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We investigate cluster states of qubits with respect to their nonlocal properties. We demonstrate that a

Greenberger-Horne-Zeilinger sGHZd argument holds for any cluster state: more precisely, it holds for any

partial, thence mixed, state of a small number of connected qubits sfive, in the case of one-dimensional latticesd.
In addition, we derive a Bell inequality that is maximally violated by the four-qubit cluster state and is not

violated by the four-qubit GHZ state.
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I. INTRODUCTION

In its most widespread image, a quantum computer is de-
picted by an array of initially uncorrelated qubits that pass
through a network of logic gates in which they become en-
tangled f1g. In 2001, Raussendorf and Briegel noticed that
one can adopt a different philosophy and described the so-
called one-way quantum computer f2g. In this view, the en-
tanglement is distributed once for all by preparing a peculiar
entangled state of all the qubits; the logic gates are then
applied as sequences of only single-qubit measurements. Re-
markable entanglement properties are needed to achieve this
computational power: in particular, Greenberger-Horne-
Zeilinger sGHZd states, though in some sense maximally en-
tangled, lack this power, and indeed can be simulated by a
polynomial amount of communication f3g. Suitable N-qubit
states for universal, scalable quantum computation are the
so-called cluster states f4g. Motivated by this discovery,
many works have been devoted in the last few years to the
properties of those states f5g; links have been found in par-
ticular with error-correction theory f6g. In this paper we
study the cluster states under the perspective of their nonlo-
cality properties f7g.

A brief review of the definition and main properties of the
cluster states, following f2,4g, is a necessary introduction.
For convenience, through all this paper we adopt the notation
X=sx, Y =sy, and Z=sz for the Pauli matrices. A cluster is
an N-site d-dimensional square lattice with connections
among the sites that define the notion of neighborhood. For
any site a of the lattice, one defines the operator

Sa = Xa ^

b[neighsad
Zb s1d

where neighsad is the set of all the neighbors of a. The op-

erators hSa ,a[ latticej form a complete family of commuting

operators on the lattice; a cluster state is any of their com-
mon eigenvectors. We note here that this construction can
actually be done for any graph, not only for square lattices,

leading to the notion of graph states; but in this paper, we
stick to cluster states and will discuss possible extensions to
all graph states only in the final section. For definiteness, we
consider the cluster state uFNl associated with all eigenvalues
being 11, that is, determined by the family of equations

SauFNl = uFNl for all a . s2d

We start by considering cluster states built on a one-
dimensional lattice f8g, which we denote ufNl. For such a
lattice, uf2l and uf3l are locally equivalent to a maximally
entangled Bell state and to a GHZ state, respectively; the
nonlocality of both has been thoroughly studied. The four-
qubit cluster state reads

uf4l =
1

2
u + lu0lu + lu0l +

1

2
u + lu0lu− lu1l

+
1

2
u− lu1lu− lu0l +

1

2
u− lu1lu + lu1l s3d

where the one-qubit states are defined as usual as Zu0l= u0l,
Zu1l=−u1l, and Xu± l= ± u± l. Note that the state uf4l is
not locally equivalent to the four-qubit GHZ state
uGHZ4l= s1/Î2dsu0000l+ u1111ld, but to 1/2su0000l+ u0011l
+ u1100l− u1111ld.

The plan of the paper is as follows. Section II is devoted
to the nonlocality properties of uf4l: we identify a GHZ ar-
gument for nonlocality f9g, from which in turn a Bell in-
equality can be derived. The advantage of this particular con-
struction is that the inequality is optimized for the state uf4l:
it acts as a witness discriminating between uf4l, which vio-
lates it up to the algebraic limit, and uGHZ4l, which does not
violate it at all. In Sec. III we generalize the GHZ argument
to the N-qubit case for one-dimensional lattices; then in Sec.
IV for d-dimensional lattices. In both cases, contrary to what
happens for GHZ states, a GHZ argument for nonlocality can
be found for the partial sthence mixedd states defined on
small sets of connected qubits once all the others are traced
out. The result is quite surprising, since it was commonly
believed that the purity of quantum states was a necessary
condition for all-or-nothing violations of local realism. Fi-
nally, in Sec. V we consider the larger family of graph states.
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II. NONLOCALITY OF THE FOUR-QUBIT STATE zf4‹ ON

A ONE-DIMENSIONAL CLUSTER

A. GHZ argument

The four-qubit cluster state uf4l is defined by Eq. s2d:

XZII = + 1 sE1d ,

ZXZI = + 1 sE2d ,

IZXZ = + 1 sE3d ,

IIZX = + 1 sE4d . s4d

These notations are shortcuts for XZIIuf4l= uf4l, etc. Eleven
similar equations can be obtained by multiplication using the
algebra of Pauli matrices:

XIXZ = + 1, sE1d 3 sE3d , s5d

ZYYZ = + 1, sE2d 3 sE3d , s6d

XIYY = + 1, sE1d 3 sE3d 3 sE4d , s7d

ZYXY = − 1, sE2d 3 sE3d 3 sE4d , s8d

and seven others which we will not use explicitly in this
paper, namely, YYZI=XZZX=ZXIX= IZYY =YYIX=YXXY =
+1 and YXYZ=−1. The 15 properties can be read directly
from uf4lkf4u; they are associated with the operators that,

together with the identity, form the Abelian group generated
by hS1 ,… ,S4j, called the stabilizer group. Note how a minus

sign arises from the multiplication of three consecutive equa-
tions, since in the common site one has ZXZ=−X.

Properties like s4d–s8d predict perfect correlations be-
tween the outcomes of a priori uncorrelated measurements
on separated particles. In a classical world, once communi-
cation is prevented by realizing spacelike separated detec-
tions, correlations can arise only if the outcomes of each
measurement on each particle are preestablished. In other
words, a local variable is a list of 12 bits l= hsxk ,yk ,zkd ,

k=1,2 ,3 ,4j, where x1[ h−1, +1j is the preestablished value

of a measurement of X on qubit 1, and so on. The GHZ
argument for nonlocality aims to show that no list l[ h−1,

+1j312 can account for all the 15 properties above. To verify

this, one replaces each Pauli matrix with the corresponding
preestablished value: all the properties are supposed to hold,
but now they are written with ordinary numbers, whose al-
gebra is commutative. Assuming commutativity, the multipli-
cation of Eqs. s5d–s7d gives z1y2x3y4= +1, in contradiction
with Eq. s8d, which reads z1y2x3y4=−1. Therefore, no local
variable l can account for all the properties of the list. Of
course, a similar argument could be worked out using others
among the 15 conditions above.

All in all, by inspection one sees that local variables can
account for 13 out of the 15 properties associated with com-
muting observables: e.g., using 11 as the preestablished
value for all 12 measurement, one satisfies all properties but
s8d and sE1d3 sE2d3 sE3d, which reads YXYZ=−1. The same

is true for the four-qubit GHZ state uGHZ4l. This rapid argu-

ment would suggest that the nonlocality of the cluster state is
after all not too different from that of the GHZ state. The rest
of the paper will show that the opposite is true.

B. Bell-type inequality

The GHZ argument for nonlocality involves identifying
properties that are satisfied with certainty. Thus, this ap-
proach strongly relies on the details of the state and is not
suited for comparison between different states; nor can it
incorporate the effect of noise in a simple way. Therefore,
especially to deal with experimental results, it is convenient
to introduce linear Bell inequalities.

The best-known inequality for four-qubit states is the
Mermin-Ardehali-Belinski-Klyshko sMABKd f10g inequality
M4. For the cluster state, after optimizing on the settings,
one finds kM4lf4

=2Î2 where the local-variable bound is set

at 2. This is indeed a violation, but a rather small one: a
two-qubit singlet attains this amount as well, and uGHZ4l
reaches up to 4Î2. It is well known by now that the MABK
inequality detects optimally GHZ-type nonlocality, but it
can be beaten by other inequalities for other families of
states f11g.

In our case, it is natural to guess a Bell inequality out of
the GHZ argument: one takes the very same four conditions
s5d–s8d that have led to the GHZ argument, and writes a
suitable linear combination of them. Specifically, on the one
hand, the previous results imply that the Bell operator

B = AIC8D + AICD8 + A8BCD − A8BC8D8 s9d

reaches 4 when evaluated on uf4l for the setting A=X, A8

=Z, B=Y, C=Y, C8=X, D=Z, and D8=Y. This is the alge-
braic value; obviously no state can ever give a larger value
sin particular, uf4l is an eigenstate of B for these settingsd.
On the other hand, the classical polynomial corresponding to
B satisfies the inequality

uac8d + acd8 + a8bcd − a8bc8d8u ø 2, s10d

as one can verify either by direct check, or by grouping 1 and
2 together, thus recovering the polynomial that defines the
three-party Mermin inequality f10,12g. The so-defined four-
qubit Bell inequality cannot be formulated using only four-
party correlation coefficients, thus it does not belong to the
restricted set classified by Werner and Wolf and by Żukowski
and Brukner f13g. Moreover, on particle 2 only one non-
trivial setting is measured; in other words, no locality con-
straint is imposed on it f14g.

Our inequality exhibits a remarkable feature: the GHZ
state uGHZ4l does not violate it. The most elegant way to
prove this statement consists in writing down explicitly the
projector Q associated with uGHZ4l: only terms with an even
number of Pauli matrices appear. Consequently,
TrfQsAIC8Ddg=TrfQsAICD8dg=0 for any choice of the mea-

surement directions, and so TrsQBd=TrfQsA8BCDdg
−TrfQsA8BC8D8dg whose algebraic maximum is 2. We

checked also our inequality on the state uW4l=1/2su0001l
+ u0010l+ u0100l+ u1000ld and found numerically a violation
kBlW<2.618. In conclusion, our specific derivation results in

a Bell inequality which acts as a strong entanglement witness
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for the cluster state uf4l: it is violated maximally by it, and is
not violated at all by the four-qubit GHZ state f15g.

III. GHZ ARGUMENT FOR THE N-QUBIT STATE zfN‹ ON

A ONE-DIMENSIONAL CLUSTER

The nonlocality of the four-qubit cluster state has been
studied in full detail, starting from the expression of uf4l.
With the insight gained there, we can move on to look for the
nonlocality of the cluster state of an arbitrary number of
qubits N, still defined on a one-dimensional lattice. We do
not need to give ufNl explicitly, but can work directly on the
set s2d of N eigenvalue equations that define it:

XZIII¯I = + 1 sE1d ,

ZXZII¯I = + 1 sE2d ,

IZXZI¯I = + 1 sE3d ,

IIZXZ¯I = + 1 sE4d ,

]

II¯IZX = + 1 sENd . s11d

The GHZ argument appears out of these equations as fol-
lows. We focus on E2, E3, and E4 first. Using the algebra of
Pauli matrices, one derives the three properties

C1 = E2E3: ZYYZI¯I = + 1,

C2 = E3E4: IZYYZ¯I = + 1,

C3 = E2E3E4: ZYXYZ¯I = − 1. s12d

Moving to the level of local variables sthat is, using commu-
tative multiplicationd, E3C1C2 leads to z1y2x3y4z5= +1,
which manifestly contradicts C3. The argument is absolutely
identical using hEk ,Ek+1 ,Ek+2j, for any k[ h2,… ,N−3j, be-

cause all the eigenvalue equations but the first and the last
one are obtained from one another by translation; and it can
be verified explicitly that it holds also for k=1 and k=N−2.
In conclusion, we have shown that one can build the follow-
ing GHZ argument on five qubits out of any three consecu-
tive eigenvalue equations: s1d Take the three equations
hEk ,Ek+1 ,Ek+2j, for k[ h1,… ,N−2j; s2d with the algebra of

Pauli matrices, define C1=EkEk+1, C2=Ek+1Ek+2, and C3

=EkEk+1Ek+2, this last property providing the needed minus
sign; s3d with commutative algebra, the condition obtained as
C1C2Ek+1 is exactly the opposite to C3.

Let us focus again on the GHZ paradox using hE2 ,E3 ,E4j
for definiteness: this paradox involves nontrivial operators
only on qubits 1–5. This means that one can forget com-
pletely about the other N−5 qubits, that is, the partial state
r12345 obtained by tracing out all the other qubits exhibits a
GHZ-type nonlocality. This state is certainly mixed because
ufNl is not separable according to any partition. Since this is
true for any translation, we conclude that any five-qubit par-

tial state on consecutive qubits leads to a GHZ argument for
nonlocality. The converse holds too: the GHZ argument
works only for consecutive qubits f16g. In fact, to obtain the
minus sign that is necessary for the GHZ argument, one has
to multiply three equations that have nontrivial operators on
a common site: a rapid glance at Eq. s11d shows that this can
only be the case if the three equations are consecutive. This
GHZ argument for mixed states recalls the notion of “persis-
tency” f4g: one can measure many qubits, or even throw
them away, and strong locality properties are not destroyed.
Finally note that in the GHZ argument involving
hEk ,Ek+1 ,Ek+2j, particles k−1 and k+3 are only asked to

measure Z: as we saw for the four-qubit state, on these par-
ticles we do not impose any locality constraint, but they must
be asked for cooperation in order to retrieve the GHZ argu-
ment.

Finally, note that a Bell inequality can be derived from the
GHZ argument as was done in Sec. II. On the five meaning-
ful qubits, the Bell operator reads

B = sABdC8sDEd + sA8B8dCsDEd + sABdCsD8E8d

− sA8B8dC8sD8E8d s13d

where we have grouped the terms in order to make explicit
the analogy with Mermin’s inequality f10g. The inequality
for local variables reads uBuø2; partial states of a cluster
state violate it up to the algebraic limit for A=E= I, A8=E8

=Z, B=D=Z, B8=D8=Y, C=Y, and C8=X.

IV. GHZ ARGUMENT FOR CLUSTER STATES

ON ANY-DIMENSIONAL CLUSTERS

As a last extension, we consider the nonlocality of a clus-
ter state prepared on two- and higher-dimensional square lat-
tices. It is clear why this problem is not immediately equiva-
lent to the one we have just studied: the eigenvalue equations
s2d do not have the same form as those for one-dimensional
lattices s11d, because the structure of the neighborhood is
different. Consequently, the N-qubit cluster state on a two-
dimensional lattice is different from the N-qubit cluster state
on a one-dimensional lattice. Still, one expects similar prop-
erties to hold. Indeed, we provide a generalization of the
GHZ argument for cluster states constructed on square lat-
tices of any dimension.

As a case study, we consider the simplest two-
dimensional square lattice, which is 333, because a 232
lattice is equivalent in terms of neighbors to a closed four-
site one-dimensional loop and we have already solved that
case implicitly f8g. The nine eigenvalue equations sEijd, i,

j[ h1,2 ,3j, can be written formally in a way reminiscent of

the lattice:

1
X Z I

Z I I

I I I
2 = + 1 sE1,1d ,

1
Z X Z

I Z I

I I I
2 = + 1 sE1,2d ,
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]

1
I Z I

Z X Z

I Z I
2 = + 1 sE2,2d ,

] s14d

with obvious notations. The basic reasoning to find the GHZ
argument is as before: one can find such an argument if and
only if a minus sign can be produced, that is, if one takes at
least three equations that lead to the product ZXZ in a site. In
this case, the argument is constructed in a way similar to the
case of one-dimensional lattices. For instance, if one takes
hE1,1 ,E1,2 ,E2,2j, then the ZXZ product can be found in site

s1,2d of the lattice. First, with the Pauli commutation rela-

tions, one builds C1=E1,1E1,2, C2=E1,2E2,2, and C3

=E1,1E1,2E2,2, where the minus sign appears in C3. Then,
using commutative multiplication, one gets that C1C2E1,2 is
exactly the opposite property to that obtained directly from
C3. In this example, particles in sites s3, 1d and s3, 3d can be
traced out because in all conditions the operator in those sites
is the identity; and the four particles in sites s1, 3d, s2, 1d, s2,
3d, and s3, 2d undergo a single measurement sZd and are

therefore there to help establish the argument.
In general, the following is easily checked.
s1d A GHZ argument can be obtained if the three sites

form a neighbor-to-neighbor path, like hE1,1 ,E1,2 ,E2,2j or

hE1,1 ,E1,2 ,E1,3j; in this case, the argument goes as in the

examples above.
s2d A GHZ argument cannot be obtained if the three

sites do not form a neighbor-to-neighbor path, like
hE1,1 ,E2,2 ,E3,3j or hE1,1 ,E1,2 ,E2,3j.

With this characterization, it is obvious how to generalize
the GHZ argument to larger two- and higher-dimensional
clusters. Again, a Bell inequality can be derived from this
GHZ argument, exactly as we did in the previous sections.

V. COMPARISION WITH GRAPH STATES

A. Extension of our results

Cluster states are members of a large family of states
called graph states f17g. Graph states differ from one another
according to the graph on which the state is built. Since the
definition of the family of commuting operators on the graph
is always s1d, our techniques can be applied to study the
nonlocality of any graph state. However, the specific results
can be strongly dependent on the graph, which here was the
regular lattice or cluster. For instance, N-qubit GHZ states
are graph states, but—contrary to what has just been de-
scribed for cluster states—no GHZ argument for their partial
states can be found, because all the partial states are sepa-
rable. This derives from the connectivity of the correspond-
ing graph, in which all the sites are connected only through a
single site a; therefore, the operator Sa must be used to find
any GHZ argument, and this operator is nontrivial on all
sites.

B. Comparison with systematic inequalities

Very recently, a systematic way of constructing Bell’s in-
equalities for any graph state has been found f18g. The result
is very elegant: the sum of the elements of the stabilizer
group provides a Bell inequality. It is instructive to apply this
formalism to the four-qubit cluster state, for which we have
provided inequality s10d above. We have written explicitly
the equations corresponding to each element of the stabilizer
group at the beginning of Sec. II A; at the end of the same
section, we have stressed that only 14 s13 nontrivial plus the
identityd of the 16 equations can be satisfied in a local-
variable theory. By definition, QM satisfies all the properties
with the cluster state. Therefore we have a Bell-type inequal-

ity B̃LVø143 s+1d+23 s−1d=12 f19g for which QM

reaches the value B̃QM=16. This inequality uses three set-
tings per qubit.

There is a strong link between this inequality and ours

s10d. By summing over all the stabilizers, the polynomial B̃

contains the four terms of Eq. s9d, the four terms that build
the symmetric version of it sGHZ argument based on
YXYZ=−1d, and eight more terms. These additional terms
turn out to be “innocuous” as far as local variables are con-

cerned: thus, the violation of B̃ø12 is nothing but the simul-
taneous violation of s10d and its symmetric version. How-
ever, the two inequalities are not equivalent on all quantum
states, as can be seen on the GHZ state uGHZ4l by the same

argument as in Sec. II B: eight terms in the polynomial B̃ are

products of three Pauli operators, so B̃GHZø8 sand the
bound can actually be attainedd. So, for the inequality dis-
cussed in this section, the GHZ state cannot even reach the
local-variable bound.

In summary, in the case of the four-qubit cluster state
uf4l, the inequality built according to the recipe of Ref. f18g
exploits the same nonlocality as our inequality s10d. Note
also that our inequality is easier to test experimentally be-
cause it requires fewer settings stwo instead of three per qu-
bitd and fewer terms sfour instead of 15d. However, when we
apply our method to an arbitrary number N of qubits ssee the
end of Sec. IIId we find an inequality whose violation is
always by a factor of 2, irrespective of N; whereas the in-
equalities discussed in Ref. f18g are such that the violation
increases with N.

VI. CONCLUSION

In conclusion, we have found that a rich nonlocality struc-
ture arises from the peculiar, highly useful entanglement of
cluster states of qubits. This nonlocality is very different
from the one of the GHZ states: the qualitative difference is
most strikingly revealed by the existence of a GHZ argument
for mixed states. In the four-qubit case, we have also pro-
vided a quantitative witness in terms of a Bell inequality,
which will be an important tool in planned experiments to
produce photonic cluster states f20g.
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