477) can be written as

lim
x→∞

FX(x) = 1. (483)

Note that the condition
lim

x→0+
FX(x) = 0 (484)

is satisfied if Equation (482) holds for all x > 0.

6.2. Approach to Nonlocal Analog of Exponential Distribution

To construct a nonlocal analog of the exponential distribution by using the methods of
GFC, one can consider the linear GF differential equation

Dx,∗
(Kx)

[u] fX(u) = − η fX(x), (485)

where Dx,∗
(Mx)

is the GFD for the Caputo type. The solution of Equation (485), which satisfies
the normalization condition

lim
x→∞

Ix
(Mx)

[u] fX(u) = 1, (486)

can be considered as a nonlocal analog of the standard exponential distribution.

Definition 31. The GF probability density function, which is a solution of the linear GF differential
Equation (485), which satisfies normalization condition (486) and the property

lim
x→0+

Ix
(Mx)

[u] fX(u) = 0 (487)

is called the GF probability density of GF distribution of exponential type.

The GF integration of Equation (485) in the form

Ix
(Mx)

[s] Ds,∗
(Kx)

[u] fX(u) = − η Ix
(Mx)

[u] fX(u), (488)

and the second fundamental theorem of GFC written as

Ix
(Mx)

[s] Ds,∗
(Kx)

[u] fX(u) = fX(x) − fX(0), (489)

gives the equation
fX(x) − fX(0) = − η Ix

(Mx)
[u] fX(u). (490)

Using the definition of the GF cumulative distribution function

F(M)
X (x) = Ix

(Mx)
[u] fX(u), (491)

Equation (490) is written as

fX(x) − fX(0) = − η F(M)
X (x). (492)

For Equation (492), it is immediately clear that the condition

lim
x→0+

F(M)
X (x) = 0 (493)
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is satisfied if fX(0+) = fX(0).
As a result, the following statement was proved.

Theorem 19. [General fractional distribution of the exponential type].
Let a kernel pair (Mx(x), Kx(x)) belong to the Luchko set.
If a GF probability density function fX(x) ∈ C−1,(K)(0, ∞) satisfies the GF differential

equation
Dx,∗
(Kx)

[u] fX(u) = − η fX(x), (494)

where Dx,∗
(Kx)

is GFD of the Caputo type and η 6= 0, then the GF cumulative distribution function

F(M)
X (x) has the form

F(M)
X (x) = − η−1

(
fX(x) − fX(0)

)
. (495)

The GF probability P(M)
X [a, b] is given by the equation

P(M)
X [a, b] = − η−1

(
fX(b) − fX(a)

)
, (496)

where b > a ≥ 0.

The statement for GF differential equations with GF derivatives of Riemann–Liouville
type is proved similar to the proof of Theorem 19.

Theorem 20 (GF probability for the GF distribution of the exponential type). Let a kernel
pair (Mx(x), Kx(x)) belong to the Luchko set.

If a GF probability density function fX(x) ∈ C−1,(K)(0, ∞) satisfies the GF differential
equation

Dx
(Kx)

[u] fX(u) = − η fX(x), (497)

where Dx
(Kx)

is the GFD of the RL type and λ 6= 0, then the GF cumulative distribution function

F(M)
X (x) has the form

F(M)
X (x) = − η−1 fX(x). (498)

The GF probability P(M)
X [a, b] is

P(M)
X [a, b] = − η−1

(
fX(b) − fX(a)

)
, (499)

where b > a ≥ 0.

The solutions of the GF differential Equations (494) and (497) can be obtained by
using the methods of Luchko’s general operational calculus, which was suggested in
works [89,100].

6.3. Solution of the Linear GF Differential Equations

The solutions of linear GF differential equations can be derived by using the Luchko op-
erational calculus [89]. These solutions are expressed in terms of functions (see
Equations (416) and (5.7) [89], pp. 360, 365), which will be called Luchko functions.

Definition 32. [First and Second Luchko functions]
Let a kernel pair (Mx(x), Kx(x)) belong to the Luchko set, and M∗,j(x) be the convolution

j-power
M∗,j(x) := (Mx,1 ∗ . . . ∗ Mx,j)(x), (500)

where Mx,k(x) = Mx(x) for all k = 1, . . . , j, and x ∈ (0, ∞).



Mathematics 2022, 10, 3848 64 of 82

Then, the function

F(Mx, η, x) =
∞

∑
j=0

M∗,j(x) η j−1 (501)

is called the first Luchko function.
The function

L(Mx, η, x) := Ix
(Kx)

[u]F(Mx, η, u) =

ˆ x

0
du Kx(x− u)F(Mx, η, u), (502)

where Ix
(Kx)

[u] is the GF integral with the kernel Kx(x), and is called the second Luchko function.

Note that Equation (502) contains the GFI with kernel Kx(x) instead of the kernel
Mx(x).

The following theorem states that the first Luchko function (as a convolution series)
is convergent.

Theorem 21 (Convergence of the first Luchko function). Let a kernel pair (Mx(x), Kx(x))
belong to the Luchko set, and the power series

f (z, η) =
∞

∑
j=0

η j−1 zj (503)

has non-zero convergence radius r = |η|−1, if η 6= 0.
Then, Function (501) as a convolution series is convergent for all x ∈ (0, ∞), and the function

F(z, η, x) belongs to the ring R−1 = (C−1(0, ∞), ∗,+), where the multiplication ∗ is the Laplace
convolution and + the standard addition of functions.

Theorem 21 is proved in [89] (see Theorem 4.4 in [89], p. 359, and comments on page
360 of [89]).

The function F(z, η, x) belongs to the triple R−1 = (C−1(0, ∞), ∗,+) that is a commu-
tative ring without divisors of zero [87].

Examples of the first and second Luchko functions are proposed [89], pp. 361, 366–368.

Remark 19. Note that the second Luchko function L(Mx, η, x) does not depend on the kernel
Kx(x) due to the Sonin condition

(Mx ∗ Kx)(x) = {1}, (504)

where {1} denotes the function that is identically equal to 1 for all x ∈ [0, ∞).
Using condition (504), the convolution of GFD kernel Kx(x) and the first Luchko function

F(Mx, η, x) can be written as

L(Mx, η, x) = (Kx ∗ F)(x) =
∞

∑
j=1

(
Kx ∗ M∗,j

)
(x) η j−1 =

∞

∑
j=1

(
K ∗ M ∗ M∗,j−1

)
(x) η j−1 =

∞

∑
j=1

(
{1} ∗ M∗,j−1

)
(x) η j−1 =

{1} +
(
{1} ∗

∞

∑
j=2

(
M∗,j−1 η j−1

))
(x) = {1} +

(
{1} ∗

∞

∑
j=1

(
M∗,j η j

))
(x), (505)

where η0 = {1}.
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As a result, the second Luchko function L(Mx, η, x) can be represented in the form

L(Mx, η, x) =

ˆ x

0
Kx(x− u)F(M, η, u) du = {1} +

ˆ x

0

( ∞

∑
j=1

M∗,j(u) η j
)

du. (506)

One can see that the second Luchko function L(Mx, η, x) is independent of the kernel Kx(x)
since the Sonin condition (Kx ∗ Mx)(x) = {1} are satisfied for all x ∈ (0, ∞).

The second Luchko Function (502) is used [89] in solutions of equations with GFD,
which is defined by the kernel Kx(x) associated with the kernel Mx(x) of the GFI.

If a kernel pair (Mx(x), Kx(x)) belongs to the Luchko set, then F(Mx, η, x) ∈ C−1(0, ∞)
and L(Mx, η, x) ∈ C−1(0, ∞). Therefore, these Luchko functions belong to the ring R−1.
These statements are based on the fact that GFI Ix

(Kx)
[u] is the operator on C−1(0, ∞), [89].

Using the first Luchko function F(Mx, η, x) and second Luchko function L(Mx, η, x),
one can propose solutions of the linear GF differential equations for the GF probability
density functions.

To obtain the solution of the GF differential equation for the GF probability density,
Theorem 5.1 of [89], p. 366, should be used.

Theorem 22 (Unique solution of the linear GF differential equation). Let f (x) ∈ C1
−1(0, ∞),

and the pair (Mx(x), Kx(x)) belong to the Luchko set, and η be a bounded nonzero parameter.
Then, the GF differential equation

Dx,∗
(Kx)

[u] f (u) = η f (x), (507)

where η 6= 0, has the unique solution

f (x) = L(Mx, η, x) f (0), (508)

where the function L(Mx, η, x) is defined by Equation (502).

This theorem is proved in [89] (see Theorem 5.1 in [89], p. 366.)
In the next subsection, some examples of linear GF differential equations and solutions

are proposed.

6.4. GF Distribution of the Exponential Type from Equations with GFD of Caputo Type

Let fX(x) ∈ C−1(0, ∞), a pair (Mx(x), Kx(x)) belong to the Luchko set. Then, the GF
differential equations

Dx,∗
(Kx)

[u] fX(u) = − η fX(x), (509)

have the unique solutions

fX(x) = L(Mx,−η, x) fX(0), (510)

where L(Mx,−η, x) is the second Luchko function.
In order for Function (510) to be a probability density function, i.e., fX(x) ∈ C(M)

−1 (0, ∞),
some conditions of the second Luchko Function (510) should be satisfied.

Let us prove that the condition

fX(x) ∈ C−1,(K)(0, ∞) (511)

is satisfied for Function (510).

Theorem 23 (Property of second Luchko function). Let a kernel pair (Mx(x), Kx(x)) belong
to the Luchko set.



Mathematics 2022, 10, 3848 66 of 82

Then, the second Luchko Function (502) and solution (510) of Equation (509) belong to the set
C−1,(K)(0, ∞), i.e.,

L(Mx, η, x) ∈ C−1,(K)(0, ∞). (512)

Proof. Using Theorem 21 (see also Theorem 4.4 in [89], p. 359), the first Luchko function
F(Mx, η, x) is an element of the ring R−1 = (C−1(0, ∞), ∗,+). Therefore, the F(Mx, η, x)
belongs to the set C−1(0, ∞).

Using Equation (502) of Definition 32, the second Luchko function L(Mx, η, x) is
represented in the form

L(Mx, η, x) := Ix
(Kx)

[u]F(Mx, η, u), (513)

where Ix
(Kx)

[u] is the GF integral with the kernel Kx(x).
Equation (513) means that the second Luchko function can be represented in the form

Ix
(Kx)

[u] ϕ(u) for all x > 0, where ϕ(x) ∈ C−1(0, ∞), where ϕ(x) = F(Mx, η, x).
As a result, the second Luchko function and solution (510) of Equation (509) belong to

the set C−1,(K)(0, ∞).
This ends the proof.

Corollary 4. Let a kernel pair (Mx(x), Kx(x)) belong to the Luchko set.
Then, the second Luchko Function (502) satisfies the condition

lim
x→0+

Ix
Mx

[u]L(Mx,−η, x) = 0. (514)

Proof. Using the Luchko Theorem (Theorem 3) one can state that if fX(x) ∈ C−1,(K)(0, ∞),
then the condition

lim
x→0+

Ix
Mx

[u] fX(x) = 0 (515)

is satisfied.
Therefore, using the Luchko theorem (Theorem 3) and the fact that L(Mx, η, x) ∈

C−1,(K)(0, ∞), we obtain that the property (514) is satisfied.

In addition to conditions (512) and (514), the GF normalization condition for solution
(510) must also be satisfied. The GF normalization condition can be represented by using
the GF cumulative distribution function

F(M)
X (x) = fX(0)

(
Mx ∗ L

)
(x) = fX(0) Ix

(Mx)
[u]L(Mp, η, u). (516)

Using the associativity of the Laplace convolution and the equation

L(Mx,−η, x) =
(

Kx ∗ F
)
(x), (517)

one can obtain

F(M)
X (x) = fX(0)

(
Mx ∗ L

)
(x) = fX(0)

(
Mx ∗ Kx ∗ F

)
(x) =

fX(0)
(
{1} ∗ F

)
(x) = fX(0)

ˆ x

0
F(Mx,−η, u) du. (518)

As a result, the GF cumulative distribution function is represented in the form

F(M)
X (x) = fX(0)

ˆ x

0
F(Mx,−η, u) du. (519)
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Equation (519) can be interpreted as a condition that the first Luchko function must
be a standard probability density function for the positive semi-axis, if F(Mx,−η, u) ≥ 0
for all x > 0. For example, the standard normalization condition (F(M)

X (+∞) = 1) for the
solution has the form

fX(0)
ˆ ∞

0
F(Mx,−η, x) dx = 1, (520)

where the first Luchko function F(Mx,−η, x) belongs to the set C−1(0, ∞), i.e.,
F(Mx,−η, x) ∈ C−1(0, ∞).

As a result, the following proposition is proved.

Theorem 24 (GF probability density function as a solution of the GF differential equation).
Let a pair (Mx(x), Kx(x)) belong to the Luchko set.

Let a function fX(x) belong to the set C1
−1(0, ∞) and satisfy the GF differential equation

Dx,∗
(Kx)

[u] fX(u) = − η fX(x). (521)

Then, the function fX(x) is the GF probability density function up to a numerical factor fX(0),
if the first Luchko function satisfies the standard normalization condition (520) up to a numerical
factor fX(0). This normalization condition means that the function

F(M)
X (x) := fX(0)

ˆ x

0
F(Mx,−η, u) du (522)

must satisfy the conditions
lim

x→∞
F(M)

X (x) = 1. (523)

As a particular case, if F(Mx,−η, x) ∈ C({1})
−1 (0, ∞), then fX(x) ∈ C(M)

−1 (0, ∞).

Note that the following conditions

F(M)
X (0+) ∈ C1

−1(0, ∞), F(M)
X (0+) = 0 (524)

are satisfied since the second Luchko function belongs to the set C−1,(K)(0, ∞),
It is obvious that not all operator kernels, whose pairs belong to the Luchko set, satisfy

the condition that the first Luchko function belongs to the set of standard probability
density functions. Such kernels form a subset of the Luchko set. In the next subsection, it
will be shown that such a subset is not empty.

As a result, one can give the following definition.

Definition 33 (The GF distributions of the exponential type). Nonlocality is described by the
kernel pair of the Luchko set

Mx(x), Kx(x) any kernel pair that belongs to the Luchko set (525)

The GF probability density function

fX(x) = N−1 L(Mx,−η, x) fX(0), (526)

where L(Mx,−η, x) is the second Luchko function.
The GF cumulative distribution function

F(M)
X (x) = N−1

ˆ x

0
F(Mx,−η, u) du, (527)

N = lim
x→∞

ˆ x

0
F(Mx,−η, u) du < ∞, (528)
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where F(Mx,−η, x) is the first Luchko function.
The parameter values are defined by the condition that the kernel pair belongs to the Luchko set

and that F(Mx,−η, u) belongs to the set C({1})
−1 (0, ∞).

6.5. Example of GF Distribution of the Exponential Type

Let us consider the power law nonlocality that is described by the kernel pair (136)
from the Luchko set in the form

Mx(x) = hα(λ x) = λα−1 hα(x) =
(λ x)α−1

Γ(α)
, Kx(x) = λ

(λ x)−α

Γ(1− α)
, (529)

where x > 0, and 0 < α < 1.

(1) Let us derive the first Luchko function. Using the equality

(hα(x) ∗ hβ(x)) = hα+β(x) (530)

for α > 0, β > 0, and hα(λ x)) = λα−1 hα(x) one can obtain

(hk α(λ x) ∗ hα(λ x)) = λ(k+1) α−2 (hk α(x) ∗ hα(x)) =

λ(k+1)α−2 h(k+1)α(x) = λ−1 h(k+1)α(λ x). (531)

Then, the convolution j-power

M∗,j(x) = λj(α−1) hjα(x) = λ1−j (λ x)jα−1

Γ(jα)
, (532)

and the first Luchko function has the form

F(M, η, x) =
∞

∑
j=1

η j−1 M∗,j(x) =
∞

∑
j=1

η j−1 λ1−j (λ x)jα−1

Γ(jα)
=

(λ x)α−1
∞

∑
j=0

(η λ−1)j (λ x)jα

Γ(jα + α)
= (λ x)α−1 Eα,α[(η/λ) (λ x)α]. (533)

Here, Eα,β(z) is the two-parameter Mittag-Leffler function [128] that is defined as

Eα,β(z) :=
∞

∑
k=0

zk

Γ(αk + β)
, (534)

where α > 0, β ∈ R.
(2) Let us derive the second Luchko function. Using Equation (502) and β Γ(β) = Γ(β +

1), the second Luchko function L(M, λ, x) is written as

L(Mx, η, x) = {1} +
ˆ x

0

( ∞

∑
j=1

M∗,j(u) η j
)

du = {1} +
ˆ x

0

( ∞

∑
j=1

λj(α−1) η j ujα−1

Γ(jα)

)
du =

{1} +
∞

∑
j=1

λj(α−1) η j xjα

Γ(jα + 1)
= {1} +

∞

∑
j=1

λ−j η j (λ x)jα

Γ(jα + 1)
=

{1}+
∞

∑
j=1

1
Γ(jα + 1)

( η

λ
(λ x)α

)j
= Eα[(η/λ) (λ x)α], (535)

where Eα(z) = Eα,1(z) is the Mittag-Leffler function [128].
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As a result, the GF differential equation

Dx,∗
(K)[u] f (u) = − η f (x) (536)

has the solution
f (x) = Eα[− (η/λ) (λ x)α] f (0). (537)

(3) Let us consider the normalization condition for solution (537).
Using Equation (4.4.4) of [128], p. 61, in the form

ˆ x

0
uβ−1 Eα,β[− γ uα] du = xβ Eα,β+1[− γ xα], (538)

the GF cumulative distribution Function (519) is equal to

F(M)
X (x) = fX(0)

ˆ x

0
F(Mx, − η, u) du = fX(0)

ˆ x

0
(λ u)α−1Eα,α[− (η/λ) (λ u)α] du =

fX(0)
λ

(λ x)αEα,α+1[− (η/λ) (λ x)α]. (539)

(I) Using the definition of the Mittag-Leffler function

F(M)
X (x) =

fX(0)
λ

∞

∑
j=0

(
− η

λ

)j (λ x)(j+1)α

Γ((j + 1)α + 1)
=

fX(0)
λ

(λ x)(α

Γ(α + 1)
+

fX(0)
λ

∞

∑
j=1

(
− η

λ

)j (λ x)(j+1)α

Γ((j + 1)α + 1)
, (540)

one can see that F(M)
X (0+) = 0 for α > 0.

(II) Using Equation (1.8.28) of [4] in the form

Eα,β[z] = −
1

Γ(β− α)

1
z
+ O(z−1), (541)

which holds for α ∈ (0, 2) at x → +∞, one can obtain

F(M)
X (x) =

fX(0)
λ

λ

η

1
Γ(β− α)

+ O((λ x)−α), (542)

where β = α + 1, Γ(1) = 1, and α ∈ (0, 1) should be used.

As a result, one can see

lim
x→+∞

F(M)
X (x) =

fX(0)
η

. (543)

Then, the GF normalization condition gives

fX(0) = η. (544)

As a result, the GF cumulative distribution function has the form

F(M)
X (x) =

η

λ
(λ x)αEα,α+1[− (η/λ) (λ x)α]. (545)

The GF probability density

fX(x) = η L(Mx,−η, x) = η Eα[− (η/λ) (λ x)α] (546)
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is the unique solution of the GF differential equation

Dx,∗
(Kx)

[x′] fX(x′) = − η fX(x). (547)

Remark 20. Using the equality

z Eα,α+β[z] = Eα,β[z] −
1

Γ(β)
(548)

for z = − (η/λ) (λ x)α, and Eα,1[z] = Eα[z], Equation (545) can be written as

F(M)
X (x) = 1 − Eα[− (η/λ) (λ x)α]. (549)

where Eα[z] is the Mittag-Leffler function [129].

7. Truncated GF Distributions and Average Values

In the standard probability theory of distributions on positive semi-axis, truncated dis-
tributions, and truncated moment functions are considered [113], pp. 279–284, [146]. Trun-
cated distributions are derived from probability distributions by restrictions of theirs do-
mains.

In this section, truncated GF probability density functions, truncated GF cumulative
distribution functions, and truncated GF average values of random variables are suggested.

7.1. Truncated GF Probability Density Function

Let us consider a GF distribution of a random variable X on the positive semi-axis
(0, ∞) to define truncated GF distributions. Let fX(x) be a GF probability density function,
and F(M)

X (x) be a cumulative distribution function on the positive semi-axis. One can
consider an interval [a, b] ⊂ (0, ∞). In order to obtain the probability density of a random
variable X on the interval [a, b] ⊂ (0, ∞), we should use a new normalization condition. In
this case, one can say that it is a GF distribution of a random variable X on domain [a, b].

A truncated GF probability density function can be defined in the following form.

Definition 34 (Truncated GF probability density function). Let a pair (Mx(x), Kx(x)) belong
to the Luchko set.

Let fX(x) ∈ C(M)
−1 (0, ∞) be a GF probability density, and F(M)

X (x) ∈ C(M)
CDF(0, ∞) be the GF

cumulative distribution function.
Then, the function

f[a,b](x) =
fX(x)

F(M)
X (b) − F(M)

X (a)
, (550)

where F(M)
X (b) > F(M)

X (a) and b > a ≥ 0, is called the truncated GF probability density func-
tion.

Remark 21. In the standard probability theory, the truncated probability density function is defined
as

f St
[a,b](x) =

{
fX(x) x ∈ (a, b],
0 x /∈ (a, b].

(551)

Note that Function (551) does not belong to the set C−1(0, ∞) in contrast to Function (550),
which belongs to the set C−1(0, ∞).

If fX(x) ∈ C(M)
−1 (0, ∞), then it is obvious that the following properties are satisfied for

the truncated GF probability density Function (550) in the form

f[a,b](x) ∈ C−1,(K)(0, ∞), (552)
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f[a,b](x) ≥ 0. (553)

The normalization condition (550) for the truncated GF probability density functions
is changed. To give a correct normalization condition for (550), the GFI for the interval
[a, b] ⊂ R+ should be used. The GFI for the interval [a, b] ⊂ R+ is defined [95] by the
equation

I(Mx)
[a,b] [x] f (x) = Ib

(Mx)
[x] f (x) − Ia

(Mx)
[x] f (x), (554)

if b > a > 0. For a = 0, the GFI is

I(Mx)
[0,b] [x] f (x) = Ib

(Mx)
[x] f (x). (555)

Let us prove the following theorem about the GF normalization condition.

Theorem 25. (The GF normalization condition for the truncated GF probability density)
Let a pair (Mx(x), Kx(x)) belong to the Luchko set.
Let fX(x) ∈ C(M)

−1 (0, ∞) be a GF probability density, and F(M)
X (x) ∈ C(M)

CDF(0, ∞) be the GF
cumulative distribution function.

Then, the truncated GF probability density Function (550) satisfies the normalization condition
in the form

I(Mx)
[a,b] [u] f[a,b] = 1, (556)

where I(Mx)
[a,b] [u] is the GFI defined by Equation (554).

Proof. The action of the GFI (554) on the truncated GF probability density Function (550)
gives

I(Mx)
[a,b] [u] f[a,b](u) = Ib

(Mx)
[u] f[a,b](u) − Ia

(Mx)
[u] f[a,b](u) =

1

F(M)
X (b) − F(M)

X (a)

(
Ib
(Mx)

[u] fX(u) − Ia
(Mx)

[u] fX(u)
)

=

1

F(M)
X (b) − F(M)

X (a)

(
F(M)

X (b) − F(M)
X (a)

)
= 1. (557)

Therefore, the GF normalization condition for the function f[a,b](x) has the form

I(Mx)
[a,b] [u] f[a,b] = 1. (558)

This is the end of the proof.

7.2. Truncated GF Cumulative Distribution Function

Let us define a GF cumulative distribution function for the truncated GF distributions
on the positive semi-axis.

Definition 35 (Truncated GF cumulative distribution function). Let a pair (Mx(x), Kx(x))
belong to the Luchko set.

Let fX(x) ∈ C(M)
−1 (0, ∞) be a GF probability density, and

F(M)
X (x) = Ix

(Mx)
[u] fX(u) ∈ C(M)

CDF(0, ∞) (559)

is the GF cumulative distribution function.
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Let a truncated GF distribution on the interval [a, b] ⊂ R+ be described by the truncated GF
probability density function

f[a,b](x) =
fX(x)

F(M)
X (b) − F(M)

X (a)
, (560)

where b > a ≥ 0 and F(M)
X (b) > F(M)

X (a).
Then, the function

F(M)
[a,b] (x) =

F(M)
X (x) − F(M)

X (a)

F(M)
X (b) − F(M)

X (a)
. (561)

is called the truncated GF cumulative distribution function.

It is obvious that the following properties are satisfied

F(M)
[a,b] (a) = 0, (562)

F(M)
[a,b] (b) = 1, (563)

F(M)
[a,b] (b) ∈ C1

−1(0, ∞), (564)

Dx,∗
(Kx)

[u] F(M)
[a,b] (b) ≥ 0. (565)

These properties directly follow from Definition (35) and properties of fX(x) ∈
C(M)
−1 (0, ∞). Note that inequality (565) contains GFD of the Caputo type only.

Let us consider a connection between truncated GF cumulative distribution
Function (561) and truncated GF probability density (560).

Theorem 26 (Truncated GF cumulative distribution via truncated GF probability density).
Let fX(x) ∈ C(M)

−1 (0, ∞), a pair (Mx(x), Kx(x)), belong to the Luchko set.
Then, the truncated GF cumulative distribution Function (561) on the interval [a, b] ⊂ R+ is

connected with the truncated GF probability density Function (550) by the equation

Dx,∗
(Kx)

[u] F(M)
[a,b] (u) = f[a,b](x), (566)

where Dx,∗
(Kx)

[u] is the GFD of the Caputo type.

Proof. Using the GFD of the Caputo type and the first fundamental theorem of the GFC,
one can obtain

Dx,∗
(Kx)

[u] F(M)
[a,b] (u) =

1

F(M)
X (b) − F(M)

X (a)

(
Dx,∗
(Kx)

[u] F(M)
X (u) − Dx,∗

(Kx)
[u] F(M)

X (a)
)

=

1

F(M)
X (b) − F(M)

X (a)
fX(x) = f[a,b](x), (567)

where the property of the equality to zero of the Caputo fractional derivative of a constant
value is used in the form

Dx,∗
(Kx)

[u] F(M)
X (a) = F(M)

X (a) Dx,∗
(Kx)

[u] 1 = 0. (568)

This is the end of the proof.
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Remark 22. Note that the GFD of the Riemann–Liouville type of a constant function is not equal
to zero

Dx
(Kx)

[u] F(M)
X (a) = F(M)

X (a) Dx
(Kx)

[u] 1 = F(M)
X (a)Kx(x). (569)

Property (569) gives the inequality

Dx
(Kx)

[u] F(M)
[a,b] (u) =

fX(x) − F(M)
X (a)Kx(x)

F(M)
X (b) − F(M)

X (a)
6= f[a,b](x). (570)

Therefore, the GFD of the Riemann–Liouville type cannot be used for the truncated GF
distributions, since F(M)

X (a) 6= 0 is in this case.

7.3. Truncated GF Average Values

Let us give a definition of the truncated GF average values.

Definition 36 (Truncated GF average value of function A(X)). Let a pair (Mx(x), Kx(x))
belong to the Luchko set.

Let fX(x) ∈ C(M)
−1 (0, ∞) be a GF probability density, A(X) be a function of a random variable

X such that A(x) fX(x) ∈ C−1(0, ∞), and

F(M)
X (x) = Ix

(Mx)
[u] fX(u) ∈ C(M)

CDF(0, ∞) (571)

is the GF cumulative distribution function.
Then, the function

Ex
T1,(Mx)

[A(X)] := Ix
(Mx)

[u]
(

A(u) fX(u)
)

=

ˆ x

0
Mx(x− u) A(u) fX(u) du (572)

is called the truncated GF average value of the first type of function A(X) on the interval
[0, x] ⊂ R+.

Let a truncated GF distribution on the interval [a, b] ⊂ R+ be described by the truncated GF
probability density function

f[a,b](x) =
fX(x)

F(M)
X (b) − F(M)

X (a)
, (573)

where b > a ≥ 0 and F(M)
X (b) > F(M)

X (a).
Then, the truncated GF average value of the first type of a function A(X) of a random variable

X on the interval [a, b] ⊂ R+ is given by the equation

E
(Mx)
[a,b] [A(X)] := I(Mx)

[a,b] [u]
(

A(u) f[a,b](u)
)

, (574)

where [0, x] ⊂ R+.
Then, the value

E
(M1),(M2)
[a,b] [A(X)] := lim

x→∞
I(M1)
[a,b] [u]

(
A(u)

(
Du,∗
(M2)

[w] f[a, b](w)
))

(575)

is called the truncated GF average value with two kernels for the function A(X) of the random
variable X, where Du,∗

(M2)
is the GFD of the Caputo type with the kernel M2(x).
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Note that the truncated GF average value (574) is expressed through the truncated GF
average value (572) by the equation

E
(Mx)
[a,b] [A(X)] =

1

F(M)
X (b) − F(M)

X (a)

(
Eb
(Mx)

[A(X)] − Ea
(Mx)

[A(X)]
)

. (576)

Remark 23. For a truncated GF probability density f[a,b](x), truncated GF average value (574) of
the first type of the function A(x) = 1 for all x ∈ R+, is equal to one

E
(Mx)
[a,b] [ 1 ] = 1. (577)

Equation (577) can be interpreted as a GF normalization condition of the truncated GF
probability density f[a,b](x).

A similar interpretation exists for the truncated GF average value with two kernels (575).

It should also be noted the truncated GF average value (572) of the function A(X) = 1
(for all x > 0) is equal to the GF cumulative distribution function Ex

(Mx)
[1] = F(M)

X (x).

7.4. First Example of Calculation of Truncated GF Average Value

Let us consider the uniform GF distribution with the Gamma distribution of the
nonlocality considered in Section 4.2. Then, the kernel pair of the Luchko set is described
by expressions (301) with the GFI kernel

Mx(x) = hα,λ(λ x) =
(λ x)α−1

Γ(α)
e−λ x, (578)

where λ > 0 and γ(β, x) is the incomplete gamma function (see Section 9 in [127],
pp. 134–142).

The GF probability density of the uniform GF distribution for nonlocality in form
(578), is described by the function

fX(x) = λ {1}. (579)

The function A(X) = Xn of a random variable X is considered in the form

A(x) = xn, (580)

where n ∈ N.
The GF cumulative distribution function F(M)

X (x) for the GF probability density (579)
has the form

F(M)
X (x) = Ix

(Mx)
[u] fX(u) =

1
Γ(α)

γ(α, λ x). (581)

Then, the truncated GF average value of function A(X) = Xn on the interval
[0, x] ⊂ R+ is

Ex
(Mx)

[Xn] = Ix
(Mx)

[u]
(

A(u) fX(u)
)

=
λα−1

Γ(α)

ˆ x

0
(x− u)α−1 e−λ (x−u) un λ du =

λα

Γ(α)

ˆ x

0
(x − u)n uα−1 e−λ u du. (582)

Using the equality

(x − u)n =
n

∑
k=0

(
n
k

)
xn−kuk, (583)
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Equation (582) can be written as

Ex
(Mx)

[Xn] =
λα

Γ(α)

n

∑
k=0

(
n
k

)
xn−k

ˆ x

0
uα+k−1 e−λ u du. (584)

Using the equation
ˆ x

0
uα+k−1 e−λ u du = λ−α−k γ(α + l, λ x), (585)

where α + k > 0, Equation (584) takes the form

Ex
(Mx)

[Xn] =
λα

Γ(α)

n

∑
k=0

(
n
k

)
xn−kλ−α−k γ(α + k, λ x) =

n

∑
k=0

(
n
k

)
λ−k

Γ(α)
xn−k γ(α + k, λ x). (586)

Using Equation (576), the truncated GF average value of function A(X) = Xn on the
interval [a, b] ⊂ R+ has the form

E
(Mx)
[a,b] [X

n] =
1

F(M)
X (b) − F(M)

X (a)

(
Eb
(Mx)

[bn] − Ea
(Mx)

[an]
)

. (587)

Substitution of Equations (581) and (586) into expression (587) gives

E
(Mx)
[a,b] [X

n] =
1

γ(α, λ b) − γ(α, λ a)

n

∑
k=0

(
n
k

)
λ−k

(
bn−k γ(α + k, λ b) − an−k γ(α + k, λ a), (588)

where b > a ≥ 0.

7.5. Second Example of the Calculation of the Truncated GF Average Value

In this subsection, it is considered an example of the calculation of the truncated GF
average values of the first type for the GF distribution that is described as the second
example in Section 5.1. Note that the first example of Section 5.1 cannot be used for this
purpose since Equation (305) (Equation (4.4.5) of [128], p. 61) can be used for the case
uβ+γ−1 Eα,β[− η uα] only if γ = 0.

Consider the kernel pair (138), in which the GFI kernel has the form

Mx(x) = (λ x)β−1 Eα,β[− (λ x)α] (589)

where 0 < α ≤ β < 1, the GF probability density

fX(x) = λ
(λ x)µ−1

Γ(µ)
, (590)

and the function A(X) of the random variable

A(X) = Xγ, (591)

where γ ∈ R.
In order for the function fX(x) and the product A(x) fX(x) to belong to a set C−1(0, ∞),

the following condition must be satisfied

µ > 0, µ + γ > 0. (592)
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The truncated GF average value of the function A(X) = Xγ of the random variable X
has the form

Ex
(Mx)

[Xγ] = Ix
(Mx)

[u]
(

A(u) fX(u)
)

=

ˆ x

0

λβ+µ−1

Γ(µ)
uµ+γ−1 (x − u)β−1 Eα,β[− (λ (x − u))α] du. (593)

Then, using Equation (4.4.5) of [128], p. 61, in the form

1
Γ(µ)

ˆ x

0
uµ+γ−1 (x− u)β−1 Eα,β[− η (x− u)α] du =

Γ(µ + γ)

Γ(µ)
xβ+γ+µ−1 Eα,β+µ+γ[− η xα], (594)

where µ + γ > 0, β > 0, Equation (593) takes the form

Ex
(Mx)

[Xγ] = λβ+µ−1 Γ(µ + γ)

Γ(µ)
xβ+µ−1+γ Eα,β+µ+γ[− (λ x)α], (595)

where it is assumed that the parameters satisfy the conditions

α > 0, β > 0, γ > − µ, µ > 0. (596)

The GF probability density (590) satisfies the normalization condition if equality (315)
is satisfied in the form

β + µ − 1 = α > 0. (597)

As a result, the conditions on the parameters have the form (321) with γ > −µ

0 < α ≤ β < 1, 0 < α ≤ µ ≤ 1, (598)

such that equality (597) holds.
Using Equation (597), the truncated GF average value (595) of the function A(X) = Xγ

of the random variable X has the form

Ex
(Mx)

[Xγ] = λα Γ(µ + γ)

Γ(µ)
xα+γ Eα,α+γ+1[− (λ x)α]. (599)

The GF cumulative distribution Function (306) has the form

F(M)
X (x) = (λ x)α Eα,α+1[− (λ x)α]. (600)

Using Equation (576), the truncated GF average value of function A(X) = Xγ on the
interval [a, b] ⊂ R+ has the form

E
(Mx)
[a,b] [X

γ] =
1

F(M)
X (b) − F(M)

X (a)

(
Eb
(Mx)

[bγ] − Ea
(Mx)

[aγ]
)

. (601)

Substitution (599) and (600) into expression (601) gives

E
(Mx)
[a,b] [X

γ] =
1

bα Eα,α+1[− (λ b)α] − aα Eα,α+1[− (λ a)α]
·

Γ(µ + γ)

Γ(µ)

(
bα+γ Eα,α+γ+1[− (λ b)α] − aα+γ Eα,α+γ+1[− (λ a)α]

)
, (602)

where b > a ≥ 0.
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8. Conclusions

In this paper, a nonlocal generalization of the standard probability theory of the
continuous distribution of the semi-axis is formulated by using general fractional calculus
(GFC) in the Luchko form as a mathematical tool.

Let us briefly list the most important results proposed in this paper.

(1) Basic concepts of the nonlocal probability theory, nonlocality, described by the pairs
of Sonin kernels that belong to the Luchko set, are suggested. Nonlocal (GF) gener-
alizations of the probability density function, the cumulative distribution function,
probability, average values, and characteristic functions are proposed. The properties
of these functions are described and proved.

(2) Nonlocal (general fractional) distributions are suggested and their properties are
proved. Among these distributions, the following distributions are described:

(a) Nonlocal analogs of uniform and degenerate distributions;
(b) Distributions with special functions, namely with the Mittag-Leffler function,

the power law function, the Prabhakar function, the Kilbas–Saigo function;
(c) Convolutional distributions that can be represented as a convolution of the

operator kernels and standard probability density;
(d) Distributions of the exponential types are suggested as generalizations of the

standard exponential distributions by using solutions of linear general fractional
differential equations.

(3) The truncated GF probability density function, truncated GF cumulative distribution
function, and truncated GF average values are considered. Examples of the calculation
of the truncated GF average value are given.

It should be emphasized that the proposed nonlocal probability theory cannot be
reduced to a standard theory that uses classical probability densities and distribution
functions. This impossibility is analogous to the fact that fractional calculus and the general
fractional calculus cannot be reduced to standard calculus, which uses standard integrals
and integral derivatives.

Obviously, all aspects and questions of the nonlocal probability theory could not be
considered in one article. Generalizations of all the concepts and methods of the standard
theory of probabilities for a nonlocal case could not be proposed here. Moreover, it is
obvious that only one type of nonlocality is considered in this work. Nonlocality is actually
described by the Laplace convolution only. Many important and interesting questions and
problems have not been resolved in this work and require further study and research in
the future.

As a further development of the nonlocal probability theory, the following directions
of its expansion seem important.

First, it is important to expand the types of nonlocalities for which a mathematically
correct NPT can be constructed. For example, in addition to the nonlocalities described by
the Laplace convolution, it is important to study the nonlocalities described by the Mellin
convolution. However, for this type of nonlocality, unfortunately, a general fractional
calculus similar to Luchko’s GF calculus has not yet been created.

Secondly, it is important to describe discrete theories of non-local probabilities, which
make it possible to correctly describe nonlocal discrete distributions. Unfortunately, a dis-
crete analog of the general fractional calculus in the Luchko form has not yet been created.

Thirdly, it is interesting to further develop the approach proposed in this paper,
including a description of the properties of the proposed probability distributions. For
example, it is important to write (mathematically accurately) the descriptions of the nonlocal
probabilities for piecewise continuous distributions and probability distributions on the
entire real axis, and not just on the positive semi-axis. Such formulations clearly go beyond
the function spaces used in the GFC in the Luchko form. One can assume that the piecewise
continuous case can be described by using some of the tools used in [95]. Note that the
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general fractional calculus of many variables, which is partially described in [95], can be
used for the detailed study of GF distributions in multidimensional spaces.

The proposed mathematical theory can be used primarily to describe the nonlocal mod-
els of statistical mechanics [147–151], physical kinetics of plasma-like media [65,152–155],
non-Markovian quantum physics of open systems [66,97], statistical optics [156,157], and
statistical radiophysics [158]. This may be due to the role of non-standard spatial and
frequency dispersions. A nonlocal theory of probability can be an important tool for de-
scribing complex processes in the economy, in technical and computer sciences, where
nonlocality can make a significant contribution to the studied processes and phenomena.
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