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NONLOCAL SYMMETRY AND INTERACTION SOLUTIONS FOR

THE NEW (3+1)-DIMENSIONAL INTEGRABLE BOUSSINESQ

EQUATION

Hengchun Hu* and Xiaodan Li

Abstract. The nonlocal symmetry of the new (3+1)-dimensional Boussinesq equation is obtained
with the truncated Painlevé method. The nonlocal symmetry can be localized to the Lie point sym-
metry for the prolonged system by introducing auxiliary dependent variables. The finite symmetry
transformation related to the nonlocal symmetry of the integrable (3+1)-dimensional Boussinesq equa-
tion is studied. Meanwhile, the new (3+1)-dimensional Boussinesq equation is proved by the consistent
tanh expansion method and many interaction solutions among solitons and other types of nonlinear
excitations such as cnoidal periodic waves and resonant soliton solution are given.
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1. Introduction

The study of nonlinear integrable systems is one of the most important subjects in the nonlinear science.
The explicit solutions of nonlinear integrable systems are widely used to explain physical phenomena. Many
effective methods are proposed such as the inverse scattering transformation, Bäcklund transformation, Darboux
transformation, Painlevé analysis method, the separated variable approach and Hirota bilinear method [4, 6,
8, 14, 21, 22, 26], etc. However, it is difficult to find the interaction solutions between a soliton and cnoidal
periodic waves for the nonlinear systems with these methods.

Recently, abundant interaction solutions among solitons and different waves including periodic cnoidal waves,
Painlevé waves and Boussinesq waves for many integrable systems have been obtained by nonlocal symmetry
reduction and the consistent tanh expansion method related to the Painlevé analysis [2, 3, 9, 13, 20]. Lou has
pointed out that the residue with respect to the singularity manifold is a nonlocal symmetry for the given
truncated Painlevé expansion of the nonlinear Painlevé integrable system [11]. The nonlocal symmetry is a
generalized symmetry depending on the integrals of dependent variables [5, 15].

On the other hand, a method called consistent tanh expansion method (CTE) is proposed to identify CTE
solvable systems, which is a special simplified form of the consistent Riccati expansion method defined in
reference [12]. Based on this method, not only the integrability of nonlinear systems can be clarified but also
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some interesting interaction solutions between the soliton and many other types of nonlinear waves can be
derived [1, 7, 10, 16–19, 23, 24].

In this paper, we focus on the following new (3+1)-dimensional Boussinesq equation

utt − uxx − β(u2)xx − γuxxxx +
α2

4
uyy + αuyt + δuxz = 0, (1.1)

with α, β, γ, δ are nonzero constants. Equation (1.1) is just the extension of the standard Boussinesq equation by

adding the term α2

4 uyy+αuyt+δuxz. The new (3+1)-dimensional Boussinesq equation describes the propagation
of gravity waves over the water surface, in particular the head-on collision of oblique waves. The author has
studied the real and complex multiple soliton solutions by means of the simplified Hirota’s method and the
integrability property of new (3+1)-dimensional Boussinesq equation (1.1) is proved in reference [25].

The paper is organized as follows. In Section 2, the nonlocal symmetry of the new (3+1)-dimensional
Boussinesq equation is studied by the truncated Painlevé method. In order to solve the initial value problem
related to the nonlocal symmetry, the equation (1.1) is extended to the enlarged one by introducing the depen-
dent variables. The finite symmetry transformation is obtained by solving the initial value problem through the
Lie’s first principle. The multi-solitary wave solution for new (3+1)-dimensional Boussinesq equation is given
with the finite symmetry transformation from the nonzero seed solution. In Section 3, some exact interaction
solutions for the new (3+1)-dimensional Boussinesq equation (1.1), such as the soliton-cnoidal wave solutions,
the resonant solution are studied by the CTE method through the different solutions of the consistent condition.
Summary and discussion are given in the last section.

2. Nonlocal symmetry of the new (3+1)-dimensional Boussinesq
equation

In this section, we give the nonlocal symmetry and corresponding finite symmetry transformation for the
new (3+1)-dimensional Boussinesq equation (1.1) are discussed based on the truncated Painlevé expansion.
Since the nonlocal symmetry includes the arbitrary singularity manifold, we should introduce new dependent
variables to make the nonlocal symmetry become the usual Lie point symmetry for the prolonged system.

It is known that the Laurent series form for equation (1.1) reads

u =
u0
φ2

+
u1
φ

+ u2, (2.1)

where the function φ = φ(x, y, z, t) is an arbitrary singularity manifold and u0, u1, u2 are three functions to
be determined later. Substituting the expansion (2.1) into equation (1.1) and vanishing all the coefficients of
different powers of φ independently, we have

u0 = −6γφ2x
β

, u1 =
6γφxx
β

, (2.2)

u2 =
12γφ2xx − 16γφxφxxx − 4φ2x + α2φ2y + 4φ2t + 4αφyφt + 4δφxφz

8βφ2x
, (2.3)

α2(KKx +Ky) + 4α(CKx + Cy) + 4(CCx + Ct) + 4δQx − 4γSx = 0, (2.4)

u2tt − u2xx − β(u22)xx − γu2xxxx +
α2

4
u2yy + αu2yt + δu2xz = 0, (2.5)
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where

S =
φxxx
φx
− 3φ2xx

2φ2x
,K =

φy
φx
, Q =

φz
φx
, C =

φt
φx
,

are invariants of the Möbius transformation. It is clear that equation (2.5) is just equation (1.1) with the solution
u2 and the residual u1 is the symmetry corresponding to the solution u2 based on the residual symmetry theorem
in [11]. So the truncated Painlevé expansion

u = −6γφ2x
βφ2

+
6γφxx
βφ

+ u2, (2.6)

is an auto-Bäcklund transformation between the solutions u and u2 for the new (3+1)-dimensional Boussinesq
equation.

Based on the definition of the residual symmetry, the nonlocal symmetry for equation (1.1) can be read out
from the truncated Painlevé expansion

σu =
6γφxx
β

, (2.7)

and the corresponding initial value problem is

dū

dε
=

6γφxx
β

, ū|ε=0 = u, (2.8)

with ε being an infinitesimal parameter. It is not easy to solve the initial value problem (2.8) according to the
Lie first principle due to the intrusion of the arbitrary function φ its two-order differentiation. To solve the
initial value problem related to the nonlocal symmetry (2.7), we localize the nonlocal symmetry to the local Lie
point symmetry for the enlarged system by introducing two new dependent variables

φx = g, gx = h. (2.9)

It is easily verified that the solution of the symmetry equation for the prolonged system (1.1), (2.3) and (2.9)
gives

σφ = −φ2, σu =
6γh

β
, σg = −2φg, σh = −2g2 − 2φh. (2.10)

Then the corresponding initial value problem becomes

dū

dε
=

6γh̄

β
, ū|ε=0 = u, (2.11a)

dφ̄

dε
= −φ̄2, φ̄|ε=0 = φ, (2.11b)

dḡ

dε
= −2φ̄ḡ, ḡ|ε=0 = g, (2.11c)
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dh̄

dε
= −2ḡ2 − 2φ̄h̄, h̄|ε=0 = h. (2.11d)

It can be seen that the nonlocal symmetry (2.7) becomes the Lie point symmetry for the prolonged system
(1.1), (2.3) and (2.9) and the corresponding solution of the initial value problem (2.11) can be written as

φ̄ =
φ

1 + εφ
, ḡ =

g

(1 + εφ)2
, h̄ =

h

(1 + εφ)2
− 2g2ε

(1 + εφ)3
, (2.12a)

ū = u+
6γεh+ 6γε2φh− 6γε2g2

β(1 + εφ)2
. (2.12b)

From the finite symmetry transformations (2.12), one can get another solution ū from a given seed solution u.
For example, the function

φ = 1 + exp(a1x+ b1y + c1z + d1t) + exp(a2x+ b2y + c2z + d2t) + exp(a3x+ b3y + c3z + d3t), (2.13)

is a solution of the Schwarzian equation (2.4) with the constants selection

a2 = a3 = a1, d1 = d3 −
1

2
αb1 +

1

2
αb3, d2 = d3 −

1

2
αb2 +

1

2
αb3, (2.14)

where a1, b1, b2, b3, c1, c2, c3, d3, α are arbitrary constants. Substituting equations (2.13) and (2.14) into equa-
tion (2.3), one can obtain the solitary wave solution for equation (1.1) and the tedious expression is omitted here
for simplicity. Then taking this solitary wave solution as the seed solution of equation (1.1), we can obtain the
two solitoffs interaction solution of the new (3+1)-dimensional Boussinesq equation (1.1) from equations (2.12).
The detailed structure is shown in Figure 1 with the constants selection

α = 3, γ = c3 = −1, β = δ = 2, ε = 0.8, a1 = c1 = 3, b1 = b2 = b3 = c2 = d3 = 2. (2.15)

3. Consistent tanh expansion method and interaction solutions
of the new (3+1)-dimensional Boussinesq equation

It is known that many interaction solutions between solitons and other types of nonlinear waves such as
soliton-cnoidal waves, Airy waves, resonant waves for different nonlinear systems can be obtained through the
CTE method. In this section, we aim to find new interaction solutions for the new (3+1)-dimensional Boussinesq
equation (1.1) with the help of the CTE method by choosing proper function in the consistent condition.

By the leading order analysis for the new (3+1)-dimensional Boussinesq equation (1.1), we can take the
following truncated tanh function expansion

u = u0 + u1 tanh(ω) + u2 tanh2(ω), (3.1)

where u0, u1,u2 and ω are functions of (x, y, z, t) to be determined later. Substituting equation (3.1) into
equation (1.1) and vanishing the coefficients of different powers of tanh(ω), we have

u2 =
−6γω2

x

β
, u1 =

6γωxx
β

, (3.2a)
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Figure 1. Two solitoffs interaction solution for equation (1.1) with the constants (2.15) at
x = 0, y = 0.

u0 =
12γω2

xx − 16γωxωxxx + 4ω2
t − 4ω2

x + 4αωyωt + 32γω4
x + α2ω2

y + 4δωxωz

8βω2
x

, (3.2b)

and the function ω should satisfy the following condition

16γωxωxxωxxx − 4αωxxωyωt − 4ωxxω
2
t − 4δωxωxxωz − 4γω2

xωxxxx − 12γω3
xx − α2ωxxω

2
y

+ α2ω2
xωyy + 4αω2

xωyt + 4ω2
xωtt + 16γω4

xωxx + 4δω2
xωxz = 0,

(3.3)

which is called the consistent condition for the new (3+1)-dimensional Boussinesq equation (1.1). It is very
difficult to solve the nonlinear equation (3.3) because of the higher derivatives of the unknown function ω. From
equations (3.1)–(3.3), we can prove the following nonauto-Bäcklund transformation (BT) theorem after direct
calculation.

Nonauto−BT theorem: If ω is a solution of the consistent condition (3.3), then

u =
12γω2

xx − 16γωxωxxx + 4ω2
t − 4ω2

x + 4αωyωt + 32γω4
x + α2ω2

y + 4δωxωz

8βω2
x

+
6γωxx
β

tanh(ω)− 6γω2
x

β
tanh2(ω),

(3.4)

is a consistent tanh expansion solution of equation (1.1). That is to say, once the solution of equation (3.3)
is known, the corresponding expression u with equation (3.4) for equation (1.1) can be obtained from the
nonauto-BT theorem directly. Some interesting examples are listed in the following paper.

3.1. Simple soliton solution

A quite trivial line solution of the consistent condition (3.3) has the form

ω = ax+ by + cz + dt+ e, (3.5)
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where a, b, c, d, e are arbitrary constants. Substituting the trivial line solution (3.5) into equation (3.4), the
simple traveling wave solution of the new (3+1)-dimensional Boussinesq equation (1.1) yields

u =
4d2 − 4a2 + 4αbd+ 4δac+ 32γa4 + α2b2

8βa2
− 6γa2

β
tanh2(ax+ by + cz + dt+ e).

3.2. Interaction solutions between the soliton and cnoidal periodic waves

In order to derive the soliton-cnoidal wave solution for equation (1.1), the solution of (3.3) should be assumed
as the following form:

ω = k1x+ l1y + p1z + q1t+G(k2x+ l2y + p2z + q2t)

≡ k1x+ l1y + p1z + q1t+G(X).
(3.6)

After substituting (3.6) into the consistent condition (3.3), the function G(X) should be a solution of the
following equation

G2
1X(X) = a0 + a1G1(X) + a2G

2
1(X) + a3G

3
1(X) + a4G

4
1(X),

G1(X) = GX(X),
(3.7)

where the coefficients ai(i = 1, 2, 3, 4) are



a0 =
1

12γk62
(12γa2k

2
1k

4
2 − 24γa3k

3
1k

3
2 + 144γk41k

2
2 − α2l21k

2
2 − 4α2l1l2k1k2 + 5α2l22k

2
1

− 4αl1q1k
2
2 − 8αl1q2k1k2 − 8αl2q1k1k2 + 20αl2q2k

2
1 − 12δp1k1k

2
2 − 4q21k

2
2

+ 12δp2k
2
1k2 − 16q1q2k1k2 + 20q22k

2
1),

a1 =
1

2γk52
(4γa2k1k

4
2 − 6γa3k

2
1k

3
2 + 32γk31k

2
2 − α2l1l2k2 + α2l22k1 − 2αl1q2k2 − 2αl2q1k2

+ 4αl2q2k1 − 2δp1k
2
2 + 2δp2k1k2 − 4q1q2k2 + 4q22k1),

a4 =4,

(3.8)

which results in the following solutions:

u =− 6γ(k1 + k2G1)2

β
tanh2(ω) +

6γk22G1X

β
tanh(ω) +

1

8β(k1 + k2G1)2
[4(q1 + q2G1)2

+ 12γk41G
2
1X − 4(k1 + k2G1)2 + 4α(q1 + q2G1)(l1 + l2G1)− 16γk32(k1 + k2G1)G1XX

+ 32(k1 + k2G1)4 + α2(l1 + l2G1)2 + 4δ(k1 + k2G1)(p1 + p2G1)].

(3.9)

The solution (3.9) can be regarded as the interaction solution between the soliton solution and the G function
solution. It is obvious that the general solution for equation (3.7) is defined by elliptic function, that is, we
can select the proper elliptic function to construct the expression of ω, thus the solution for the new (3+1)-
dimensional Boussinesq equation (1.1) can be obtained. For example, one simple solution of equation (3.7)
is

G1 = µ0 + µ1sn(mX,n), (3.10)
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where sn(mX,n) is the usual Jacobi elliptic sine function. Then substituting equation (3.8) and equation (3.10)
into equation (3.7), we can find

µ1 =
(k1 + k2µ0)n

k2
,

m =
2(k1 + k2µ0)

k2
,

q1 =
2q2k1 + αl2k1 − αl1k2

2k2
,

p1 =
1

δk2
(8γk42µ

3
0 + 24γk1k

3
2µ

2
0 + 24γµ0k

2
1k

2
2 + δp2k1 + 8γk31k2 − 8γn2k31k2

− 24γµ0n
2k21k

2
2 − 24γµ2

0n
2k1k

3
2 − 8γµ3

0n
2k42),

a2 =
4(5k22µ

2
0 − k21 − k21n2 − 2k1k2µ0n

2 − 2k1k2µ0 − k22µ2
0n

2)

k22
,

a3 =− 16µ0.

(3.11)

The integral of equation (3.10) is

G = µ0X + µ1

∫ X

X0

sn(mY, n) dY. (3.12)

Then substituting equations (3.10)–(3.12) into the solution (3.9), the soliton-cnoidal wave interaction solution
for equation (1.1) can be obtained.

In order to find more interaction solutions between soliton and other nonlinear excitations of equation (1.1),
one can select the more proper function ω which satisfies the consistent condition (3.3). The first type of the
soliton-cnoidal wave interaction solution for equation (1.1) can be obtained by fixing the function ω as

ω = a0x+ b0y + c0z + d0t+
1

2
arc tanh[msn(a1x+ b1y + c1z + d1t,m)]. (3.13)

Then substituting equation (3.13) into the consistent condition (3.3), we can find the constant relation

a0 =
1

2
a1, c0 = −2γm2a31 − 2γa31 − δc1

2δ
, d0 = −1

2
αb0 +

1

4
αb1 +

1

2
d1, (3.14)

and the constants b0, a1, b1, c1, d1,m are arbitrary constants. So the first type of the soliton-cnoidal wave inter-
action solution for equation (1.1) can be obtained by substituting equation (3.13) into equation (3.4) with the
constant constraint (3.14).

The second type of the soliton-cnoidal wave interaction solution for equation (1.1) can be obtained by fixing
the function ω as

ω =
a0x+ b0y + c0z + d0t

e0
+Aarc tanh[sn(

a1x+ b1y + c1z + d1t

e1
,m)]. (3.15)

Then substituting equation (3.15) into the consistent condition (3.3), we can find the constant relation

a1 = 0, d1 = −1

2
αb1, (3.16)
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Figure 2. The second type of the soliton-cnoidal wave interaction solution (3.4) for equa-
tion (1.1) with equations (3.15)–(3.16) the constants α = β = γ = δ = 2, A = 0.5,m = 0.8, a0 =
2.2, b0 = 1, b1 = c0 = c1 = d0 = e0 = 2, e1 = 5, y = 0, z = 0.

and the constants A, a0, b0, b1, c0, c1, d0,m are arbitrary constants. So the first type of the soliton-cnoidal wave
interaction solution for equation (1.1) can be obtained by substituting equation (3.15) into equation (3.4) with
the constant constraint (3.16). The structure of the second type of the soliton-cnoidal wave interaction solution
is given in Figure 2.

The third type of soliton-cnoidal interaction solution for equation (1.1) can be obtained by choosing the
function ω as

ω = a0x+ b0y + c0z + d0t+AEf (sn(a1x+ b1y + c1z + d1t,m), n), (3.17)

where Ef is the first type of incomplete elliptic integral. Substituting equation (3.17) into equation (3.3), the con-
stants should satisfy the relation m = n and other constants are arbitrary. Then substituting equation (3.17) and
m = n into equation (1.1), one can obtain the third type of soliton-cnoidal interaction solution for equation (1.1)
with the proper parameter selection.

3.3. Resonant soliton solution

One special resonant soliton solution for the new (3+1)-dimensional Boussinesq equation (1.1) can be obtained
by choosing

ω = a0x+ b0y + c0z + d0t+ C ln(1 + exp(a1x+ b1y + c1z + d1t)), (3.18)

by substituting equation (3.18) into the consistent condition (3.3), the constants should satisfy the relation

C =
1

2
, b0 =

αa0b1 + 2a0d1 − 2a1d0 + 2
√
−3γa20a

2
1(2a0 + a1)2

αa1
,

c0 =
a0a1(16γa20a1 + 12γa0a

2
1 + 2γa31 + δc1)− (2d1 + αb1)

√
−3γa20a

2
1(2a0 + a1)2

δa21
,

(3.19)
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Figure 3. The resonant soliton solution (3.4) for equation (1.1) with equations (3.18)–(3.20)
at y = 0, z = 0.

where a0, d0, a1, b1, c1, d1 are arbitrary constants. The special resonant solution has been given out graphically
in Figure 3 with the constants selection

α = 3, β = 1, γ = −1, δ = 2, a0 = 1, a1 = 4.8, b1 = 2, c1 = 2, d0 = d1 = 2. (3.20)

4. Summary and discussion

In summary, the nonlocal symmetry of the new (3+1)-dimensional Boussinesq equation is obtained with
the truncated Painlevé expansion method. In order to solve the initial value problem related to the nonlocal
symmetry, we prolong the new (3+1)-dimensional Boussinesq equation such that nonlocal symmetry can become
the local Lie point symmetry for the prolonged system. The finite symmetry transformation of the prolonged
system is derived by using Lie’s first principle and two solitoffs interaction solution for the equation (1.1) is
obtained by choosing the proper solution of the consistent condition. Meanwhile, the new (3+1)-dimensional
Boussinesq equation is proved to be CTE solvable and we find abundant interaction solutions between the
soliton and cnoidal-periodic waves with arbitrary constants. We hope that many other integrable properties and
new soliton solutions for the new (3+1)-dimensional Boussinesq equation (1.1) are worthy of study in future.

Acknowledgements. The work is supported by National Natural Science Foundation of China (No.11471215), Shanghai
Natural Science Foundation (No.18ZR142600).
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