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The standard one-dimensional diffusion equation is extended to include nonlocal temporal and spatial medium
responses. How such nonlocal effects arise in a photopolymer is discussed. It is argued that assuming rapid
polymer chain growth, any nonlocal temporal response can be dealt with so that the response can be com-
pletely understood in terms of a steady-state nonlocal spatial response. The resulting nonlocal diffusion equa-
tion is then solved numerically, in low-harmonic approximation, to describe grating formation. The effects of
the diffusion rate, the rate of polymerization, and a new parameter, the nonlocal response length, are exam-
ined by using the predictions of the model. By applying the two-wave coupled-wave model, assuming a linear
relationship between polymerized concentration and index modulation, the resulting variation of the grating
diffraction efficiency is examined. © 2000 Optical Society of America [S0740-3232(00)02106-2]

OCIS code: 160.2900.
1. INTRODUCTION
The ability to optically record highly diffraction efficient
low-loss volume holographic gratings in self-processing
photopolymer materials makes these materials of ever-
increasing practical importance.1 A diffusion-based
mechanism of grating formation2 and a model based on
this mechanism of hologram formation have previously
been presented in the literature.3,4 Although this model
provides insights into the physical processes taking place,
it incorrectly predicts that the higher the spatial fre-
quency recorded, the more ideal the grating recorded.

Several practical reasons can be given for why this the-
oretical prediction disagrees with experimental results.
The recording of high-spatial-frequency gratings requires
vibration isolation during exposure. Poor isolation or
long exposure times will cause a cumulative smearing of
the grating profile. However, it seems reasonable to ex-
pect that there is a fundamental physical limit to the
minimum grating period recordable that depends on the
material’s recording mechanism.

In all previous models it is assumed that the response
of the photopolymer to the incident light is local; i.e., the
effect at a point is independent of effects at all other times
and places in the medium. In this paper we discuss the
case of a medium in which the response of the material is
nonlocal; i.e., the response at point x at time t depends on
what happened at a point x8 at time t8. Such a nonlocal
response can arise from several physical effects, but in
particular it may arise from the recording mechanism.
In the case of dry photopolymer, gratings are formed
when varying numbers of polymer chains are initiated si-
multaneously in all illuminated areas within the mate-
rial. The chains then grow away from their initiation
point, which leads to a ‘‘spreading’’ of the polymer. We
propose that this chain growth is the physical reason for a
nonlocal response. Other possible causes such as diffuse
scattering of light during recording will not be considered
further here.
0740-3232/2000/061108-07$15.00 ©
We now discuss how nonlocal effects might be repre-
sented mathematically. Let us assume the isotropic
growth of polymer chains outward from any initiation
point. We also assume that the length that the chains
grow away from their initiation point and the directions
of the polymer’s bond vectors can be described with a
macroscopic distribution function.5 To represent the
spreading of the polymer chains, we introduce two macro-
scopic probability density functions (PDF’s): a chain-
length PDF, and a chain-growth velocity PDF, which give
the likelihood of a chain having a particular parameter
value.

We represent the probability of the existence of a chain
of effective length L by

P@L# 5 exp@2~L 2 Lm !2/2sL#/A2psL, (1a)

and the probability of the existence of a chain growing
with velocity v is given by

P@v# 5 exp@2~v 2 vm!2/2sv#/A2psv, (1b)

where Lm is the mean effective chain length and sL is the
chain-length distribution variance while vm is the mean
chain-growth velocity and sv the velocity variance. In
both cases we assume that the PDF’s of the two param-
eters are well approximated by normal Gaussian
distributions.6 To ensure that nonphysical negative val-
ues have very low probabilities of existing, i.e., more than
99% of the total population is positive valued and nor-
mally distributed, we assume that Lm 2 2A2sL . 0 and
vm 2 2A2sv . 0.

Now let us examine the case of two points x and x8
separated by a distance x 2 x8 in the recording medium.
If x 2 x8 . Lm 1 2A2sL, then a negligible number (less
than 1%) of chains originating at x8 will be of sufficient
effective length to reach x. But if x 2 x8 , Lm

2 2A2sL, effectively all chains that start to grow at x8
will pass through x. In a similar manner we can define
effective maximum and minimum velocities. Dividing
2000 Optical Society of America
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the effective maximum connectable separation by the
minimum effective velocity, we derive an expression for
the maximum effective travel of time Tmax between the
points.

Tmax '
~x 2 x8!umax

vumin
5

Lm 1 2A2sL

vm 2 2A2sv

. (2)

The time parameter Tmax is of special significance.
Given any length of time greater than Tmax , we are cer-
tain that more than 99% of all the chains that started to
grow at x8 and that are long enough to reach x will have
given rise to an amount of polymer at x. In developing
our model we assume that over this length of time the
monomer concentration at x8 varies very little. In this
case, following an initial transient period within the sys-
tem, the cumulative effect of position x8 on position x will
be instantaneously governed by the amount of polymer-
ization at point x8. If the initiation of chains at position
x8 changes slowly as a function of time, eventually a
steady state is achieved at x. At any time following the
initial transient time period Tmax , all possible x8-initiated
polymer chain-length/velocity combinations that can
reach the x position will be simultaneously present there.
In this way we talk of an average over the time interval
Tmax to find the accumulative effect of x8 on x.

In other words, if chain growth is rapid compared with
other temporal effects within the medium, i.e., the rates
of monomer diffusion and polymerization, then any
change in the time-averaged concentration of monomer at
x8 will effectively give rise to an instantaneous change in
the time-averaged amount of polymerization at position x.
In this paper we therefore assume that the nonlocal tem-
poral response arising from the growth of the polymer
chains can be modeled by using an equivalent instanta-
neous nonlocal spatial response.

2. NONLOCAL DIFFUSION MODEL
Following the notation of Zhao and Mouroulis,3 we pro-
pose the following extended nonlocal form of the one-
dimensional diffusive transport equation for the concen-
tration of monomer u(x, t) in a dry layer:

]u~x, t !

]t
5

]

]x FD~x, t !
]u~x, t !

]x G2E
2`

1`E
0

t

R~x, x8; t, t8!

3 F~x8, t8!u~x8, t8!dt8dx8. (3)

In this equation D(x, t) is referred to as the diffusion con-
stant. F(x8, t8) represents the rate of polymerization
[rate of removal of u(x8, t8)] at point x8 and time t8. The
nonlocal response function R(x, x8 ; t, t8) represents the
effect of monomer concentration at location x8 and t8 on
the amount of material being polymerized at location x at
time t.

As discussed in the introduction, we argue that averag-
ing takes place over the temporal effects, and we can
therefore assume an equivalent instantaneous response.
Now, using our introductory arguments regarding time
scales, we assume that over the time interval Tmax other
processes vary little:
F~x8, t8!u~x8, t8! ' F~x8, t8 6 Tmax!u~x8, t8 6 Tmax!.
(4)

Let us assume we can break our nonlocal response
function into the product of a spatial and a temporal re-
sponse: R(x, x8 ; t, t8) 5 R(x, x8)T(t, t8). The purely
temporal response takes account of the effects of past
events over the time interval 0 < t8 , t. In the local
limit the time response function must have the following
mathematical property:

lim
Tmax→0

@T~t8, t !# 5 d ~t8 2 t !. (5a)

Furthermore, we argue that only events in the recent
past, quantified by using Tmax , will give rise to significant
nonlocal temporal effects. The time response must
therefore have the properties that

E
2`

t

T~t8, t !dt8 5 1 ' E
t2Tmax

t

T~t8, t !dt8. (5b)

In expression (5b) the limits of integration indicate that
the time response operates only over the range t 2 Tmax
< t8 , t.

Starting with Eq. (3) and applying Eq. (4) and expres-
sion (5b) we argue that

E
0

t

R~x, x8; t, t8!F~x8, t8!u~x8, t8!dt8

' F E
2Tmax

t

R~x, x8!T~t, t8!dt8GF~x8, t !u~x8, t !

' R~x, x8!F~x8, t !u~x8, t !. (6)

When these results are combined, diffusion equation (3)
becomes

]u~x, t !

]t
5

]

]x FD~x, t !
]u~x, t !

]x G2E
2`

1`

R~x, x8!

3 F~x8, t !u~x8, t !dx8. (7a)

On examination we see that when the spatial response is
local, i.e., R(x, x8) 5 d (x 2 x8), we return to the stan-
dard one-dimensional diffusion equation for monomer
concentration3,4:

]u~x, t !

]t
5

]

]x FD~x, t !
]u~x, t !

]x G2F~x, t !u~x, t !. (7b)

To solve Eq. (7a) we must assume a form for the spatial
response function. The response function arises from the
growth of chains from the point at which they are initi-
ated into adjacent regions. It will be related to, but not
be the same as, the PDF of chain lengths. Furthermore,
we assume that the growth of chains will be spatially iso-
tropic, and therefore we expect the response to be an even
function of x 2 x8. It would also seem physically reason-
able to assume that the probability of a chain initiated at
point x8 influencing the process at x will decrease as the
distance between the two points increases. Finally, as
the process approaches the local limit the response func-
tion must become a delta function. A mathematical func-
tion that satisfies all these criteria is
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R~x 2 x8! 5
exp@2~x 2 x8!2/2s#

A2ps
, (8a)

where we refer to the square root of the variance As as
the nonlocal response length since it characterizes the
length scale over which the nonlocal effect is significant.
We note that

lim
s→0

exp@2~x 2 x8!2/2s#

A2ps
5 d ~x 2 x8!,

E
2`

1` exp@2~x 2 x8!2/2s#

A2ps
dx8 5 1. (8b)

Equation (7a) is now solved; we have closely followed the
method of Zhao and Mouroulis3 with the nonlocal re-
sponse presented in Eq. (8a), given the initial condition
u(x, 0) 5 100 for 2` , x , 1 `. Following Ref. 3 we
assume a recording intensity of the form

I~x, t ! 5 I0@1 1 V cos~Kx !#, (9a)

where I0 is the average intensity in the medium, V is the
fringe visibility, K 5 2p/L is the grating spatial fre-
quency, and L is the resulting grating period. We as-
sume that the rate of polymerization is directly propor-
tional to the exposing intensity, and therefore

F~x, t ! 5 F0@1 1 V cos~Kx !#, (9b)

where F0 5 kI0 , k a fixed constant. The monomer con-
centration is written as a four-harmonic expansion,

u~x, t ! 5 (
l50

M53

ui~t !cos~iKx !, (10)

and the diffusion constant is expanded in a two-harmonic
expansion,

D~x, t ! 5 (
i50

M51

Di~t !cos~iKx !. (11)

When these expansions are substituted into Eq. (7a), the
following set of first-order coupled concentration equa-
tions can be derived:

du0~j!

dj
5 2u0~j! 2

V

2
u1~j!, (12a)

du1~j!

dj
5 2V exp~2K2s/2!u0~t ! 2 [exp~2K2s/2!

1 R exp~2aj!cosh~aVj!]u1~j!

2 FV

2
exp~2K2s/2!

1 R exp~2aj!sinh~aVj!Gu2~j!, (12b)
du2~j!

dj
5 2$exp@2~2K !2s/2#

1 4R exp~2aj!cosh~aVj!%u2~j!

2 H V

2
exp@2~2K !2s/2#

2 R exp~2aj!sinh~aVj!J u1~j!

2 H V

2
exp@2~2K !2s/2#

2 3R exp~2aj!sinh~aVj!Ju3~j!, (12c)

du3~j!

dj
5 2$exp@2~3K !2s/2#

1 9R exp~2aj!cosh~aVj!%u3~j!

2 H V

2
exp[2(3K)2s/2]

1 3R exp(2aj)sinh(aVj)J u2~j!, (12d)

where u0 , u1 , u2 and u3 are the first four monomer-
concentration harmonics, s is the nonlocal variance, and
a is a constant that characterizes the rate of decrease of
the diffusion coefficients; see Ref. 3. R 5 DK2/F0 is the
ratio of the diffusion rate and the polymerization rate,
and j 5 F0t 5 kI0t is the illumination time t multiplied
by irradiance.

The resulting concentration of polymerized monomer,
after an exposure of duration t seconds, is given by a
modified version of the driving function of Eq. (7a),3

N~x, t ! 5 E
0

tE
2`

1`

R~x 2 x8!F~x8, t9!u~x8, t9!dx8dt9, (13)

giving the following polymerization-concentration spatial-
harmonic components:

N0~j! 5 E
0

j

@u0~j9! 1 ~V/2!u1~j9!#dj9, (14a)

N1~j! 5 exp~2K2s/2!E
0

j

@Vu0~j9! 1 u1~j9!

1 ~V/2!u2~j9!#dj9, (14b)

N2~j! 5 exp@2~2K !2s/2#E
0

j

@~V/2!u1~j9! 1 u2~j9!

1 ~V/2!u3~j9! 1 #dj9, (14c)

N3~j! 5 exp@2~3K !2s/2#E
0

j

@~V/2!u2~j9! 1 u3~j9!#dj9.

(14d)
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It is now assumed that the modulation of the refractive
index induced during recording is approximately linearly
related to the polymer concentration. Therefore each of
the above terms corresponds to a change in the size of a
spatial-frequency component of a grating pattern re-
corded in the volume:

n~x, j! 5 nav 1 C (
i50

M53

Ni~j!cos~iKx !. (15)

3. NUMERICAL RESULTS
We wish to explore changes to the local response diffusion
model predictions, which arise from the introduction of
the nonlocal response. We do this by carrying out a set of
calculations for the local response case,3,4 and then com-
paring these with the corresponding nonlocal predictions.
Three values of s are used in the following calculations:
s 5 0 (local case), s 5 1/64, and s 5 1/32. For general-
ity we normalize all length scales with respect to the grat-
ing period length. The values of variance correspond to
the square of a length within the grating. A variance of
s 5 1/64 corresponds, in the grating material, to a
response-length scale of one eighth of a period and indi-
cates the length range over which the effects of a point

Fig. 1. Monomer-concentration amplitudes: (a) u0 and u1 , (b)
u2 versus exposure j. Solid curves, s 5 0; short-dashed curves
s 5 1/64; long-dashed curves, s 5 1/32.
are significant. The reason these values of variance were
chosen was that they were found to provide clearly visible
and typical results.

Equations (12) and (14) are solved numerically with
Mathematica7 run on a personal computer. Using the
four-harmonic expansion of the monomer concentration,
we first calculate the harmonic amplitudes over the range
0 < j < 10 for the case where V 5 1, a 5 0.1, and R
5 1 (Fig. 1). In Fig. 1(a) the variation of the amplitudes
of the zeroth, u0 , and first, u1 , harmonics as functions of
exposure energy j are presented. In each case the curves
for three values of nonlocal variance are presented: s
5 0 (local case), s 5 1/64, and s 5 1/32. The corre-
sponding graph for the second-order monomer-
concentration harmonic are shown in Fig. 1(b). The am-
plitudes of all the monomer harmonics are seen to
decrease with time; also, the larger the value of s, the
more rapidly the monomer is polymerized. The corre-
sponding harmonics of polymer concentration are shown
in Fig. 2. The effect of s is to decrease the saturation lev-
els of the higher-order harmonics, thereby decreasing the
amplitude but improving the sinusoidal purity of the pro-
file shape.

Fig. 2. Polymer-concentration amplitudes versus j for R 5 1.
Solid curves, s 5 0; short-dashed curves s 5 1/64; long-dashed
curves, s 5 1/32.

Fig. 3. Saturation values, j 5 40, of the first three harmonics of
polymer concentration as functions of log10 R. Nonlocal re-
sponse variance, s 5 1/32. In all cases V 5 1. Solid curves,
a 5 0; dashed curves a 5 1.
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Taking the case where s 5 1/32, we follow Zhao and
Mouralis3 and plot the variations of the saturation values
(calculated for j 5 40) of the first three harmonics of the
polymer profile as a function of log10 R. The saturation
values are presented in Fig. 3 for the cases where a 5 0
(solid curves) and where a 5 1 (dashed curves). In
agreement with Zhao and Mouroulis, we find that a sim-
ply introduces a shift of the curves to the right, implying
that only the zeroth-order diffusion component D0 must
be retained. Most noticeably, as s increases from zero
(see Ref. 3), the saturation value of N1 decreases. Both
the second- and third-order harmonics also have smaller
maximum values and decrease more rapidly as a function
of R.

The effects of varying the illuminating fringe visibility
V on the saturated amplitude of N1 has also been exam-
ined for various nonzero, nonlocal variances. When R
. 25 the response for all three values of s (0, 1/64, 1/32)
is linear, with decreasing maximum N1 as s increases.
As R decreases in size and s increases, the relationship
N1(V) becomes less linear and N1 decreases rapidly in
amplitude.

4. GRATING PROFILES AND DIFFRACTION
EFFICIENCIES
We have now examined the amplitudes of both the mono-
mer and the resulting polymer-concentration harmonics.
In Fig. 4 we present a set of three polymer-concentration
profiles, following an exposure of j 5 20, plotted over one
grating period, with V 5 1 and a 5 0.1. In Fig. 4(a) R
5 1, in Fig. 4(b) R 5 50, and in Fig. 4(c) R 5 0.05. In
each case the profiles for values of s 5 0, 1/64, and 1/32
are presented. We note that the results in Fig. 4(a) cor-
respond to the cases examined in Figs. 1 and 2.

In Fig. 4(a) (R 5 1), there is significant distortion in
the local response profile recorded. Increasing the non-
local variance smoothes the profile, and while the profile
visibility decreases, its harmonic purity increases. When
R 5 50 [Fig. 4(b)], the largest and purest sinusoidal grat-
ing profiles are achieved. Increasing s decreases the pro-
file visibility. In Fig. 4(c) (R 5 0.05), the most-nonlinear
profiles with the lowest visibility occur. Once again, in-
creasing s smoothes the profile, thus decreasing the pro-
file visibility.

As stated in Section 2, we assume that a linear rela-
tionship exists between the strength of the refractive-
index changes that occur in the material and the strength
of the polymer concentration. The first-order, two-wave
coupled-wave model8 predicts that the diffraction effi-
ciency of a volume unslanted transmission phase grating
replayed at the Bragg condition is given by

h 5 sin2S pDnd

l cos u
D , (16a)

where d is the grating thickness, l the replay wavelength,
u the replay angle and Dn the amplitude of the first-order
refractive-index modulation harmonic. This model as-
sumes that the effects of all higher-order-grating spatial
components can be neglected.9 Typical values of these
parameters are d 5 100 mm, l 5 500 nm, u 5 30°,
which will produce a grating of period L 5 l/(2 sin u)
5 500 nm. We assume that Dn 5 CN1(j) and that
therefore

h~j! ' sin2@725.5 3 CN1~j!#. (16b)

Given that a value of Dn of ;0.002 will provide a diffrac-
tion efficiency close to 100%, when we examine our results
for N1 it can be seen that a value of C ' 4.3 3 1025 will
provide an experimentally achievable diffraction-
efficiency result.

Using these parameter values we present the
diffraction-efficiency growth curves in Figs. 5(a), 5(b), and

Fig. 4. Spatial distribution profiles of polymer concentrations:
(a) R 5 1, (b) R 5 50, (c) R 5 0.05; In all cases V 5 1 and a
5 0.1. Nonlocal variances: solid curves, s 5 0; short-dashed
curves s 5 1/64; long-dashed curves, s 5 1/32.
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5(c) for the same three sets of grating profiles shown in
Figs. 4(a), 4(b), and 4(c), respectively. The diffraction ef-
ficiency is shown as a function of j (exposure energy).
From the model we expect an increase in diffraction effi-
ciency up to a maximum value of 1, or 100%, followed by
overmodulation.

From Figs. 5(a)–5(c) we see that both R and s have
very strong effects on the diffraction efficiency of the grat-
ing. In general the larger R, the faster the growth of the

Fig. 5. First-order, two-wave coupled-wave model prediction of
the diffraction-efficiency growth curves of the gratings for the
polymer-concentration profiles shown in Fig. 4: (a) R 5 1, (b)
R 5 50, (c) R 5 0.05; V 5 1 and a 5 0.1. Nonlocal variances:
solid curves, s 5 0; short-dashed curves, s 5 1/64; long-dashed
curves, s 5 1/32.
grating and the higher the modulation achievable. In-
creasing the nonlocal variance acts to slow down the
growth of the diffraction efficiency and to reduce the
maximum saturation modulation achievable.

5. CONCLUSIONS
The nonlinear diffusion model for hologram formation in
photopolymer has been extended to include nonlocal spa-
tial response effects. To do so we have assumed that
nonlocal temporal effects occur on a short time scale,
which allows them to be treated as effectively instanta-
neous.

The predictions of the local diffusion model, s 5 0,
(Refs. 3 and 4) might be stated as follows. In general the
larger the value of R, the stronger the first-order grating
and the more closely the resulting grating profile matches
the illuminating fringe pattern. We can summarize
these results as follows:

1. As I0 increases, F0 increases and R decreases.
2. As L increases, K decreases and R decreases.

Therefore the lower the illuminating intensity (the longer
the exposure) and the finer the fringe period, the larger R
and so the better the profile.

In the nonlocal response regime, s . 0, a further quali-
fication must be noted. The larger the nonlocal response
variance, the lower the visibility of the profile but also the
more closely the profile recorded resembles the sinusoidal
interference pattern. Experimentally, one usually works
with a fixed material in which the chain-length and
chain-growth velocity PDF’s are fixed. As the recording
fringe-pattern period decreases, the ratio of the nonlocal
response variance to the period squared increases. In
this situation eventually the grating amplitude is so weak
as to be negligible. Therefore we have two additional
predicted results:

3. As L decreases, K2s increases, Dn 5 CN1 de-
creases, and the first-order grating is suppressed.

4. As L decreases, (mK)2s increases more rapidly,
and so Dnm 5 CNm decreases and the higher-order-
grating harmonics are even more heavily suppressed.
Here Nm is the mth-order polymer-concentration har-
monic.

The diffusion model has been extended in a way that
should make it applicable to a wider range of observable
phenomena. This simple monomer diffusion and poly-
merization model is insufficient to explain all aspects of
hologram formation. For example, the diffusion of dye
molecules also affects the process. A model of much
greater complexity may be required to predict the mate-
rial behavior fully.
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