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Abstract. Nonlocal modeling has drawn more and more attention and becomes steadily more
powerful in scientific computing. In this paper, we demonstrate the superiority of a first-principle
nonlocal model — Wigner function — in treating singular potentials which are often used to model
the interaction between point charges in quantum science. The nonlocal nature of the Wigner
equation is fully exploited to convert the singular potential into the Wigner kernel with weak or even
no singularity, and thus highly accurate numerical approximations are achievable, which are hardly
designed when the singular potential is taken into account in the local Schrödinger equation. The
Dirac delta function, the logarithmic, and the inverse power potentials are considered. Numerically
converged Wigner functions under all these singular potentials are obtained with an operator splitting
spectral method, and display many interesting quantum behaviors as well.
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1. Background and motivation. It has been shown that the point charge
description of electrons usually agrees well with the experimental results,1 where
the interaction between them is dominated by the Coulomb potential — a typical
singular potential in quantum science.2–6 Such Coulomb interaction has found various
applications in physics2,7 and chemistry.1,8, 9 Apart from that, there exist some other
singular potentials to describe the interactions arising from scattering problems,10 the
short-range interactions in condensed matter,11,12 Dirac monopole in the magnetic
field13 and etc. The logarithmic potential is also adopted to measure the entropy
density in the study of two-phase flow.14

Directly plugging a singular potential into the Schrödinger equation

(1.1) i~
∂

∂t
ψ(x, t) = − ~2

2m
∇2
xψ(x, t) + V (x)ψ(x, t),

and then seeking the numerical solutions runs into a problematic situation, where
ψ(x, t) gives the wavefunction, m and ~ signify the mass of the particle and the
reduced Planck constant, respectively. Let’s take the Dirac delta function potential
as an example:

(1.2) V (x) = Hδ(x)

with a power of H (the influence of potential) and the Dirac delta function (see Fig. 1):

(1.3) δ(x) =

{
+∞ x = 0

0 x 6= 0
,

∫
R
δ(x)dx = 1.

This Dirac delta function potential, which diverges at x = 0, is often adopted to
model an infinite well and barrier.15 Obviously, there is no way for the finite difference
method to find a suitable approximation to the function (1.3) and then to the equation
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(a) The Dirac delta function potential (1.2). (b) The Wigner kernel (1.8).

Fig. 1. The Dirac delta function potential and its Wigner kernel with power H = 1. It
can be intuitively seen that the singular potential is transformed into a non-singular Wigner
kernel.

(1.1) equipped with the singular potential (1.2). Recourses to the Galerkin method
inevitably sacrifices the accuracy or convergence order, which has been already pointed
out by16,17 in solving the elliptical boundary value problem with the Dirac delta
function source −∆u(x) = δ(x).

In this paper, we adopt a nonlocalization approach based on the integral formula-
tion to deal with the singular potential situation. Specifically, we turns to the Wigner
function18

(1.4) f(x, k, t) =

∫
R
ψ(x+

y

2
, t)ψ†(x− y

2
, t) exp(−iky) dy,

and its governing equation

(1.5)
∂

∂t
f(x, k, t) +

~k
m
∇xf(x, k, t) = ΘV [f ](x, k, t),

both of which are defined in phase space (x, k) with x being the position and k
the wavenumber. Starting from the definition (1.4) where the Wigner function is
calculated from the density matrix ψ(x, t)ψ†(x, t) by changing to center-of-mass co-
ordinates followed by a Fourier transform, the Wigner equation (1.5) can be derived
from the Schrödinger equation (1.1) in a straightforward manner. The nonlocalization
of singular potentials is embodied in the pseudo-differential operator

ΘV [f ](x, k, t) =

∫
R
Vw(x, k − k′)f(x, k′, t) dk′,(1.6)

Vw(x, k) =
1

2πi~

∫
R

exp(−iky)
[
V (x+

y

2
)− V (x− y

2
)
]

dy,(1.7)

and all the information of potential V (x) is contained in the Wigner kernel Vw(x, k).
Substituting the Dirac delta function potential (1.2) into Eq.(1.7) leads to

(1.8) Vw(x, k) =
2H

π~
sin(2xk),
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the plot of which is displayed in Fig. 1. It can be readily observed there that the
Wigner kernel Vw(x, k) is no longer singular and thus we have a chance to seek highly
accurate numerical solutions to the Wigner equation (1.5) with singular potentials.
That is, the point singularity in V (x) is distributed over the whole space with the
nonlocal action of pseudo-differential operator, thereby alleviating or even eliminating
the singularity. After obtaining the Wigner function (1.4), the average of a quantum
operator Â can be expressed as

(1.9) 〈Â〉t =

∫∫
R×R

A(x, k)f(x, k, t) dxdk,

where A(x, k) gives the corresponding classical function in phase space. In other
words, the Wigner function formulation is fully equivalent to the wavefunction for-
mulation for quantum mechanics.19 Generally speaking, nonlocal models may offer
more explanations for phenomena that involve possible singularities including the
interaction with singular potentials and occurring at a distance.20

By exploiting the intrinsic nonlocal nature of the Wigner function approach, we
are able to obtain highly accurate numerical approximations to observable quanti-
ties in quantum dynamics with singular potentials with the help of spectral methods
and operator splitting techniques. For demonstration purposes, this work focuses on
the singular potentials the Wigner kernels of which have analytical forms, like the
Dirac delta function potential. Otherwise, other extra numerical techniques should
be adopted, for example, the truncated kernel method.21,22 It should be noted that
there exist few high precision numerical simulations of the Wigner equation under sin-
gular potentials except for a recent attempt to numerically solve the Wigner-Coulomb
system23 as well as some qualitative analysis results.24,25

The rest of the paper is organized as follows. Section 2 presents the numerical
results for the Dirac delta function potential and an comparison with the finite size
model. Scattering of the Fermi-Dirac distribution in 4-D phase space is shown as well.
Extensions to other three types of singular potentials are given in Section 3. Finally,
conclusions and discussions are drawn in Section 4.

2. Quantum dynamics in a Dirac delta function potential. After trun-
cating the k-space into K = [kmin, kmax],26 a Fourier spectral approximation with Nk
terms to the Wigner function f(x, k, t) reads

(2.1) f(x, k, t) ≈ fNk(x, k, t) =

Nk/2∑
ν=−Nk/2+1

αν(x, t)ψν(k),

where ψν(k) = e2πiν(k−kmin)/Lk with Lk = kmax − kmin gives the basis. Then the
pseudo-differential term (1.6) can be approximated as follows

ΘV [f ](x, k, t) ≈ ΘT
V [fNk ](x, k, t) =

Nk/2∑
ν=−Nk/2+1

cν(x)αν(x, t)ψν(k),(2.2)

cν(x) =

∫
K′
Vw(x, k′) e−2πiνk

′/Lk dk′, K′ = [−Lk, Lk].(2.3)

For the situation of the Dirac delta function potential (1.2), plugging Eq. (1.8) into
Eq. (2.3) leads to the following close formula

(2.4) cν(x) =
2Hi

π~

(
sin(ω+

ν (x)Lk)

ω+
ν (x)

− sin(ω−ν (x)Lk)

ω−ν (x)

)
,
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where ω±ν (x) = 2x± 2π
Lk
ν and the limits must be used when ω±ν (x) = 0. It can be easily

observed in Eq. (2.2) that only cν(x) involves the singular potential (1.2), through the
non-singular Wigner kernel (1.8), thereby implying that the formula (2.4) treats the
singularity with high accuracy, where the numerical errors only come from the trun-
cation of k-space and the spectral approximation of f(x, k, t). After that, we adopt
the Chebyshev spectral element method with inflow boundary conditions27 in x-space
and the fourth-order operator splitting technique28 in t-direction to determine the
remaining unknowns αν(x, t). For simplicity, we use the same M collocation points
in all Q cells in x-space. Moreover, the above numerical method can be readily ex-
tended to 4-D and higher-dimensional scenarios in a dimension-by-dimension manner
by using the tensor product of 2-D basis functions.

The L2-error

(2.5) ε2(t) =

[∫∫
X×K

(
F (x, k, t)− f ref(x, k, t)

)2
dxdk

]1/2
and L∞-error

(2.6) ε∞(t) = max
(x,k)∈X×K

{
|F (x, k, t)− f ref(x, k, t)|

}
are used to analyze the convergence of the errors, where X := [XL, XR] is the com-
putational domain in x-space, F (x, k, t) represents the numerical solution, and the
numerical solution obtained on the finest mesh is taken as the reference f ref(x, k, t).
For convenience, the above errors in Eqs. (2.5) and (2.6) are numerically calculated
on the following uniform mesh
(2.7)

(xi, kj) = ((i− 1/2)(XR −XL), (j − 1/2)(kmax − kmin))/Num, i, j = 1, . . . , Num,

where Num denotes the mesh size.

2.1. 2-D scattering of Gaussian wave packet. As stated in,26,27 the Gaus-
sian wave packet

(2.8) f(x, k, 0) =
1

π
e−

(x−x0)2

2σ2
−2σ2(k−k0)2

is usually adopted as the initial function to test the convergence rate as well as to
investigate the quantum tunneling, where (x0, k0) gives the initial center position
and σ is the minimum position spread. We will simulate its quantum scattering
in the Dirac delta function potential, which has never been reported before in the
literature. For the purpose of testing only, we set ~ = 1 eV · fs, m = 1 eV · fs2 · nm−2,
x0 = −10 nm, k0 = 2 nm−1, and σ = 2 nm. The computational domain is chosen
as [XL, XR] = [−30 nm, 30 nm] which is divided evenly into Q = 20 cells, −kmin =
kmax = π nm−1, and the quantum evolution with a fixed time step ∆t = 0.01 fs is
stopped at tfin = 10 fs.

The first test tries H = 1 in Eq. (1.2) and the resulting Wigner functions at
t = 2.5, 5, 7.5, 10 fs are displayed in Fig. 2, which is obtained on the finest mesh we
have tried: Nk = 512,M = 55. It is clearly observed there that the wave packet still
goes partially through the barrier though the barrier whose height is infinite. That is a
clear manifestation of quantum tunneling effect in the Dirac delta function potential,29

reflecting a fundamental difference between quantum world and macroscopic world.
A possible explanation is that the width of the Dirac delta function barrier tends to
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(a) t = 2.5 fs. (b) t = 5 fs.

(c) t = 7.5 fs. (d) t = 10 fs.

Fig. 2. The Wigner functions at different instants: A Gaussian wave packet runs through
the Dirac delta function barrier Eq. (1.2) with power H = 1. Quantum tunneling effect can
be clearly observed.

be extremely small, very close to 0 in particular, albeit the infinitely large height. To
study the convergence rate with respect to Nk, the number of collocation points in
each x-cell is fixed to be M = 55. Similarly, when studying the convergence rate with
respect to M , the number of collocation points in k-space is fixed to be Nk = 512.
Fig. 3 displays the spectral convergence of ε2(10) and ε∞(10) against Nk or M where
we have set Num = 600 in Eq. (2.7). That is, the numerical results in Fig. 2 are
numerically converged.

To be more specific, the uncertainty

(2.9) σx(t)σp(t) =

√〈
(x̂− 〈x̂〉t)

2
〉
t

√〈
(p̂− 〈p̂〉t)

2
〉
t

is adopted to measure the nonlocality, and its numerical value is still obtained on the
uniform mesh given in Eq. (2.7), where p = ~k is the momentum. We show in Table 1
that the numerical results with different mesh sizes and find that the numerically
converged value for σx(10)σp(10) is 20.8510 for H = 1.
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Fig. 3. Spectral convergence with respect to Nk (left) and M (right) during the scattering
of a Gaussian wave packet in the Dirac delta function potential Eq. (1.2) with H = 1.

Table 1
Numerical values for σx(10)σp(10) with respect to increasing Nk, M and Num and the

converged value is 20.8510.

Nk σx(10)σp(10) M σx(10)σp(10) Num σx(10)σp(10)
32 19.9616 21 21.0169 100 20.8355
64 20.8938 26 20.8682 200 20.8467
128 20.8570 31 20.8406 300 20.8510
256 20.8529 36 20.8502 400 20.8510
300 20.8524 41 20.8515 450 20.8510
400 20.8515 45 20.8509 500 20.8510
500 20.8510 51 20.8510 550 20.8510
512 20.8510 55 20.8510 600 20.8510

In addition to the uncertainty, we continue to use the partial mass

(2.10) Pr(t) =

∫
[0,XR]×K

f(x, k, t) dxdk

for investigating the tunneling effect for ten different powers: H = ±0.5, ±1, ±1.5,
±2, and ±2.5. Pr can also be regarded as the tunneling rate in view of that the
total mass equals to one. Figs. 4 and 5 show the tunneling rates and uncertainties
for potential barriers H > 0 and potential wells with H < 0, respectively. The curves
in Fig. 4 exhibit the deceleration of Pr(t) as H increases, and uncertainty peaking
at H = 1. It can be further found that the moment when the uncertainty reaches
the maximum coincides with that the tunneling rate reaches to about 0.5. At this
moment, the variances accumulate the most and it is difficult to observed the position
and momentum of the wavepacket simultaneously. Moreover, when the power is high
enough, i.e., H ≥ 1.5, there are significant fluctuations of σx(t)σp(t) and Pr(t). That
could be comprehended as follows. The influence of the power H leads to the high
oscillations in the Wigner function at the center x = 0 nm. Therefore, these two
observables fluctuate during the wave packet interacting with the barrier. When it
comes to the wells with negative power, it can be observed in Fig. 5 that the trend
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of the tunneling rate Pr(t) is opposite to that of the uncertainty σx(t)σp(t): Pr(t)
decreases and σx(t)σp(t) increases as as |H| increases.

(a) Tunneling rate. (b) Uncertainty.

Fig. 4. Tunneling rates and uncertainties for the Dirac delta function barriers with
powers H = 0.5, 1, 1.5, 2 and 2.5. The moment when the uncertainty reaches the maximum
coincides with that the tunneling rate reaches about 50%.

(a) Tunneling rate. (b) Uncertainty.

Fig. 5. Tunneling rates and uncertainties for the Dirac delta function well with powers
H = −0.5, −1, −1.5, −2 and −2.5.

2.2. Finite size effect. The point charge causes singularity because it has no
size. In view of this, one may use a finite size model to avoid the singularity. The
Gaussian function with size of a, denoted by Va(x), is usually used to mimic the point
charge model,1,30 the validity of which relies on the following limit

(2.11) δ(x) = lim
a→0+0

Va(x) = lim
a→0+0

1√
2πa

exp (− x2

2a2
).

However, we would like to point out that there is a huge gap between the quantum
behavior caused by the point charge δ(x) and finite-size charge Va(x).
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Table 2
Uncertainties for different sizes at tfin = 10 fs. a = 0 nm signifies the Dirac delta

function barrier. The uncertainty of the Dirac delta function barrier δ(x) is much larger
than that of the Gaussian barrier of any finite size Va(x).

a nm 10 5 0.5 0.1 0.01 1E-3 1E-4 1E-16 0
σx(10)σp(10) 0.9811 1.0663 1.2272 1.0041 0.8027 0.8005 0.8003 0.8003 20.8510

(a) Va(x) with a = 0.5 nm. (b) δ(x).

(c) Tunneling rate. (d) Uncertainty.

Fig. 6. Different quantum behavior caused by the Gaussian barrier with finite size Va(x)
and Dirac delta function barrier δ(x). The Wigner functions at tfin = 10 fs are displayed in
(a) and (b), the tunneling rate in (c), and the uncertainty in (d). Both tunneling rates and
uncertainties are obviously different.

Table 2 displays the numerically converged uncertainties at tfin = 10 fs for de-
creasing sizes. When a = 10−16 nm, σx(10)σp(10) is about 0.8003, which is far less
that 20.8510 caused by δ(x). In fact, as the size gradually becomes smaller, the uncer-
tainty first grows to 1.2272, then gradually decreases, and finally stays around 0.8003.
Such apparent discrepancy can be also observed from the Wigner functions at the
final instant in Fig. 6. Compared the Wigner function under Va(x) with a = 0.5 nm
in Fig. 6(a), it is obvious that the Wigner function under δ(x) in Fig. 6(b) reaches the
extrema around x = 0 nm, where the singular point exactly locates at, and the oscil-
lation between positive and negative values is more vicious. More specifically, at the
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final instant, the average position and moment are (〈x̂〉10 , 〈p̂〉10) = (9.7732, 1.9840)
under the Gaussian barrier, but alter to (〈x̂〉10 , 〈p̂〉10) = (1.1313, 0.0047) under δ(x).
Fig. 6(c) provides the tunneling rate Pr(t). It reaches almost to 1 as expected under
the Gaussian barrier, which is consistent with the weak presence of negative part of
the Wigner function in Fig. 6(a). By contrast, it is manifested in Fig. 6(d) that the
same wave packet can just partially pass through the Dirac delta function barrier and
its uncertainty increases significantly, which should result from the infinite height of
the potential.

In a word, our numerical experiments suggests an essential difference between the
singular potential and its regularized counterpart as already shown in investigating
nuclear magnetic shielding.30 No matter how small the size of Gaussian barrier we
choose, it is still a smooth and local potential. The Dirac delta function potential,
on the contrary, an ideal model widely used to simulate the point charge field source
of quantum chemical reactions, has some essentially difference from such regularized
one in studying quantum phenomena.

Fig. 7. 4-D scattering of Fermi-Dirac distribution: Errors of the spatial marginal distri-
bution against Nk (left) and M (right).

2.3. 4-D scattering of Fermi-Dirac distribution. In view of the high di-
mensionality of phase space, the foregoing treatment of singular potentials using the
Wigner function approach can be also extended to high-dimensional scenarios. This
section is devoted to scattering of the Fermi-Dirac distribution in 4-D phase space un-
der a singular potential. Specifically, we adopt the following position-independent 2-D
Fermi-Dirac distribution function31,32 as the initial data for the Wigner equation (1.5)

(2.12) f(x1, x2, k1, k2, 0) =

√
2mkBT

π~

∫ ∞
0

1

1 + exp(y2 + ((~k1)2+(~k2)2)/(2m)−EF

kBT
)
dy,

where m = 0.067me, me = 5.68562966 eV · fs2 · nm−2, ~ = 0.658211899 eV · fs,
kB = 8.61734279 × 10−5 eV · K−1, T is taken as 300 K, and EF = 0.1 eV signifies
the Fermi energy. Meanwhile, we choose an annular singular potential V (x1, x2) =∑8
i=1 δ(x1 − di1)δ(x2 − di2), where all singular points, numbered 1 to 8 in an anti-

clockwise direction with the right-most one being the first, are evenly distributed in
a circle with radius equal to 2 nm and (di1, d

i
2) gives the position of the i-th singular

point.

9



(a) t = 0.1 fs. (b) t = 0.2 fs. (c) t = 0.5 fs.

(d) t = 0.8 fs. (e) t = 1 fs. (f) t = 1.5 fs.

(g) t = 2 fs. (h) t = 2.5 fs. (i) Contour inside the circle.

Fig. 8. 4-D scattering of Fermi-Dirac distribution: Spatial marginal distributions in
Eq. (2.13) subtracted by the corresponding constant distributions in the free space. Eight Dirac
delta function potentials give eight singular points (small white dots), which are numbered 1 to
8 in an anti-clockwise direction with the right-most one being the first and evenly distributed
in a circle with radius equal to 2 nm. In (i), we plot the contour inside the circle at t = 2.5 fs
with 10 equally spaced contour lines from −0.01216 to 0.004087.

The computational domain is X × X × K × K with X = [−10 nm, 10 nm] and
K = [−π nm−1, π nm−1]. We use the same Nk collocation points for all K, the same
number of elements Q = 5 and M collocation points in each element for all X . The
quantum dynamics is evolved to tfin = 2.5 fs with time step ∆t = 0.01 fs. We measure
the errors of spatial marginal distribution of the Wigner function,

(2.13) Fsm(x1, x2, t) =

∫∫
K×K

f(x1, x2, k1, k2, t) dk1dk2,

in a similar way to calculating Eqs. (2.5) and (2.6). Fig. 7 presents the errors against
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Nk and M after fixing Num = 400 in Eq. (2.7) and the spectral convergence is evident
again. The spatial marginal distributions on the finest mesh at different instants
are displayed in Fig. 8 where the corresponding constant distributions in the free
space, F freesm (x1, x2, t) ≡ 0.05384, have been subtracted. It can be observed there that
the Fermi-Dirac distribution first reacts strongly to the eight singular points in the
circle during which many small oscillations are produced in the central area of the
circle, and then gradually expands to the surroundings. Obviously, such expanding
is blocked by the eight Dirac delta function potentials and the resulting interference
forms 12 branches outside the circle: 4 big branches lie in the main directions, north,
east, south and west, respectively, and the remaining 8 small branches are equally
distributed between them, where six lines that are determined by pairs of singular
points: (1, 7), (2, 6), (3, 5), (1, 3), (4, 8) and (5, 7) serve as the boundaries of branches.
Inside the circle, the interference pattern shows a clear square structure that is also
shaped by the same six lines. At the final time t = 2.5 fs, a basin structure emerges:
The spatial marginal distribution inside the circle is reduced to less than F freesm (see
Fig. 8(i)), and that above F freesm is all outside the circle (see Fig. 8(h)).

3. Extensions to other singular potentials. In this section, we devote our-
selves into using the Wigner function approach to the following singular potentials:

• The logarithmic potential

(3.1) V (x) = H log(x)

which is naturally related to the entropy expression;14

• The inverse power potential for α ∈ (0, 1)

(3.2) V (x) = H|x|−α

which can be found in various quantum mechanical models;5,33,34

• The inverse square potential

(3.3) V (x) = H|x|−2

which has strong singularity at x = 0 and is extensively used in high-energy
scattering studies.34

3.1. The logarithmic potential. Plugging Eq. (3.1) into Eq. (1.7) yields the
corresponding Wigner kernel

(3.4) Vw(x, k) = −H
~

sin(2xk)

|k|
,

and then substituting it in Eq. (2.3) leads to

(3.5)
~

2Hi
cν(x) =

∫ Lk

0

sin(2xk′) sin(ν̃k′)

k′
dk′ :=

(∫ ε

0

+

∫ Lk

ε

)
gν(x, k′)dk′,

where ε is a prescribed small parameter and ν̃ = 2πν/Lk. Using the the Taylor
expansion in (0, ε) gives∫ ε

0

gν(x, k′)dk′ = ν̃xε2 − (
1

3
ν̃x3 +

1

12
ν̃3x)ε4 +O(ε7),
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and with the help of the cosine integral function Ci(x) = −
∫ +∞
x

cos t
t dt,we have∫ Lk

ε

gν(x, k′)dk′ =
Ci(|ω+

ν (x)|ε)− Ci(|ω−ν (x)|ε)− Ci(|ω+
ν (x)|Lk) + Ci(|ω−ν (x)|Lk)

2
.

Accordingly, the expansion coefficient cν(x) given in an oscillatory improper integral
(3.5) can be approximated to the machine resolution by choosing ε = 1E-5. Other
parameters are set to be: H = 1, −XL = XR = 30 nm, −kmin = kmax = π nm−1,
Nk = 512, Q = 20, M = 55, ∆t = 0.01 fs, and Num = 600. We use an initial
Gaussian wave packet close to the origin by setting x0 = −1 nm and k0 = 0.5 nm−1

in Eq. (2.8). Numerical convergence tests are given in Fig. 9 and show clearly the
spectral accuracy. The left column of Fig. 10 plots the numerically converged Wigner
functions at t = 2.5, 5, 7.5, 10 fs obtained on the finest mesh. It can be observed there
that, the wave packet is attracted by the logarithmic potential (3.1), and keeps moving
around the singular point, during which many small oscillations appear around the
origin along with the singularity.

Fig. 9. The logarithmic potential: Numerical convergence against Nk (left) and M (right)
at tfin = 10 fs.

It has been shown that the Poisson summation formula can be used to approxi-
mate the Wigner kernel (1.7) well (yζ = ζ ∆y and ∆y being the spacing):

(3.6) Vw(x, k) ≈ ∆y

2πi~

+∞∑
ζ=−∞

[
V (x+

yζ
2

)− V (x− yζ
2

)
]
e−ikyζ

when the external potential V (x) is smooth and localized,26 but fails when taking the
Coulomb interaction into account.23 Here we would like to confirm this failure using
the logarithmic potential. After using the “approximate” Wigner kernel (3.6) to re-
place the analytical one (3.4) and keeping all other settings unchanged, we rerun the
simulations in the left column of Fig. 10 and display the resulting Wigner functions in
the middle column of Fig. 10, which shows some obvious discrepancy. Compared with
the reference solutions, the Wigner functions obtained with Eq. (3.6) display much
more severe oscillations with higher peaks and deeper valleys, and the correspond-
ing spatial marginal distributions show some spurious oscillations and non-physical
negative values (see the right column of Fig. 10).
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(a) t = 2.5 fs.

(b) t = 5 fs.

(c) t = 7.5 fs.

(d) t = 10 fs.

Fig. 10. The logarithmic potential: The Wigner functions corresponding to the analytical
Wigner kernel (3.4) (left), to the “approximate” Wigner kernel (3.6) (middle) and their
spatial marginal distributions (right).

3.2. The inverse power potential. According to the Fourier transform of the
inverse power function with α ∈ (0, 1): F [|x|α](ξ) = −2 sin(π2 (α − 1))Γ(α)|ξ|−α, the
Wigner kernel of Eq. (3.2) reads

(3.7) Vw(x, k) =
H sin(π2α)Γ(α)22−α

π~
sin(2xk)

|k|α
,

13



Fig. 11. The inverse power potential: Numerical convergence with respect to Nk (left)
and M (right) at tfin = 10 fs.

(a) t = 2.5 fs. (b) t = 5 fs.

(c) t = 7.5 fs. (d) t = 10 fs.

Fig. 12. The inverse power potential: The Wigner functions at different instants. We
set H = 1 and α = 1/2 in Eq. (3.2).
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where Γ(x) gives the Gamma function. Combining Eqs. (3.7) and (2.3) together yields

(3.8) cν(x) =
2Hi sin(π2α)Γ(α)22−α

π~

∫ Lk

0

sin(2xk) sin(2πνk/Lk)

kα
dk,

which can be efficiently approximated to the machine accuracy with the help of the
Generalized Hypergeometric function 1F2((1−α)/2; 1/2, (3−α)/2; x).35 For example,
when α = 1/2, that Generalized Hypergeometric function reduces to the Fresnel
function C(x) =

∫ x
0

cos(πt2/2) dt. We adopt the same parameters as in Section 3.1
to simulate the scattering between the Gauss wave packet and the inverse power
potential. Fig. 11 shows the spectral convergence with respect to Nk and M again,
and Fig. 12 the Wigner functions at four different instants. We are able to observe
there that the wave packet partially passes through the inverse power potential barrier;
and the negative Wigner function, sandwiched between two scattered wave packets in
opposite directions, strongly implies the uncertainty principle around the singularity.
Fig. 13 further plots the effect of power α on the tunneling rate Pr(t) in Eq. (2.10) and
uncertainty σx(t)σp(t) in Eq. (2.9). It is evident that, the tunneling rate gradually
increases as α rises, which reflects that the width of the potential becomes steadily
smaller. Since Pr(t) never rises over 0.5 throughout the scattering, the uncertainty
σx(t)σp(t) shows a mounting tendency whilst Pr(t) ascends, which is incurred by the
shape change of the potential, namely the increase of α.

(a) Tunneling rate. (b) Uncertainty.

Fig. 13. The inverse power potential: Tunneling rates and uncertainties. It is clearly
seen that the uncertainty σx(t)σp(t) shows a mounting tendency whilst Pr(t) ascends.

3.3. The inverse square potential. The Wigner kernel of the inverse square
potential (3.3) is

(3.9) Vw(x, k) = −4H

~
|k| sin(2xk)

and plugging it into Eq. (2.3), we are able to get a close form for cν(x) like Eq. (2.4).
The parameters are: [XL, XR] = [−30 nm, 30 nm], [kmin, kmax] = [−π nm−1, π nm−1],
Nk = 512, Q = 40, M = 55, Num = 600, ∆t = 0.005 fs, H = 1, x0 = −5 nm,
k0 = 1 nm−1. Fig. 14 verifies the spectral convergence against both Nk and M . Fig. 15
displays the quantum dynamics where the Gaussian wave packet is almost totally
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reflected after hitting the singular barrier. The tunneling rate Pr(t) are 0.01158,
0.009115, 0.006731 and 0.002025 at t = 2, 4, 5, and 8 fs, respectively, indicating
transparently that it is difficult for the wave packet to pass through the barrier due
to the strong singularity of the inverse power potential. This is very different from
the scattering shown in Section 3.2 with the inverse power potential which has much
weaker singularity. Moreover, severe oscillations of positive and negative Wigner
functions clearly appear around the origin, which accords with the summary that the
quantum behavior near the singularities is difficult to be measured.

Fig. 14. The inverse square potential: Spectral convergence against Nk (left) and M
(right).

4. Conclusions. With the help of the Wigner function approach for quantum
mechanics — a first-principle nonlocal model, we perform highly accurate numerical
simulations of quantum dynamics under singular potentials, during which the nonlocal
characteristic of Wigner function contributes to the attenuation of singularity of the
potentials. Numerically converged Wigner functions under the Dirac delta function,
the logarithmic, and the inverse power potentials are obtained with an operator split-
ting spectral method. Many interesting quantum behaviors are also revealed during
the scattering under these singular potentials. It should be noted that all existing
Wigner simulations truncate the nonlocal integral in k-space, but the effect of such
truncation on long-time simulations of quantum dynamics is hardly estimated in ad-
vance. Instead, motivated by recently proposed adaptive technologies on unbounded
domains,36–38 we are developing numerical methods to solve the Wigner equation
without truncating the nonlocal k-integral.
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