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The achievement of optimum conversion efficiency in conventional spontaneous parametric down-
conversion requires consideration of quantum processes that entail multisite electrodynamic coupling,
actively taking place within the conversion material. The physical mechanism, which operates through
virtual photon propagation, provides for photon pairs to be emitted from spatially separated sites of photon
interaction; occasionally pairs are produced in which each photon emerges from a different point in space.
The extent of such nonlocalized generation is influenced by individual variations in both distance and phase
correlation. Mathematical analysis of the global contributions from this mechanism provides a quantitative
measure for a degree of positional uncertainty in the origin of down-converted emission.
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Spontaneous parametric down-conversion (SPDC) is a
process in which light passing through an optically nonlinear
medium can generate double-wavelength output. At a
fundamental level, the process entails the conversion of
pump photons into conascent, phase-matched pairs,
executed by material interactions that entail the second-
order nonlinear optical susceptibility: a third-order electric
dipole response. Each generated pair of photons has a
combined energy and momentum equal to that of the
corresponding annihilated photon, and they also exhibit
correlated polarization. When the emergent photons equally
share the energy of the input, the process is known as
degenerate down-conversion (DDC); an alternative perspec-
tive is to regard the conversion as an exact time reversal of
second-harmonic generation [1,2]. Much work has been
carried out on correlated photon pairs, including their
generation [3–5], manipulation [6–9], and application
[10–12]. The entanglement of the quantum states in each
pair has important applications in quantum computing and
communication [13], and potential utilization clinically [14].
In this Letter we develop an expanded theory of SPDC,

highlighting and quantifying an important contribution
from nonlocalized couplings. While SPDC is one of the
main sources of entangled photon pairs [15], an exact
location for the creation of each output photon cannot of
course be inferred by direct observation—although pump
photon annihilation and down-converted photon emission
are generally assumed to be colocated. Of course, the
diffuse nature of atomic and molecular orbitals precludes
exact identification of the location for any photon creation
event; equally, even the emission of two correlated photons
cannot be considered as precisely colocated in origin.
However, the spatial extent of the region from within
which a pair of down-converted photons may emerge is
considerably larger than may usually be supposed.
In fact, there is a possibility that for each input photon

the process may entail correlated photon interactions at two

separate locations, creating one down-converted photon at
each as indicated in Fig. 1. Accounting for such delocalized
interactions provides fresh insights into the extent of
nonlocalization in the origin of photon pairs. In principle,
this effect enables a pair of correlated photons to emerge
from two spatially separated origin points, and this intro-
duces new positional uncertainty of a fundamental quantum
origin. In the following analysis, using a quantum electro-
dynamical (QED) formalism, we fully account for both
localized and nonlocalized emission. The results are then
developed for computational implementation, aiming to
quantify the net effect of nonlocalization within a model
lattice structure. It is thus shown that multicenter compo-
nents contribute to the overall rate of down-converted
frequency generation, introducing positional uncertainty
of a fundamental quantum origin.
The primary analysis is carried out within a nonrelativistic

quantum electrodynamical formulation [16–18], framed on
the Power-Zienau-Woolley Hamiltonian [19]. The multipo-
lar formalism [20] is specifically adopted to describe the
interactions of matter and radiation within the electromag-
netic field. In this theory, all events that lead to observable
phenomena explicitly occur through material-based annihi-
lation and creation of photons, and all nonlocal couplings
are mediated by fluctuations in the vacuum field, i.e.,
through virtual photon propagation [21]. Bulk media effects
are systematically accounted for by the incorporation of the
appropriate refractive and dissipative factors [22].
We first designate as point A the location for the

annihilation of any single input photon, and the creation
of at least one output photon. To ensure local energy
conservation over a time scale beyond the conversion event,
any separate location (labeled B) that is the creation site
for the other photon must be coupled to A by virtual photon
exchange, as indicated by the double-headed arrow in
Fig. 1. (The possibility of neither down-converted photon
emerging from the site of input photon annihilation
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represents a much weaker, higher-order interaction to be
discussed in subsequent work.) Using the standard frame-
work of time-dependent perturbation theory and the Fermi
rule [23] for the system as a whole, the observable rate of
down-conversion is expressible as

ΓSPDC ¼ 2πℏ−1ρ
���X

A
MA þ

X
A;B

MAB

���2; ð1Þ

where ρ is the density of final states of the radiation. For
the conventional single-center mechanism of parametric
down-conversion the use of third-order time-dependent
perturbation theory delivers the standard result for the
matrix element MA involving three photon interactions.
Explicitly calculating the other, more complicated MAB
elements in (1) requires a development using fifth-order
perturbation theory, due to the additional virtual photon
creation and annihilation events. To this end, and to
circumvent arduous evaluation of all the time orderings
based on conventional Feynman graphs, we deploy the
more expedient state-sequence methodology [24,25].
For coherent down-conversion through the single-site

mechanism, the photon momentum of the radiation field is
conserved, and therefore the net output is matched in phase
to the input. To effect a degree of simplification that in no
way affects the impact of the analysis to follow, we assume
index-matching, which implies forward emission. Using
textbook methods of QED [18], including refractive media
corrections [22], then by invoking the Einstein rule for
summation over repeated indices, the matrix element MA
is cast as

MA¼
X
A

i
4
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where χð2ÞiðjkÞð−ω;−ω; 2ωÞ is the second-order susceptibility
[1], 2ω is the optical frequency for the pump beam of wave
vector k, and ω is that of the output mode k0; n is the

complex refractive index; e and e0 are the polarization
vectors of the incident and emitted photons, respectively.
The quantity q=V quantifies the irradiance of the pump
beam: q is the mean occupation number for the state of
the incident radiation mode within a volume V, the latter
signifying the effective volume of each distinct active
center. The product polarization tensor eiē0jē

0
k is clearly

j, k symmetric, and thus only the j, k-symmetric part of the

nonlinear susceptibility tensor χð2Þijk, with which it contracts,

can contribute: written as χð2ÞiðjkÞ the explicit formula for the

index-symmetric form is conventionally cast as follows:
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where N is the number density of active centers, equivalent
to V−1, and μab is a generic electric transition dipole
moment for the a←b electronic transition; fj ↔ kg sig-
nifies terms obtained by exchanging these indices.
The next step in calculating the overall rate (1) is to

calculate the second term in the modulus square. To relate

FIG. 1. Schematic for two SPDC mechanisms. Above: Photon
annihilation and both photon creation events are colocated at A.
Below: The annihilation and one creation occur at A, the other
creation event at another location B. Points A and B are coupled
via virtual photon exchange, indicated by the double-headed
arrow. In the full calculation, all time orderings are taken into
account, and the positional geometry is arbitrary.

FIG. 2. State sequence diagram accommodating 120 path
contributions for two-center down-conversion, with the initial
state of the radiation field and matter on the far left and the
corresponding final state on the right; intervening entries re-
present intermediate states; k and k0 denote input and output
mode photons, p a virtual photon. Subscripts on A and B denote
electronic states, 0 the ground state, and r, s virtual states.
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photon events at disparate locations we define as rB the
vector displacement of each correlated interaction site B,
from the position of A. Without prejudice in regard to time
ordering, the overall process is thus represented as a photon
of frequency 2ω being annihilated at A, with coupling
between A and B via virtual photon propagation leading
to the emission of a photon of frequency ω from B, and a
counterpart photon of the same frequency also emerges from
A. Overall, the electronic state of the material is both locally
and globally unchanged, unlike that of the radiation field.

The use of a state-sequence diagrammatic approach
facilitates accounting for all of the 5! time orderings that
contribute to the fifth-order matrix element. The structure
of the diagram—which assimilates information from all
120 corresponding Feynman diagrams—is shown in Fig. 2.
To exemplify one such matrix element contribution, the
following is the result for the state sequence represented by
the uppermost pathway in the figure, where sums are taken
over virtual states r, s, and also over all wave vectors p and
polarizations ϕ for the virtual photon,

MAB ¼ i
4N

X
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When all 120 such contributions are summed, the appli-
cation of straightforward tensor algebra and calculus gives
the overall quantum amplitude as

MAB ¼
X
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where the second rank tensor χð1Þlm is the linear susceptibility,
defined as

χð1Þlm ð−ω;ωÞ ¼ N
ε0
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In calculating the quantum amplitude (5) the usual inte-
grations over virtual photon wave vector and polarizations
have been carried out, giving the term Vjlðnk0; rBÞ, the
retarded resonant dipole-dipole coupling tensor, as defined
by

Vijðnk;RÞ ¼
1

4πε0R3
½ðδij − 3R̂iR̂jÞð1 − inkRÞ

− ðδij − R̂iR̂jÞn2k2R2�einkRe−κkR: ð7Þ

Here in the exponential factors, n is the real part of the
refractive index and κ is the imaginary part, representing a
coefficient of extinction. Combining the localized (2) and
nonlocalized (5) contributions to the overall rate of SPDC
thus gives
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Equations (1) and (8) demand a summation over all sites
A. Since all sites in the material are constitutionally
identical, the overall interactions at every site are similar;
for each input photon the engagement with each annihi-
lation site can be approximated as an independent process.
The summation over A therefore multiplies both terms of
Eq. (8) by the same factor, related to the overall availability
of interaction sites and competition between them for
the role of A. For the following calculations we are only
concerned with the relative contribution of the delocalized
mechanism to the SPDC rate.
The significance of the emerging dependence on the

linear susceptibility, evaluated at the wavelength of the
down-converted light, should not be mistaken. It does not
signify that the nonlocal mechanism simply involves
scattering one in a pair of emergent photons. Such a
process would not involve all of the time orderings of
events that are necessarily accounted for in the sum leading
to Eq. (5); moreover, the coherence in the output would be
lost through the inelastic character of the process at each
site. It should be appreciated that the true electrodynamic
mechanism exploits a finite, rather than supposedly infini-
tesimal, extent of photon interaction.
In order to ascertain the relative significance of interact-

ing A-B pairs at varying distances, we next calculate the
sum over all points B, subject to a constraint rB ≤ C, where
C is an arbitrary distance from position A. The sum is
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evaluated over all sites B for which the distance rB is less
than or equal to the chosen cutoff distance C; in effect C is
the radius of an imagined sphere centered on A, defining
the region within which nonlocal interactions are to be
included. The relevant part of (8) can then be written as a
function of C,

σjlðCÞ≡
XrB≤C
B

e−i nk0·rBVjlðnk; rBÞ: ð9Þ

It is instructive to model the process within a primitive
cubic lattice. To this end point A is defined as the origin;
every surrounding position with integer values for the x, y,
and z coordinates (in units of the notional unit-cell length)
is occupied by one optical center labeled B. For each B, the
distance from A is the magnitude of its position vector rB,
given by the center’s coordinates as rB ¼ pðx2 þ y2 þ z2Þ.
By numerical simulation we calculate σzzðCÞ for a range

of discrete values of C up to five output wavelengths, based
on the placement of A at the center of a 1013 point cubic
lattice. The wave vector k0 is chosen to be off alignment
with the lattice, and to have a wavelength λ ¼ 2πc=ω equal
to ten times the model unit-cell length. As shown in Fig. 3,
the sum described by Eq. (9) converges after a distance of
around 3.5λ towards the true value of σzz, a global sum over
all B that in this case has magnitude ε0jσzzj ¼ 15300λ−3. In
addition to progression towards an asymptote, there is an
oscillatory component: the inset of Fig. 3, which displays
the derivative of the σzz curve with respect to C, highlights
the effect of both exponential factors that appear at the
end of Eq. (7). The oscillations in particular manifest the
occurrence of both constructive and destructive interfer-
ences, according to the number of sites in each direction
about A as the delimiting sphere increases in capacity.
When the SPDC rate Eq. (1) is solved using the total

matrix element given by (8), the two terms in the square

brackets of (8) give the relative contributions of single-
center SPDC and the delocalized mechanism. In simplified
form, taking the scalar part of all tensors, the rate Eq. (1)
becomes

ΓSPDC ∝
��� 1þ ε0

n2N
χð1Þð−ω;ωÞσ

���2
¼ 1þ 2Re

�
ε0
n2N

χð1Þð−ω;ωÞσ
�

þ
��� ε0
n2N

χð1Þð−ω;ωÞσ
���2: ð10Þ

The first rate term, here normalized to 1, signifies the rate of
the single-center down-conversion process; the other terms
are attributable to the delocalized mechanism. The relative
effect on SPDC of the nonlocal process can be estimated by
solving (10) with the relevant values of n, σ, and the ratio
χð1Þ=N for the material in question.
It is worth noting that the three terms in the expanded form

of Eq. (10), emerging from time-dependent perturbation
theory, in general diminish successively in magnitude. The
progression inpowers of the linear susceptibility (6) offersone
means to mitigate the associated reduction in significance,
by judicious exploitation of preresonance enhancement. The
term involving the square of the linear susceptibility would
nonetheless remain smallest in magnitude.
To secure an indicative figure, relevant to a typical

pair-generation material, we take the example of BBO (β
barium borate), for which the inverse of the true unit-cell
volume N ¼ 5 × 1026 m−3. If the pump beam has wave-
length 266 nm, and a phase-matching direction is chosen
such that n ¼ 1.7, then we can employ the approximation
χð1Þ ¼ n2 − 1 to determine the linear susceptibility [26].
The magnitude of the scalar σ can be estimated from our
calculation of a representative component of the generic σ
tensor, as σ ¼ 3jσzzj. In this case, the result of Eq. (10) is
that approximately eight correlated pairs of photons are
produced from delocalized SPDC, per ten thousand pairs
attributable to the single-center SPDC mechanism. In other
words, photon pairs are occasionally produced in which
each photon emerges from a different point in space.
The result has a number of aspects with interesting

significance. First, it signifies that the assumption of a
common origin for each pair of photons emitted in SPDC is
an approximation. In fact, a direct corollary of the mecha-
nism we have described is the possibility that two down-
converted photons that are indeed created at identical (or
immeasurably close) points might indeed originate from
the conversion of two different pump photons (considering
point B in Fig. 1 to be site A for another such process). Such
a possibility erodes the fidelity of state entanglement in
the down-converted photons. Secondly, nonlocal down-
conversion must to some extent degrade the quality of
images in applications such as ghost imaging [27], based
on the separation of correlated photon twins: a physical

FIG. 3. Plot of the nonlocalized contribution to SPDC from the
phase- and distance-weighted factor given by Eq. (9), normalized
against ε0, as a function of the cutoff distance C. The inset shows
the derivative of the main graph.
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mechanism emerges for a lack of fidelity that might
otherwise have been more loosely attributed to noise.
This is an issue of considerable significance in the context
of factors more widely limiting optical resolution [28]. And
thirdly, the form of dependence on linear susceptibility
does indicate that optically dense materials exhibit a greater
propensity for nonlocal down-conversion; as noted earlier,
exploiting preresonance enhancement of SPDC in the
wings of an optical absorption band disproportionately
favors more delocalized emission. These are all features
that deserve closer attention where they impinge on
quantum optics and imaging applications.
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