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We demonstrate that light propagation in waveguide arrays that include PT -symmetric structures can exhibit
strongly nonlocal sensitivity to topology of the array at fixed other parameters. We consider an array composed
of lossless waveguides, that includes a pair of PT -symmetric waveguides with balanced gain and loss, and reveal
that PT -symmetry breaking thresholds are different for planar and circular array configurations. These results de-
monstrate that PT -symmetric structures can offer new regimes for optical beam shaping compared to conservative
structures. © 2012 Optical Society of America
OCIS codes: 230.7370, 080.6755.

Photonic structures composed of coupled waveguides
with loss and gain regions offer new possibilities for
shaping optical beams and pulses compared to conserva-
tive structures [1–3]. Such structures can be designed
as optical analogues of complex parity-time (or PT )-
symmetric potentials, which can have a real spectrum
corresponding to the conservation of power for optical
eigenmodes; however, the beam dynamics can demon-
strate unique features distinct from conservative systems
due to nontrivial wave interference and phase transition
effects [4,5]. Recently, PT -symmetric properties in cou-
plers composed of two waveguides with gain and loss
have been demonstrated experimentally [6]. Importantly,
effects occurring for linear PT -symmetric structures can
be realized using only waveguides with spatially varying
absorption coefficients and no amplification, based on
general transformation introduced in Ref. [7].
PT -symmetric potentials appear in many physical

contexts, and one feature actively investigated in
the context of quantum theories is the property of
nonlocality, where PT defect dynamics can be sensi-
tive to potential profile at distant locations, raising
questions about the observability of such behavior
in real physical systems [8,9]. In this work, we present
a classical analogue of quantum nonlocality in optical
PT -symmetric structures with gain and loss where
beam dynamics can depend on arbitrarily distant
boundaries.
To demonstrate the phenomenon of nonlocality in

optical structures, we compare arrays of coupled opti-
cal waveguides with planar and circular geometries as
illustrated in Fig. 1. The beam profile is determined by
the mode amplitudes an at individual waveguides, and
mode overlap between waveguides is characterized by
coupling coefficients: C2 between the central wave-
guides n � 0, 1, and C1 between all other neighboring
waveguides. We consider a PT -symmetric structure
composed of waveguide with loss at location n � 0
and with gain at the adjacent waveguide n � 1. The ab-
solute magnitudes of gain/loss should be equal to satis-
fy PT symmetry condition. We use the coupled-mode
equations [6,10,11] to model the beam propagation:

i
dan
dz

� C1an−1 � C1an�1 � 0; n ≠ 0; 1; (1)

i
da0
dz

� iρa0 � C1a−1 � C2a1 � 0; (2)

i
da1
dz

− iρa1 � C2a0 � C1a2 � 0; (3)

where n is the waveguide number, z is the propagation
distance, an are the mode amplitudes at waveguides,
ρ > 0 defines the rate of loss at 0th and gain at 1st wa-
veguides, and C1;2 are the coupling coefficients be-
tween the modes of waveguides. The boundary
conditions are zero for a planar structure [Fig. 1(a)],

aN�2 ≡ 0; a−N−1 ≡ 0; (4)

and periodic for a circular configuration [Fig. 1(b)],

aN�2 ≡ a−N; a−N−1 ≡ aN�1. (5)

The Eqs. (1–3) are linear, since we consider weak
optical intensities when the gain saturation and nonli-
nearity can be neglected. Then, the beam dynamics can
be described by analyzing the eigenmodes an �
An exp�iϕn � iβz�, where An ≥ 0 and real ϕn are
constant amplitude and phase profiles and β is an
eigenvalue (propagation constant).

(b)(a)
Fig. 1. (Color online) Schematic of (a) planar and (b) circular
waveguide array with a pair of PT -symmetric waveguides at
sites n � 0, 1 with balanced gain and loss.
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A key feature of PT -symmetric structures is that un-
der certain conditions, the spectrum of all eigenmodes
can be real (i.e., Im�β�≡ 0), meaning that the effects
of gain and loss can be compensated on average. On
the contrary, if some of the eigenmodes have complex
propagation constants, the mode amplitude can grow ex-
ponentially fast along the propagation direction as gain
cannot be compensated by loss. For a PT -symmetric
coupler composed of two waveguides [3,6,7], which
can be modeled with Eqs. (1–3) by putting C1 � 0, the
spectrum is real when the value of gain/loss coefficient
is below the threshold jρj < jC2j.
We nowderive analytical expressions forPT -symmetry

breaking thresholds in case of planar and circular array
configurations, considering the total number of wave-
guides 2N to be rather large but finite. For a planar con-
figuration, we find that the condition of PT -symmetry
breaking is

jρj > ρp � jC2j; (6)

and the threshold is the same as for an isolated coupler
[6], independent on the coupling coefficient in the rest of
the array (C1). This is a surprising result; for example,
boundaries can have nontrivial effect on stability for pla-
nar structures with periodically placed gain and loss
elements [12]. The threshold is shown with solid lines
in Figs. 2(a) and (c). To obtain Eq. (6), we note that in
the regime of no symmetry breaking for all modes
djanj∕dz � 0 and obtain from Eq. (1) for n ≠ 0, 1

C1janj�sin�ϕn�1 − ϕn�jan�1j � sin�ϕn−1 − ϕn�jan−1j� � 0:

(7)

Since there is no energy flow through the array boundaries
for planar structure, it follows that janan�1j sin�ϕn�1 −

ϕn� � 0 for jnj ≥ 1. At n � 0, 1 from Eqs. (2) and (3) we
have C2 sin�ϕ1 − ϕ0�ja0a1j � ρja0j2 � 0, C2 sin�ϕ0 − ϕ1�

ja0a1j − ρja1j2 � 0. It follows that ja0j � ja1j and
C2 sin�ϕ1 − ϕ0� � ρ � 0. The latter equality has a solution
only if jρj ≤ jC2j; otherwise for conditions in Eq. (6) the
gain and loss cannot be balanced and PT symmetry
breaking occurs.

For a circular configuration, we find that the thresh-
old condition nontrivially depends on all the structure
parameters,

jρj > ρc � jjC1j − jC2jj; (8)

and this threshold is shown with solid lines in Figs. 2(b)
and (d). Most remarkably, the PT -symmetry conditions
separating fundamentally different cases of real spec-
trum, when the power is conserved on average, and com-
plex spectrum, when some guided modes experience
amplification, are always different for planar and circular
arrays of arbitrary large size (N)—and this is a manifes-
tation of nonlocality. To explain the stability condition in
Eq. (8) we represent the eigenmodes as

an � F�eikn�iβz � B�e−ikn�iβz; (9)

where k is a wavenumber and subscripts “�” and “−” cor-
respond to n ≥ 1 and n ≤ 0, respectively. These expres-
sions satisfy Eq. (1) when the propagation constant is
chosen according to the spatial dispersion relation
β � 2C1 cos�k�, and we then determine the amplitude
values, which also fulfill Eqs. (2)–(3) and the boundary
conditions at Eq. (4). Equations (2)–(3) yield the follow-
ing relations between the amplitudes: B

−
� F

−
R� � B�T

and F� � F
−
T � B�R−

exp�−2ik�, where T � 2ie−ik

C1C2 sin�k�∕D and R� � �C2
2 − C2

1 − ρ2 � 2ρC1 sin�k��∕D
are the transmission and reflection coefficients for waves
incident on PT -symmetric pair of waveguides [13], and
D � C2

1e
−2ik � ρ2 − C2

2. Next, we determine the necessary
condition for the periodic boundary conditions to be
satisfied, which require that the amplitudes of forward
(F) and backward (B) waves are matched as F− �
exp�2ik�N � 1��F� and B− � exp�−2ik�N � 1��B�. These
conditions lead to the following equation for an amplitude
ratio J � B� exp�−ik�∕F−:

jJj2 � C2
1 − C2

2 � ρ2 − 2C1�ρ − 2C2 Im�J�� sin�k�
C2

1 − C2
2 � ρ2 � 2C1ρ sin�k� : (10)

The PT -symmetry breaking occurs for a mode with par-
ticular k at such ρ, when solutions of Eq. (10) disappear as
its right-hand side becomes negative. Let us first consider
the real k, which spectrum approaches continuum with
−π < k ≤ π as N → ∞. In this limit a sufficient condition
for symmetry breaking corresponds to the case of negative
right-hand side of Eq. (10) for any (real) k, which leads to
Eq. (8). We analyze the case of complex k below, and find
that the corresponding threshold [Eq. (11)] is higher than
in Eq. (8); therefore, Eq. (8) is a necessary condition for
PT -symmetry breaking.

From a physical point of view, we should expect that if
the structure size is increased towards infinity, N → ∞,
the type of boundaries should not matter. In this case the
PT -symmetry breaking would be associated with the
amplification at the waveguide with gain, leading to

Fig. 2. (Color online) Fastest mode amplification rate in para-
meter plane jρ∕C2j and jC1∕C2j for (a), (c) planar and (b),
(d) circular waveguide arrays of sizes (a), (b) N � 20 and
(c), (d) N � 100. Solid lines show analytical instability thresh-
old according to (a), (c) Eq. (6) and (b), (d) Eq. (8). Dashed
lines show asymptotic instability threshold for infinitely large
structures according to Eq. (11).
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generation of waves propagating away from the central
region. Such eigenmodes would have the form as in
Eq. (9), but with vanishing amplitudes of modes coming
toward the central region from the boundaries,
F− � B� � 0. The amplitudes F� and B− would describe
either waves propagation away from the defect with
Im�k� � 0 and 0 ≤ k ≤ π, or exponentially decaying waves
with Im�k� > 0. In the absence of symmetry breaking, the
gain and loss in the central waveguides is balanced, such
that there are no outward energy flows, which corre-
sponds to Im�k� > 0 and sin�Re�k�� � 0 according to
Eq. (7). By analyzing Eqs. (1)–(2), we determine that such
modes cease to exist, corresponding to PT -symmetry
breaking, when

jρj > ρinf �
������������������
C2

1 � C2
2

q
: (11)

We show the instability threshold with dashed lines in
Figs. 2(a)–(d). When ρp;c < jρj < ρinf for planar (“p”) or
circular (“c”) waveguide arrays, respectively, then there
appear unstable modes in arrays of finite length; how-
ever, their growth rate reduces to zero as O�N−1�. Here
the inverse proportionality relation is estimated due to
the fact that the instability should involve propagation
of wave from the array center to the boundary, and then
back to the central region. Indeed, we see that the ampli-
fication rate decreases in this region bounded by solid
and dashed lines in Fig. 2 as the structure size is
increased from N � 20 [Figs. 2(a) and (b)] to N � 100
[Figs. 2(c) and (d)]. Accordingly, for a particular propa-
gation distance, there will be a structure size when the
presence of slowly growing modes would be practically
insignificant.
We illustrate our predictions with numerical simula-

tions. As an example, we consider the beam coupled

to waveguide number n � 1 at the input; however, simi-
lar scenarios are observed for other input conditions. We
first choose the structure parameters ρ∕C2 � 0.8 and
C1∕C2 � 1.5 such that they correspond to a stable region
for planar but an unstable region for circular configura-
tion. The plots of beam dynamics presented in Fig. 3(a)
show that the power is conserved on average for planar
structure. For the circular geometry, Fig. 3(b) dem-
onstrates that power grows exponentially, and we also
note that the power increases in “steps” since mode am-
plification occurs when wave is scattered on the central
waveguides, and this happens periodically as beam circu-
lates around. Completely different dynamics are ob-
served for parameters ρ∕C2 � 2 and C1∕C2 � 1.5,
when symmetry breaking can occur without the effect
of boundaries according to condition in Eq. (11). Indeed,
we find that the instability development in planar and
circular arrays is practically identical, and we show re-
sults for circular array in Fig. 3(c). The instability devel-
ops in the central region and the power grows at a steady
rate, with no effects of boundaries, in agreement with
analytical prediction.

In conclusion, we have demonstrated that optical wave
dynamics in PT -symmetric structures with gain and loss
elements can be strongly nonlocal, and can be critically
affected by the structure topology. Our results suggest an
experimental path toward observation of the fundamen-
tal property of the PT -symmetric systems associated
with their nonlocality, which is an analogue of nonlocal-
ity effects raised in the context of quantum theories [8,9].
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Fig. 3. (Color online) Optical beam dynamics in (a) planar and
(b) circular waveguide arrays for ρ∕C2 � 0.8, and (c) planar or
circular (practically identical figures) for ρ∕C2 � 2. Left plots:
the modulus of amplitudes at the waveguides janj along the pro-
pagation distance z. Right: calculated total power versus distance
(solid line) and power trend for the fastest growing eigenmode
(dashed blue line). For all the plots, C1∕C2 � 1.5 and N � 20.
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