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Abstract A mathematical model for nonlocal vibration and buckling of embedded
two-dimensional (2D) decagonal quasicrystal (QC) layered nanoplates is proposed. The
Pasternak-type foundation is used to simulate the interaction between the nanoplates and
the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling
critical load of the 2D decagonal QC layered nanoplates are obtained by solving the
eigensystem and using the propagator matrix method. The present three-dimensional
(3D) exact solution can predict correctly the nature frequencies and critical loads of
the nanoplates as compared with previous thin-plate and medium-thick-plate theories.
Numerical examples are provided to display the effects of the quasiperiodic direction,
length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence,
and medium elasticity on the vibration frequency and critical buckling load of the 2D
decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction
on the vibration frequency and critical buckling load depend on the length-to-width ratio
of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding
medium can be adjusted for optimal frequency and critical buckling load of the nanoplate.
This feature is useful since the frequency and critical buckling load of the 2D decagonal
QCs as coating materials of plate structures can now be tuned as one desire.
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1 Introduction

Quasicrystals (QCs)[1] are novel phases of matter which possess quasiperiodic atomic ar-
rangements and rotational symmetries, including five-fold, eight-fold, and ten-fold symmetry
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axes. There are two distinct types of low energy elastic excitations in QCs, i.e., phonons and
phasons. According to the quasiperiodic dimension in physical space, QCs can be divided
into one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) QCs. The 2D
decagonal QCs considered in this paper refer to a 3D structure with atomic arrangement being
periodic in one direction and quasi-periodic in the plane perpendicular to that direction. Typ-
ical 2D QCs include decagonal, octagonal, and dodecagonal ones. In 1985, the decagonal QC
was firstly synthesized in the laboratory in rapidly quenched Al-Mn alloys[2–3]. By rapid solid-
ification, Tsai et al.[4] first synthesized a decagonal phase in the Al-Ni-Fe system in 1989. In
2015, Bindi et al.[5] reported a natural QC with decagonal symmetry in the Khatyrka meteorite,
and found that the natural QC had a high degree of structural perfection. Ahn et al.[6] realized
a dodecagonal graphene QC by epitaxial growth of twisted bilayer graphene rotated 30◦. To
provide a rational design, prediction, and realization of QC formation, Liu et al.[7] developed a
rational strategy to assemble 2D dodecagonal QCs from branched DNA nanomotifs. Molecular
dynamics (MD) simulation is a valuable method to generate QC structures and explain the
formation of QCs from the perspective of potential energy. By using double-well potentials,
Chen et al.[8] obtained the decagonal and dodecagonal QCs through MD simulation.

Owing to their unique structures, QCs possess many unusual properties such as high hard-
ness, high oxidation resistance, low frictional coefficient, low surface energy, low thermal conduc-
tivity, high wear resistance, elevated corrosion resistance, reduced wetting, and superplasticity
above 700 ◦C, which make them attractive for technological applications such as superconduc-
tivity, photonics, coatings, and reinforced composites[9–11]. In general, synthesized QCs are at
micro/nano-scale. The nano-QCs, exhibiting remarkable ductility and extraordinary specific
strength at room temperature, together with interesting functional properties, may be used
as structural and functional components in micro/nano-electromechanical systems[12]. Thus,
nano-QCs have attracted much attention from both experimental and theoretical points of view,
especially for their mechanical behaviors. Ustinov et al.[13] formed the nano-QC Al-Cu-Fe coat-
ings by using the high rate electron beam physical vapour deposition. Using ball milling and
hot extrusion, Galano et al.[14] manufactured a quasicrystalline Al alloy matrix nanocomposite
containing nanoceramic particles, and found that the microhardness of the QC nanocomposite
was significantly higher than both the unreinforced QC alloy and the crystalline Al nanocom-
posite. Pedrazzini et al.[15] found that nano-QC Al93Fe3Cr2Ti2 alloy and composites exhibited
substantial strain rate sensitivity and retain ductility at high strain rates.

Plate-like laminate structures are common and important structural forms in engineering
applications such as coatings and micro-devices. Using a facile method of heat treatment,
Wei and He[16] synthesized a multilayered sandwich-like structure with each layer composed
of large-scale pentagonal dodecahedra of Al-Cu-Fe QCs. Yadav et al.[17] used Al-based single-
phase decagonal QC Al66Co17Cu17 alloy to extract the corresponding 2D alloy structure. In
non-classical theories including nonlocal elasticity theory[18], nonlocal strain gradient theory[19],
and modified couple stress theory[20], the nonlocal theory has been widely used in predict-
ing the mechanical properties of nano-materials and nano-structures[21–23] such as nanobeams,
graphene nanosheets, and nanoplates. Furthermore, the results based on this theory are in
excellent agreement with those obtained from MD simulation and experiments. By establishing
the layered plate models, the bending deformation, vibration response, and buckling of 1D and
2D QC layered plates without any elastic medium were analyzed[24–30]. Guo et al.[31] consid-
ered the nonlocal buckling of composite nanoplates with coated 1D QCs in an elastic medium.
However, to the best of the authors’ knowledge, no work on the mechanical behaviors of 2D
layered QC plates embedded in an elastic medium has been investigated so far. Therefore, the
present study focuses on the vibration and buckling of 2D decagonal QC layered nanoplates on
top of or embedded in an elastic medium based on the nonlocal theory.

This paper is organized as follows. In Section 2, we describe the current problem and
introduce the basic equations of 2D QCs. In Section 3, we present the vibration and buckling
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solutions of the 2D decagonal QC layered nanoplate. According to the quasi-periodic directions,
three cases of 2D decagonal QC nanoplates with the elastic medium are considered. Various
numerical examples are displayed in Section 4, and the conclusions are drawn in Section 5.

2 Problem description and basic equations

QCs can be quasi-periodic in one, two, or three directions. The 2D QCs considered in this
work have a 3D structure in which the atomic arrangement is quasi-periodic in two directions
(quasi-periodic plane) and periodic in the other direction perpendicular to the quasi-periodic
plane. The horizontal dimensions and total thickness of the N -layered QC nanoplate are L1,
L2, and H, respectively (see Fig. 1). The vibration and buckling of a 3D rectangular N -layered
nanoplate made of 2D decagonal QC and crystal materials are considered in the present study.
It is assumed that the four lateral sides of the nanoplate are simply supported, satisfying the
following conditions:

{
u2 = u3 = w2 = σ11 = H11 = 0 at x1 = 0 and L1,

u1 = u3 = w1 = σ22 = H22 = 0 at x2 = 0 and L2,
(1)

where ui (i = 1, 2, 3) and wk (k = 1, 2) are the phonon and phason displacements, respectively.
σij and Hkj are the phonon and phason stresses, respectively. Furthermore, the interfaces
between different layers are assumed to be perfectly bonded. Namely, the following continuity
conditions hold on these interfaces[31]:

u(m) = u(m+1), t
(m)
1 = t

(m+1)
1 , m = 1, 2, · · · , N − 1, (2)

where u = (u1, u2, u3, w1, w2)T and t1 = (σ13, σ23, σ33,H13,H23)T are the extended displace-
ment (phonon and phason displacements) and extended out-of-plane stress (phonon and phason
stresses) vectors, respectively, in which T denotes the transpose of a matrix or vector.

The 2D decagonal QC layered nanoplate can be located on an elastic medium or embedded
in it with the Winkler stiffness kW and the shear modulus kG, as shown in Fig. 1. For the
vibration problem, both the top and bottom surfaces of the QC nanoplate are traction-free.
For the buckling problem, the lateral boundary of the QC nanoplate is subjected to the normal
compressive stresses of the phonon field along the horizontal x1- and x2-directions, i.e., σ̄11 and
σ̄22 = λσ̄11, respectively. The nanoplate is under uniaxial compression when λ = 0 and biaxial
compression when λ = 1.

σ =λσ

 

σ

σ

σ =λσ

σ =λσ

σ

σ σ =λσ

Fig. 1 A 2D decagonal QC N -layered nanoplate on top of an elastic medium and embedded in an
elastic medium (color online)
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In the linear elasticity theory of QCs, the strain-displacement relations for 2D decagonal
QCs are given by

εij =
1
2
(ui,j + uj,i), ωkj = wk,j , (3)

where a comma followed by index i in subscript denotes the partial differentiation with respect
to the Cartesian coordinate xi. εij and ωij are the phonon and phason strains, respectively.
The coupled constitutive relations with nonlocal effects in the Cartesian coordinates (x1, x2,
and x3) can be written as follows:





(1− l2∇2)σ11 = C11ε11 + C12ε22 + C13ε33 + R1ω11 + R1ω22,

(1− l2∇2)σ22 = C12ε11 + C11ε22 + C13ε33 −R1ω11 −R1ω22,

(1− l2∇2)σ33 = C13ε11 + C13ε22 + C33ε33, (1− l2∇2)σ31 = 2C44ε13,

(1− l2∇2)σ12 = 2C66ε12 −R1ω12 + R1ω21, (1− l2∇2)σ23 = 2C44ε23,

(1− l2∇2)H11 = R1ε11 −R1ε22 + K1ω11 + K2ω22,

(1− l2∇2)H22 = R1ε11 −R1ε22 + K2ω11 + K1ω22,

(1− l2∇2)H12 = −2R1ε12 + K1ω12 −K2ω21, (1− l2∇2)H23 = K4ω23,

(1− l2∇2)H21 = 2R1ε12 −K2ω12 + K1ω21, (1− l2∇2)H13 = K4ω13,

(4)

where C66 = (C11 − C12)/2. l = e0a is the nonlocal length with e0 being a constant appro-
priate to each material and a being an internal characteristic length (e.g., lattice parameter
and granular distance). ∇2 is the 3D Laplacian operator. Cij , Ki, and R1 are the phonon
elastic modulus, the phason elastic modulus, and the phonon-phason coupling elastic modulus,
respectively. For a homogenous and isotropic solid, the nonlocal parameter l would be the same
in the constitutive equations as presented in the nonlocal theory by Eringen[32]. However, for
anisotropic and multilayered nanoplates made up of different materials, l may be different in
different directions and different layers. For simple mathematical computation, the nonlocal
parameter l is assumed to be the same in different directions and different layers in this work.
The effects of the nonlocal parameter l in different directions on the mechanical behavior of
anisotropic materials will be considered in the future study. The effects of the nonlocal param-
eter in different layers on the bending deformation and buckling of the sandwich nanoplates
were previously studied[29,31]. It was observed that different l in different layers only had a
slight effect on the bending deformation[29] and critical loads[31] of the multilayered plates.

The equilibrium equations can be expressed as

σij,j = fi, Hkj,j = 0, (5)

where fi = ρui,tt for the vibration problem, and fi = σ̄11ui,11 + σ̄22ui,22 for the buckling
problem, in which ρ is the density and the subscript t denotes time.

3 General solutions

In this section, we consider three cases of a 2D decagonal QC layered nanoplate according
to its quasi-periodic directions. In Case 1, the x1-x2 plane is the quasi-periodic plane, and the
x3-axis is the periodic direction. In Case 2, the x2-x3 plane is the quasi-periodic plane, and the
x1-axis is the periodic direction. In Case 3, the x1-x3 plane is the quasi-periodic plane, and the
x2-axis is the periodic direction.
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Since the treatment for the three cases is similar, we only present the details for Case 1
below. The relevant formulae for Cases 2 and 3 can be found in Ref. [33]. Applying the simply-
supported boundary conditions, the general solution of the extended displacement for Case 1
can be assumed as follows:

u = eφ




a1 cos(αx1) sin(βx2)
a2 sin(αx1) cos(βx2)
a3 sin(αx1) sin(βx2)
a4 cos(αx1) sin(βx2)
a5 sin(αx1) cos(βx2)




, α = mπ/L1, β = nπ/L2, (6)

where the coefficients ai (i = 1, 2, · · · , 5) are unknown constants (eigenvector components) to
be determined. m and n are two positive integers. For vibration, φ = sx3 + iωt, while for
buckling, φ = sx3, in which s and ω are the eigenvalue and the angular frequency, respectively.
It is noted that the normal i denotes the imaginary number (i2 = −1), whilst the italic i is an
index. Then, we can assume the extended out-of-plane stress vector and the extended in-plane
stress vector as follows:

t1 = eφ




b1 cos(αx1) sin(βx2)
b2 sin(αx1) cos(βx2)
b3 sin(αx1) sin(βx2)
b4 cos(αx1) sin(βx2)
b5 sin(αx1) cos(βx2)




, t2 =




σ11

σ12

σ22

H11

H22

H12

H21




= eφ




c1 sin(αx1) sin(βx2)
c2 cos(αx1) cos(βx2)
c3 sin(αx1) sin(βx2)
c4 sin(αx1) sin(βx2)
c5 sin(αx1) sin(βx2)
c6 cos(αx1) cos(βx2)
c7 cos(αx1) cos(βx2)




, (7)

where the coefficients bi (i = 1, 2, · · · , 5) and ci (i = 1, 2, · · · , 7) can be expressed in terms of
ai (i = 1, 2, · · · , 5) as shown below.

Substitute Eq. (6) into Eqs. (3) and (4). Then, the relation between the vectors a =
(a1, a2, a3, a4, a5)T and b = (b1, b2, b3, b4, b5)T can be obtained as follows:

(1− l2(s2 − α2 − β2))b = (−RT + sT )a, (8)

where

R =




0 0 C13α 0 0
0 0 C13β 0 0

−C44α −C44β 0 0 0
0 0 0 0 0
0 0 0 0 0




, T =




C44 0 0 0 0
0 C44 0 0 0
0 0 C33 0 0
0 0 0 K4 0
0 0 0 0 K4




. (9)

Meanwhile, the relation between the vectors a and c = (c1, c2, c3, c4, c5, c6, c7)T is

(1− l2(s2 − α2 − β2))c =




−C11α −C12β C13s −R1α −R1β

C66β C66α 0 −R1β R1α

−C12α −C11β C13s R1α R1β

−R1α R1β 0 −K1α −K2β

−R1α R1β 0 −K2α −K1β

−R1β −R1α 0 K1β −K2α

R1β R1α 0 −K2β K1α




a. (10)
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Substituting Eqs. (6) and (7) into Eq. (5) yields
{

sb1 = −αc1 + βc2 − ψa1, sb2 = αc2 − βc3 − ψa2, sb3 = αb1 + βb2 − ψa3,

sb4 = −αc4 + βc6, sb5 = −βc5 + αc7,
(11)

where ψ = ω2ρ for vibration, and ψ = α2σ̄11 + β2σ̄22 for buckling. Substituting Eqs. (8) and
(10) into the right-hand side of Eq. (11), we further have

(1− l2(s2 − α2 − β2))sb = (Q− sR + s2P )a, (12)

where

Q =




Q11 αβ(C12 + C66) 0 R1(α2 − β2) 2R1αβ

αβ(C12 + C66) Q22 0 −2R1αβ R1(α2 − β2)
0 0 Q33 0 0

R1(α2 − β2) −2R1αβ 0 K1(α2 + β2) 0
2R1αβ R1(α2 − β2) 0 0 K1(α2 + β2)




, (13)

P = l2ψ




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0




,

Q11 = C11α
2 + C66β

2 − (1 + l2α2 + l2β2)ψ,

Q22 = C66α
2 + C11β

2 − (1 + l2α2 + l2β2)ψ,

Q33 = C44α
2 + C44β

2 − (1 + l2α2 + l2β2)ψ.

(14)

Let d = sa. Then, the linear eigensystem can be established as follows:

s

(
a

d

)
=

(
0 I

(T − P )−1Q (T − P )−1(RT −R)

)(
a

d

)
. (15)

The eigenvalues s and eigenvectors a and d are obtained by solving Eq. (15). Then, the vector
b can be obtained from Eq. (8). Thus, the general solution for the extended displacement and
traction vectors can be expressed as follows:

(
u(x3)
t1(x3)

)
=

(
A1 A2

B1 B2

)
〈es∗x3〉

(
k1

k2

)
, (16)

where k1 and k2 are two 5× 1 constant vectors to be determined, and




A1 = (a1, a2, a3, a4, a5), A2 = (a6, a7, a8, a9, a10),

〈es∗x3〉 = diag(es1x3 , es2x3 , · · · , es10x3),

B1 = (b1, b2, b3, b4, b5), B2 = (b6, b7, b8, b9, b10).

(17)

If the extended stress and displacement vectors of the bottom layer of the nanoplate are
used to determine k1 and k2, the propagating relations of the solutions at any x3-level and at
the bottom interface of a given layer can be obtained from Eq. (16) as follows:

(
u(x3)
t1(x3)

)
=

(
A1 A2

B1 B2

)
〈es∗x3〉

(
A1 A2

B1 B2

)−1 (
u(0)
t1(0)

)
= M(x3)

(
u(0)
t1(0)

)
. (18)
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For the layered QC nanoplate, we can find the following relations between the extended
displacement and the extended stress vectors on the bottom surface x3 = 0 and the top surface
x3 = H by utilizing the continuity condition (2):

(
u(H)
t1(H)

)
= M(hN )M(hN−1) · · ·M(h2)M(h1)

(
u(0)
t1(0)

)
= J

(
u(0)
t1(0)

)
. (19)

3.1 A 2D decagonal QC layered nanoplate without an elastic medium
If there is no elastic medium surrounding the 2D decagonal QC layered nanoplate and the

top and bottom surfaces of the nanoplate are traction-free, Eq. (19) becomes
(

u(H)
0

)
=

(
J11 J12

J21 J22

)(
u(0)
0

)
, (20)

where Jij (i, j = 1, 2) are the submatrices of J in Eq. (19). Let the determinant of J21 be 0.
Then, we can determine the frequency or critical buckling load of the 2D decagonal QC layered
nanoplate.
3.2 A 2D decagonal QC layered nanoplate on top of an elastic medium

We consider a 2D decagonal QC layered nanoplate on top of an elastic medium. The
interaction between the QC nanoplate and the elastic medium is assumed to be the Pasternak-
type foundation[34]. Thus, the traction boundary conditions are

t1(H) = (0, 0, 0, 0, 0)T, t1(0) = (0, 0, q0
3 , 0, 0)T, (21)

where

q0
3 = kW(u0

3)− kG((u0
3),11 + (u0

3),22), (22)

in which u0
3 denotes the deflection on the bottom surface of the nanoplate. Substituting Eq. (21)

into Eq. (19) and expanding it, we obtain

u(0) = (0, 0, u0
3, 0, 0)T = −J−1

21 J22t1(0). (23)

From Eqs. (21)–(23), the frequency or critical buckling load can be solved by

1−X33(kW + kG(α2 + β2)) = 0, (24)

where X33 is the element (3,3) of −J−1
21 J22.

3.3 A 2D decagonal QC layered nanoplate embedded in an elastic medium
If the 2D decagonal QC nanoplate is embedded in an elastic medium, the traction boundary

conditions are given by

t1(H) = (0, 0, qH
3 , 0, 0)T, t1(0) = (0, 0, q0

3 , 0, 0)T, (25)

where

qH
3 = −kW(uH

3 ) + kG((uH
3 ),11 + (uH

3 ),22), q0
3 = kW(u0

3)− kG((u0
3),11 + (u0

3),22), (26)

in which uH
3 denotes the deflection on the top of the nanoplate. Substituting Eq. (25) into

Eq. (19) yields




u(0) = (0, 0, u0
3, 0, 0)T = J−1

21 (t1(H)− J22t1(0)),

u(H) = (0, 0, uH
3 , 0, 0)T = J11J

−1
21 t1(H) + (J12 − J11J

−1
21 J22)t1(0).

(27)
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With Eqs. (25)–(27), the vibration frequency or critical buckling load can be solved from the
following equation:

(1 + B33(kW + kG(α2 + β2)))(1 + C33(kW + kG(α2 + β2)))

+ A33D33(kW + kG(α2 + β2))2 = 0, (28)

where A33, B33, C33, and D33 are the elements (3,3) of J−1
21 , J−1

21 J22, J11J
−1
21 , and J12 −

J11J
−1
21 J22, respectively.

4 Numerical examples

In this section, we analyze the nonlocal vibration and buckling of 2D decagonal QC homoge-
neous nanoplates and two sandwich nanoplates made of 2D decagonal Al-Ni-Co QC and BaTiO3

crystal with the elastic medium for mode (m,n) = (1, 1). The effects of the quasiperiodic di-
rection, length-to-width ratio, thickness of nanoplate, nonlocal parameter, stacking sequence,
and elastic medium on the vibration frequency and critical buckling load are analyzed. The
material properties for the 2D decagonal Al-Ni-Co QC and BaTiO3 crystal are listed in Table 1.
It should be pointed out that the piezoelectric coupling must be considered in piezoelectric QC
(PQC) materials[29]. In this section, QC and C denote, respectively, Al-Ni-Co QC and BaTiO3

crystal.

Table 1 Material properties of 2D Al-Ni-Co QC (denoted as QC)[35] and BaTiO3 crystal (denoted

as C)[36] (Cij , Ki, and R1 in 109 N/m2 and ρ in 103 kg/m3)

Material C11 = C22 C12 C13 = C23 C33 C44 = C55 C66

QC 234.33 57.41 66.63 232.21 70.19 88.46
C 166 77 78 162 43 44.5

Material K1 K2 K4 R1 ρ

QC 122 24 12 8.846 4.186
C – – – – 5.8

4.1 Vibration
To verify the accuracy of the present 3D model, we first apply our solution to thin graphene

sheets and compare our results with those based on the reformulated sinusoidal shear deforma-
tion plate theory[37]. This sheet is on the top of an elastic medium (with given normalized k1

and k2 below), and its material properties and geometric parameters are taken from Ref. [37]
as E = 1TPa, Poisson’s ratio ν = 0.19, mass density ρ = 2300 kg/m3, H = 0.34 nm, and
L1/H = L2/H = 10. The following dimensionless parameters are used in the comparison:

ω =
ω(L1)2

π2

√
ρh

D
, k1 =

kWD

(L1)4
, k2 =

kGD

(L1)2
, D =

H3E

12(1− ν2)
. (29)

Table 2 lists the dimensionless fundamental frequencies of the single graphene sheet predicted
by the present 3D solution as compared with the existing results. It is observed that these
frequencies agree well with those based on the reformulated sinusoidal shear deformation plate
theory[37]. This partially verifies our 3D solution. We now analyze the vibration response of a
homogeneous 2D decagonal QC nanoplate and two sandwich nanoplates made of 2D decagonal
QCs and crystals by using the present 3D solution. In the analysis, the following dimensionless
parameters are used:

Ω = ωL2

√
ρ

Cmax
, KW =

kWL2

Cmax
, KG =

kG

L2Cmax
, (30)

where Cmax denotes the maximum elastic modulus of the nanoplates.
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Table 2 Dimensionless fundamental frequencies ω of a thin graphene sheet by the present solution,

as compared with those by Sobhy[37] (l2 in nm2)

l2
k1 = 100, k2 = 0 k1 = 0, k2 = 20 k1 = 100, k2 = 20

Ref. [37] Present Ref. [37] Present Ref. [37] Present

0 2.183 96 2.182 99 2.784 10 2.778 51 2.960 17 2.953 19
1 1.549 03 1.506 70 2.319 69 2.299 97 2.528 31 2.511 96
2 1.364 79 1.334 34 2.200 92 2.192 49 2.419 79 2.413 78
3 1.274 85 1.251 77 2.146 29 2.132 67 2.370 20 2.367 70
4 1.221 22 1.203 54 2.114 86 2.113 40 2.341 77 2.339 88

Table 3 shows the dimensionless fundamental frequencies of a homogeneous 2D decagonal
QC nanoplate on top of the elastic medium or embedded in it, for L1/L2 = 0.5, 1, and 1.5 with
fixed L2 = 100 nm. The nonlocal parameter l reveals the small-scale effect on the responses of
nano-structures. Generally, for the analysis of carbon nanotubes, the nonlocal parameters are
taken in the range from 0 nm to 2 nm[38]. The critical buckling loads in a simply supported
square monolayer graphene sheet derived by Ansari and Rouhi[39] were in excellent agreement
with their MD simulations and the solutions by the differential quadrature method[40] for l =
0 − 2 nm. Thus, we take an acceptable value l = 2 nm (l/L2 = 0.02) in the present analysis.
Notice that in our previous work[41], we found that the variation of the magnetic potential
when l/H > 0.06 displayed an opposite trend to that when l/H < 0.06. Li et al.[42] adopted
a dimensionless nonlocal parameter, and determined the upper limit of the scale parameter
from the nano-structural dependence of the nonlocal dynamic behavior, obeying the nonlocal
softening mechanism. A crack length or wave length was used by Eringen[43] to determine a
dimensionless nonlocal parameter. For the vibration response and buckling behavior analyzed
here, the length or width of the nanoplate is used as the external characteristic length scale to
normalize the nonlocal parameter, i.e., l/L2. It is observed that the dimensionless frequencies of
the 2D decagonal QC nanoplate always decrease with increasing L1/L2. It is interesting to note
that when L1/L2 = 1, Case 1 has the highest frequency, and the frequency of Case 2 is almost
the same as that of Case 3. Furthermore, Case 2 has the highest frequency when L1/L2 > 1,
and Case 3 has the highest frequency when L1/L2 < 1, which is attributed to the quasiperiodic
structure and geometrical size. Both the Winkler stiffness KW and the shear modulus KG of
the elastic medium can help increase the eigen frequency of a 2D decagonal QC nanoplate.

Table 3 Dimensionless fundamental frequencies Ω of the 2D decagonal QC nanoplate with an elastic
medium

KW KG L1/L2
On top of the elastic medium Embedded in the elastic medium

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

0.5 2.600 3 2.596 0 2.692 8 2.627 5 2.623 1 2.718 8
0.05 0 1 1.335 3 1.329 8 1.329 8 1.389 7 1.384 1 1.384 1

1.5 1.050 1 1.051 7 1.038 0 1.119 7 1.121 0 1.108 2

0.5 2.599 9 2.595 6 2.692 5 2.626 8 2.622 3 2.718 1
0 0.001 1 1.301 5 1.296 1 1.296 1 1.323 8 1.318 3 1.318 3

1.5 0.977 8 0.999 6 0.985 2 1.019 1 1.020 9 1.006 7

0.5 2.626 7 2.622 2 2.718 0 2.680 1 2.675 2 2.768 7
0.05 0.001 1 1.356 7 1.351 2 1.351 2 1.430 9 1.425 2 1.425 2

1.5 1.070 2 1.071 6 1.058 2 1.157 2 1.158 3 1.146 0

Table 4 shows the dimensionless fundamental frequencies of two sandwich QC/C/QC and
C/QC/C nanoplates (Case 1) for L1/L2 = 0.05, 1, and 1.5, where L2 = 100 nm, H/L2 = 0.3,
KW = 0.05, and KG = 1× 10−3. It can be observed that both the nonlocal parameter and the
length-to-width ratio can lead to a decrease in the eigen frequencies. Similar to the homogeneous
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Table 4 Dimensionless fundamental frequencies Ω of the sandwich QC/C/QC and C/QC/C
nanoplates

l/L2 L1/L2
Without an elastic medium On top of the elastic medium Embedded in the elastic medium

QC/C/QC C/QC/C QC/C/QC C/QC/C QC/C/QC C/QC/C

0.5 2.665 6 2.273 2 2.730 8 2.332 2 2.795 6 2.390 4
0 1 1.349 1 1.096 4 1.440 8 1.189 0 1.527 8 1.275 7

1.5 1.036 7 0.829 6 1.146 3 0.943 6 1.247 2 1.046 0

0.5 2.640 2 2.249 2 2.706 7 2.309 0 2.772 6 2.368 1
0.02 1 1.343 8 1.091 2 1.436 1 1.184 4 1.523 5 1.271 4

1.5 1.033 7 0.826 7 1.143 8 9.410 7 1.244 9 1.043 8

0.5 2.569 9 2.182 1 2.638 4 2.244 4 2.705 8 2.305 7
0.04 1 1.328 3 1.075 9 1.422 2 1.170 7 1.511 1 1.259 1

1.5 1.024 9 0.817 9 1.136 2 9.336 8 1.238 4 1.037 4

nanoplate case, the surrounding elastic medium can help increase the eigen frequencies. The
frequencies of the sandwich QC/C/QC nanoplate are much higher than those of the sandwich
C/QC/C nanoplate. For these two sandwich nanoplates without an elastic medium, our results
are the same as those in Ref. [44].

Figures 2 and 3 show the effects of the normalized shear modulus KG and the normalized
Winkler stiffness KW of the elastic medium on the vibration frequencies of a homogeneous 2D
decagonal QC nanoplate for given L1 = L2 = 100 nm and H/L2 = 0.3. In Fig. 2, KW = 0.05
and KG ∈ [0, 1 × 10−3]. In Fig. 3, KG = 1 × 10−3 and KW ∈ [0, 0.05]. It is observed that
the dimensionless fundamental frequencies always increase with increasing KG and KW. When
the nanoplate is embedded in the elastic medium, its fundamental frequency is higher than
the one on top of the elastic medium. Furthermore, Case 1 has the highest frequency, and the
frequencies of Case 2 and Case 3 are the same when L1 = L2.

Figure 4 shows the effects of the nanoplate thickness on the vibration frequencies of the
sandwich QC/C/QC and C/QC/C plates (Case 1) for given L1 = L2 = 100 nm, KW = 0.05,
and KG = 1×10−3, respectively. It is observed that the dimensionless fundamental frequencies
always increase with increasing the nanoplate thickness. The eigen frequency decreases in the
order as (from large to small): embedded in the elastic medium, on top of the elastic medium,
and without an elastic medium. This indicates that the surrounding elastic medium can ef-
fectively enhance the stiffness of the nanoplate. The dimensionless frequency of the sandwich
QC/C/QC nanoplate is higher than that of the sandwich C/QC/C nanoplate, indicating that
the QC materials are suitable for surface coatings in engineering practice.

× ×

ΩΩ

/
2

/
2

Fig. 2 Variations of the dimensionless fundamental frequencies Ω of the 2D decagonal QC nanoplate
with the normalized shear modulus KG on top of the elastic medium and embedded in the
elastic medium (color online)
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Fig. 3 Variations of the dimensionless fundamental frequencies Ω of the 2D decagonal QC nanoplate
with the normalized Winkler stiffness KW on top of the elastic medium and embedded in the
elastic medium (color online)

Ω Ω

/ /

/ /

Fig. 4 Variations of the dimensionless fundamental frequencies Ω of the sandwich QC/C/QC and
C/QC/C nanoplates versus the thickness of the nanoplate (color online)

4.2 Buckling
Sarrami-Foroushani and Azhari[45] used the thin-plate theory to study the nonlocal buckling

of single and multi-layered graphene sheets. To verify the correctness of the present 3D solution,
the model parameters in Ref. [45] are used here for the graphene: E = 1.06TPa, Poisson’s ratio
ν = 0.25, and the mass density ρ = 2250 kg/m3. The buckling coefficient in the comparison is
defined by K = (12(σ11)cr(1− ν2)(L1/H)2)(π2E)−1.

It can be observed from Table 5 that the buckling coefficient K by the present 3D solution is
in good agreement with that by the thin-plate theory[45] when the nanoplate is relatively thin.
However, when the nanoplate is thick, the difference between the two becomes large since the
thin-plate theory[45] fails to work.

In Subsection 4.1, we compare our solution with the thin-plate theory to verify the accuracy
of the present 3D model. Here, we will compare the present results with those of the orthotropic
thick plate[46]. The material coefficients of the orthotropic material are shown in Table 6, and
the dimensionless critical stress is defined by kx = ((σ11)cr/C11)(12/π2)(L2/H)2. It can be
found from Table 7 that the critical buckling coefficient kx obtained from the present method
agrees well with that obtained by the thick-plate theory[46]. Therefore, the present theoretical
3D model can be reduced to both thin plates and medium-thick plates.
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Table 5 Buckling coefficient K of a single graphene sheet by the present 3D solution, as compared
with those in Ref. [45]

L1 = L2
l = 0 nm l = 1nm l = 1.5 nm l = 2nm

Ref. [45] Present Ref. [45] Present Ref. [45] Present Ref. [45] Present

5 4.000 0 3.883 7 2.101 6 1.910 9 1.121 9 1.168 7 0.642 9 0.757 8
10 4.000 0 3.971 6 3.340 6 3.149 9 2.769 9 2.498 4 2.101 6 1.943 2
15 4.000 0 3.989 2 3.677 5 3.572 8 3.600 3 3.156 4 2.961 0 2.723 3
20 4.000 0 3.982 7 3.811 9 3.745 8 3.600 3 3.479 3 3.340 7 3.153 6
30 4.000 0 4.030 8 3.914 2 3.897 6 3.811 9 3.764 3 3.677 5 3.564 5
40 4.000 0 3.967 9 3.951 3 3.967 9 3.892 0 3.849 5 3.812 0 3.731 0
50 4.000 0 3.979 0 3.968 7 3.979 0 3.930 2 3.979 0 3.877 6 3.793 9
100 4.000 0 4.071 5 3.992 2 4.071 5 3.982 3 4.071 5 3.968 8 4.071 5

Table 6 Normalized material properties of an orthotropic material

C22/C11 C33/C11 C12/C11 C13/C11 C23/C11 C44/C11 C55/C11 C66/C11

0.543 10 0.530 17 0.233 19 0.010 78 0.098 28 0.262 93 0.159 91 0.266 81

Table 7 Comparison of the buckling coefficient kx of the orthotropic rectangular thick plate obtained
by the present 3D model with those in Ref. [46]

H/L2 0.05 0.1 0.2

Ref. [46] 2.966 2.770 2.210
Present 2.959 61 2.770 05 2.209 87

We further consider the buckling behavior of a homogeneous 2D decagonal QC nanoplate
and two sandwich nanoplates made of 2D decagonal QCs and crystals based on the present
3D solution. The effects of the length-to-width ratio, plate thickness, nonlocal parameter,
stacking sequence, quasiperiodic direction, and elastic medium on the critical buckling loads
are analyzed under both uniaxial and biaxial compression. The dimensionless shear modulus
KG and Winkler stiffness KW as defined in Eq. (30) are used. Furthermore, the dimensionless
critical buckling load is normalized as (σ̄11)cr = (σ11)cr/Cmax.

Table 8 shows the dimensionless critical buckling loads (σ̄11)cr of the sandwich QC/C/QC
and C/QC/C nanoplates (Case 1) for L1/L2 = 0.05, 1, and 1.5, where L2 = 100 nm, H/L2 =
0.3, KW = 0.05, and KG = 1 × 10−3 under uniaxial (λ = 0) and biaxial (λ = 1) compression.
It can be observed that under both uniaxial and biaxial compression, the dimensionless critical
buckling loads of the sandwich QC/C/QC nanoplate are larger than those of the sandwich
C/QC/C nanoplate. The surrounding elastic medium always increases the critical buckling
loads of the sandwich nanoplate. Furthermore, when L1/L2 is large, the dimensionless critical
buckling loads under uniaxial compression can be 2–3 times larger than those under biaxial
compression.

Figure 5 shows the variations of the dimensionless critical buckling loads of a homogeneous
2D decagonal QC nanoplate with the length-to-width ratio under uniaxial (λ = 0) and biaxial
(λ = 1) compression for L2 = 100 nm and H/L2 = 0.3. The nonlocal parameter is fixed at
l/L2 = 0.02. It can be seen from Fig. 5 that when L1/L2 increases, the dimensionless critical
buckling loads of the homogeneous QC nanoplate decrease first and then increase under uniaxial
compression (see Fig. 5(a)). However, they always decrease under biaxial compression (see
Fig. 5(b)). It is interesting to note that the dimensionless critical buckling loads for the three
cases of quasiperiodic structures depend on the length-to-width ratio of the QC nanoplate. For
example, Case 3 displays the highest critical buckling load when L1/L2 is small but the lowest
critical buckling load when L1/L2 becomes large (see Fig. 5(a)). Under uniaxial compression,
the dimensionless critical buckling load reaches its minimum at L1/L2 ≈ 0.74.
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Table 8 Dimensionless critical buckling loads (σ̄11)cr of the sandwich QC/C/QC and C/QC/C
nanoplates

l/L2 λ L1/L2
Without an elastic medium On top of the elastic medium Embedded in the elastic medium

QC/C/QC C/QC/C QC/C/QC C/QC/C QC/C/QC C/QC/C

0

0

0.5 0.146 0 0.119 1 0.153 2 0.125 3 0.160 6 0.131 8
1 0.149 7 0.108 3 0.170 8 0.130 3 0.191 8 0.150 0

1.5 0.199 0 0.142 7 0.243 2 0.184 6 0.288 0 0.226 8

1

0.5 0.116 8 0.095 3 0.122 6 0.100 3 0.128 5 0.105 3
1 0.074 8 0.055 4 0.085 4 0.065 2 0.096 0 0.075 0

1.5 0.061 2 0.043 9 0.074 9 0.056 8 0.886 2 0.069 8

0.02

0

0.5 0.143 2 0.116 6 0.150 5 0.122 9 0.158 0 0.129 2
1 0.148 5 0.109 8 0.169 6 0.129 3 0.190 9 0.149 0

1.5 0.197 8 0.141 7 0.242 1 0.183 6 0.286 9 0.225 9

1

0.5 0.114 6 0.093 2 0.120 4 0.098 3 0.126 4 0.103 4
1 0.074 2 0.054 9 0.084 8 0.064 7 0.954 4 0.074 5

1.5 0.060 9 0.043 6 0.074 5 0.056 5 0.882 7 0.069 5

0.04

0

0.5 0.135 4 0.109 7 0.142 8 0.116 1 0.150 4 0.122 5
1 0.145 0 0.106 7 0.166 3 0.126 3 0.187 7 0.146 1

1.5 0.194 3 0.138 7 0.238 9 0.180 8 0.283 8 0.223 1

1

0.5 0.108 5 0.087 8 0.114 3 0.092 8 0.120 2 0.098 0
1 0.072 5 0.053 4 0.083 1 0.063 2 0.093 9 0.073 1

1.5 0.059 8 0.042 7 0.073 5 0.055 6 0.087 3 0.068 7

σ

/ /

σ

Fig. 5 Variations of the dimensionless critical buckling load of the 2D decagonal QC nanoplate un-
der uniaxial and biaxial compression without an elastic medium but with a fixed nonlocal
parameter (color online)

Figures 6 and 7 show the effects of the normalized shear modulus KG and normalized
Winkler stiffness KW of the elastic medium with fixed L2 = 100 nm, L1 = 0.74 × L2, and
H/L2 = 0.3. We also fix KW = 0.05 and KG ∈ [0, 1 × 10−3] in Fig. 6 and KG = 1 × 10−3

and KW ∈ [0, 0.05] in Fig. 7. It can be found that the critical buckling loads always increase
with increasing the normalized Winkler stiffness KW and normalized shear modulus KG. The
critical buckling loads of the nanoplate under biaxial compression are smaller than those under
uniaxial compression. Furthermore, the elastic medium and quasiperiodic direction can both
significantly affect the critical buckling loads of the 2D decagonal QC nanoplate.

The effects of the nanoplate thickness and nonlocal parameter on the dimensionless critical
buckling load of sandwich QC/C/QC and C/QC/C nanoplates (Case 1) with L2 = 100 nm,
L1 = 0.74×L2, KW = 0.05, and KG = 1× 10−3 are shown in Fig. 8. It is observed that, under
both uniaxial and biaxial compression, the critical buckling loads of both sandwich nanoplates
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Uniaxial

× ×

× ×

σ
σ σ

σ

Fig. 6 Variations of the dimensionless critical buckling load of the plate versus the normalized shear
modulus KG (with a fixed nonlocal parameter) under (a) uniaxial compression with the plate
on top of the elastic medium; (b) biaxial compression with the plate on top of the elastic
medium; (c) uniaxial compression with the plate embedded in the elastic medium; (d) biaxial
compression with the plate embedded in the elastic medium (color online)

increase with increasing the nanoplate thickness. The critical buckling loads of the two em-
bedded sandwich nanoplates are larger than those on the elastic medium or those without
the elastic medium support. Besides, the critical buckling loads of the sandwich QC/C/QC
nanoplate are larger than those of the sandwich C/QC/C nanoplate.

5 Conclusions

Based on the nonlocal theory, the vibration and buckling behaviors of the 2D decagonal
QC layered nanoplate with an elastic medium are investigated. The analytical solutions of
the vibration frequency and critical buckling load of the nanoplate in the elastic medium are
obtained by solving the eigensystem and using the propagator matrix method. Numerical
examples are illustrated to show the effects of the quasiperiodic direction, length-to-width
ratio, thickness of the nanoplate, nonlocal parameter, stacking sequence, and elastic medium
on the vibration frequency and the critical buckling load. The following conclusions can be
drawn from the numerical results.

(i) The present exact 3D model can correctly predict the vibration and buckling behaviors
of 2D decagonal QC layered nanoplates along the thickness direction rather than the previous
thin plate and medium-thick plate. The nature frequencies and critical buckling loads of the
2D decagonal QC nanoplate always increase with increasing the nanoplate thickness.
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σ σ

σ σ

Fig. 7 Variations of the dimensionless critical buckling load of the plate versus the normalized Win-
kler stiffness KW (with a fixed nonlocal parameter) under (a) uniaxial compression with the
plate on top of the elastic medium; (b) biaxial compression with the plate on top of the elastic
medium; (c) uniaxial compression with the plate embedded in the elastic medium; (d) biaxial
compression with the plate embedded in the elastic medium (color online)

(ii) The Winkler stiffness kW and shear modulus kG of the surrounding elastic medium
can help increase the vibration frequency and critical buckling load of the 2D decagonal QC
nanoplate. Furthermore, the size-dependent vibration frequency and critical buckling load can
be reduced to the classical results at macro-scale when the nonlocal parameter is neglected.

(iii) With increasing the length-to-width ratio of the nanoplate, the vibration frequencies and
critical buckling loads under biaxial compression always decrease. Under uniaxial compression,
on the other hand, the critical buckling load varies differently, having a minimum at L1/L2 ≈
0.74.

(iv) The quasiperiodic direction of the 2D decagonal QC structure has a great effect on
the vibration frequency and critical bucking load. When L1/L2 = 1, the vibration frequency
and the critical bucking load for Case 1 reach their maxima. When L1/L2 > 1, the vibration
frequency and critical bucking load for Case 2 reach their maxima. When L1/L2 < 1, the
vibration frequency and critical bucking load for Case 3 reach their maxima.

(v) The vibration frequencies and critical buckling loads of the sandwich QC/C/QC nanoplate
are larger than those of the sandwich C/QC/C nanoplate, indicating that QCs are suitable as
coating materials.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link
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Fig. 8 Variations of the dimensionless critical buckling load of the sandwich QC/C/QC and C/QC/C
nanoplates versus the plate thickness (under uniaxial and biaxial compression and with a fixed
nonlocal parameter) (color online)

to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.
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