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A new procedure is discussed which fits either the weighted or simple
Euclidian model to data that may (a) be defined at either the nominal,
ordinal, interval or ratio levels of measurement; (b) have missing observa-
tions; (c) be symmetric or asymmetric; (d) be conditional or unconditional;
(e) be replicated or unreplicated; and (f) be continuous or discrete. Various
special cases of the procedure include the most commonly used individual
differences multidimensional scaling models, the familiar nonmetric multi-
dimensional scaling model, and several other previously undiscussed variants.

The procedure optimizes the fit of the model directly to the data (not to
scalar products determined from the data) by an alternating least squares pro-
cedure which is convergent, very quick, and relatively free from local mini-
mum problems.

The procedure is evaluated via both Monte Carlo and empirical data.
It is found to be robust in the face of measurement error, capable of recovering
the true underlying configuration in the Monte Carlo situation, and capable of
obtaining structures equivalent to those obtained by other less general pro-
cedures in the empirical situation.

Key words: Euclidian model, INDSCAL, measurement, similarities, data
analysis, similarities data, quantification, successive block algorithm.

1. Purpose and Motivation

One of the most vigorous areas of endeavor in recent multi-dimensional
scaling research concerns the representation of individual differences. The
weighted Euclidian model is currently the most widely used individual
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differences model of the various ones that have been proposed. One of the

main attractions of this model undoubtedly relates to the strict isolation of
iiif.ormation common to all individuals from information unique to each
individual. The idea of representing communaiity among’ sets of observations

by a single multidimensional Euclidean sPaCe, while representing the unique-
hess oi~ each individual by differential weights attached ~o the dimensions

of the space is an ingeneous idea particularly conductive to simple a~id
straightforward interpretation. The fact that the dimensions of the space

are unrotatable makes the model even more attractive.
The weighted Euclidian mod~l is certainly not the most general individual

differences model proposed within the multidimensional scaling framework
[Tucker, 1972], nor is it appropriate to all types of individual differences
[McGee, 1968]. Furthermore, the most successful implementation of the
model [Carroll & Chang, 1970] is severely limited in terms of the types of

data to which the model can be applied, partictllarly in light of recent interest
in nonmetric multidimensional scaling [Kruskal, 1964].

It is the purpose of this paper to propose and evaluate a new procedure
for fitting the weighted Euclidian model to data that are much less severely
restricted than those appropriate to the Carroll-Chang procedure. Our

procedure is appropriate to data that may have missing observations, that
~dy .be defined at the nominal, ordinal, interval or ratio measurement levels,
that may be discrete or continuous~ and that may or may not be asymmetric,
conditional or replicated. Furthermore, our procedure is able, without
furtlier complications, to fit the simple unweighted Euclidian model. Thus
several individual differences models [Carroll & Chang, 1970; McGee, 1968;
Young, 1975] as well as models not including individual differences notions
[:Kruskal, 1964; Torgerson, 1952] and other previously undiscussed variants

can be realized within one common framework.
The weighted Euclidian model and the associated procedures for fitting

the model to empirical data were proposed by several people at about the
same time [Horan, 1969; Blox0m, Note 1; Carroll & Chang, 1970]. The most

successful procedure and the most complete proposal is that of Carroll and
(~hang. Their INDSCAL (individual differences scaling) procedure is formally
an n-way generalization of Eckart and Young’s [1936] tw0-way canonical

decomposition which Carroll and Chang call the CANDECOMP procedure.
This procedure is performed, after an initial bonversion of observed dissimi-
larities to product moments, by alternately obtaining least squares estimates

of the individual differences weights W (for fixed estimates of the stimulus
configuration X), and then obtaining least squares estimates of X given W.
This procedure belongs to a class of numerical procedures termed alternating
least squares (ALS) procedures by de Leeuw, Young and Takane [1976],
which have the desirable property of being necessarily convergent. That is,
it is never possible for an ALS procedure to obtain an iteration which worsens
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the function it is designed to optimize. On every iteration the function must

be improved due to the conditional least squares properties of each phase
of an ALS procedure. More will be said on this later.

The Carroll-Chang CANDECOMP procedure has two consequences
which are relevant to the present discussion. First, the minimization criterion
(called STRAIN, by Carroll) is defined in terms of the product moments
computed from the raw data, not in terms of the raw data themselves. Thus
INDSCAL does not optimize the fit between the weighted Euclidian model
and the data, strictly speaking, but rather the fit between a vector product
model and a transformation of the data. Second, due to the operation which

converts dissimilarities into scalar products (which involves addition, etc.),
the procedure is metric.

Bloxom [Note 1] proposed a gradient procedure to optimize STRAIN
which is also a metric procedure. Unfortunately, due to the nature of gradient
procedures, the convergence properties of the Carroll-Chang ALS-type
procedure are lost. This may account for the reported [Carroll & Chang, 1970]
inferiority of Bloxom’s procedure in terms of speed of convergence relative
to the INDSCAL procedure. Perhaps for this reason Bloxom [1974] proposed
another procedure based on the eqnivalence of the problem as posed in the
STRAIN framework to the analysis of covarianee structures proposed by
J6reskog [1970]. The performance of this proposal has yet to be investigated.

Sch6nemann [1972] presents an elegant algebraic solution for the weighted
Euclidian model. However, since the logic of his developments is not oriented
towards optimizing a well defined quantity, it cannot be applied to real data
with the expectation of unqualified success, as Sch6nemann notes. This means
that the procedure has little practical significance to the data analyst. His
idea, however, has been extended by de Leeuw [Note 5] to obtain a rational
initial start to be used for more robust procedures for fitting the weighted
Euclidian model. We will go into this topic further in later portions of this
paper.

All of the procedures discussed up to this point place very stringent
requirements on the data. Specifically, they all require that the data be
symmetric, have no missing observations, be unreplicated and unconditional,
and be defined at least at the interval level of measurement. Several proce-
dures which relax some or all of these restrictions have been proposed and
investigated, with varying degrees of success.

Carroll and Chang’s first nonmetric procedure, mentioned briefly in
their original paper [1970] and called NINDSCAL (nonmetric INDSCAL)
is a two-phase procedure which uses the metric CANDECOMP procedure in
the first phase (iteratively until convergence) and Kruskal’s [1964] least

squares monotonic regression in the second phase. These two phases are
iteratively applied. It is important to note that the first phase minimizes
STRAIN (which is defined on scalar products as discussed above), whereas
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the second phase minimizes Kruskal’s STRESS, which is defined on the raw

data. Since two different functions are involved, NINDSCAL has no assurance
of convergence on a stable point, and eventually either oscilates or diverges
~fter a few iterations. Furthermore, the procedure is very inefficient, and
of the several data restrictions noted relaxes only the measurement level
requirements.

For these reasons, Carroll and Chang have recently [Note 3] proposed
another nonmetric procedure to minimize STRAIN that uses an ALS method
after initial estimates of W and X are obtained by an improved CANDECOMP
procedure. This approach, which involves STRAIN in all phases of each
iteration, is the first stable procedure for nonmetric multidimensional scaling

which involves the weighted Euclidian model. It has the highly desirable
consequence of relaxing all of the data restrictions noted above. However,
the procedure is within the STRAIN framework, and thus does not directly
optimize the fit between the distance model and the raw data, but rather
between the scalar products computed from an optimal monotonic trans-
formation of the raw data and the scalar products computed from the coor-
dinates. Of the various procedures reviewed here, this is the soundest (at least
theoretically), although its efficiency is yet to be reported.

A third nonmetric procedure for fitting the weighted Euclidian model
has been tried by the second author of this paper. This procedure uses a

gradient technique to simultaneously improve estimates of W and X by using
the derivatives of the STRESS loss function. While this procedure (a) uses
one loss function throughout the entire procedure, and (b) optimizes the fit
to the data directly, it has been found to be highly susceptible to the exact
nature of the starting point. A careful choice of the initial orientation of X is
required. Although this difficulty could be remedied by using de Leeuw’s
[Note 5] initial rotation procedure (as is done in the work to be reported here),
it appears to be the case that the procedure still suffers from the use of the
gradient procedure.

Finally, a gradient procedure has been proposed by Yates [Note 17]
for nonmetrically fitting the weighted Euclidian model. This procedure is in
neither the STRESS or STRAIN framework; rather, it attempts to minimize
the proportion of variance in the model which is due to incorrectly ordered
pairs of distances (relative to the order of the dissimilarities). This goal has
been adopted by several authors in the context of the unweighted Euclidian

model [Guttman, Note 9; de Leeuw, Note 6; Johnson, 1973], and has been
fully discussed by de Leeuw [1975] and Young [1975]. While this procedure
has the advantage of optimizing ~ relationship defined directly in terms of
the raw data and subjects the data to none of the restrictions mentioned
M)ove, it suffers from mixing together two different optimizing functions, as
shown by de Leeuw [1975] and discussed by Young [1975].

In this paper we present a new nonmetric procedure for fitting the
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weighted Euclidian model which a) is in the STRESS framework; b) uses the
ALS approach; and c) removes all of the data restrictions mentioned above.

2. The Problem

The problem we solve in this paper is that of obtaining a robust and
efficient procedure for nonmetric individual differences multidimensional
scaling. In this section we discuss the most important aspects of the problem,
namely the individual differences models, the types of data, and the optimiza-

tion criterion utilized in our work.

Individual Differences Models

As emphasized in the previous section, we use the weighted Euclidian
model to represent individual differences. This model is

d ~ = ~ w~(x~ - x~.~) ~, w,, > O,(1) ,~ _

as is well known (the non-negativity restriction is optional). However, 
was briefly mentioned in the preceding section, we also treat the (unweighted)
Euclidian model within our framework. This model is equivalent to (1) when
all w~ = 1, and. can also be vie~ved as an individual differences model iu
certain circumstances. We will discuss the full variety of models subsumed
by (1) in Section 5 of this paper.

Types o] Data

Previous authors of multidimensional scaling papers [Shepard, 1962;
Kruskal, 1964; Guttman, 1968; Carroll & Chang, 1970] have emphasized a
dichotomy of measurement levels which they termed metric and nonmetric.
When placed in the context of Stevens’s [1951] measurement theory, it is
clear that these terms correspond to three of the four measurement levels
delineated by Stevens, namely ordinal (nonmetric) and interval or ratio
(metric). The developments presented here, on the other hand, extend multi-
dimensional scaling to data defined at all four of Stevens’s levels, including
the nominal level. Furthermore, we also distinguish two types of measurement
processes (discrete and continuous) and three types of conditionality (un-

conditional, matrix-conditional, and row-conditional). While we discuss these
notions here as though they form "types of data," this is a pedagogical
simplification of our philosophical position, as will be discussed in Section 5.

The general nature of the problem faced by an analysis procedure explicitly

designed for data having such a wide variety of measurement characteristics
is best viewed in the light shed by Fisher’s notion of optimal scaling [Fisher,
1946]. Fisher’s objective in proposing optimal scaling was to scale the observa-
tions so that (a) they would fit the model as well as possible in a least squares

sense, and (b) the measurement characteristics of the observations would
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be strictly maintained. Fisher’s optimal scaling notion is one of the corner-
stones of our own work.

Let us define the squared observations O, the optimally scaled squared

observations D*, and the squared distances D. (The optimally scaled squared
observations are commonly referred to as the disparities in the MDS context.
We sometimes refer to them as the estimates, since they are least squares
estimates of the squared distances.) Each of these symbols represents 

collection of matrices. That is, 0 is a collection of all matrices O~ for all
individuals i from whom we have obtained observations o,i~ about stimulus
pairs (j, ]~). Correspondingly, D* is the collection of matrices Di* with elements

(tii, *~, and D is the collection of all matrices D with elements d~~ defined
by (1).

With these definitions we can formally represent the optimal scaling
problem as a transformation problem, as follows. We wish to obtain a trans-
formation t of the raw observations which generates the optimally scaled

nbservations d~i~*; i.e.,

(12) t[o,;~] =

where the precise definition of t is a function of the measurement level,
process, and conditionality, and is such that a least squares relationship
exists between d~i,~* and d~i~ given that the measurement characteristics are
strictly maintained. In the remainder of this section we discuss in detail the

measurement restrictions which must be maintained. In a later section we
present the corresponding least squares methods for obtaining the trans-

formations.
To fully understand the several levels, process, and conditionality restric-

tions, we must first introduce a concept which is crucial to our work. It is our
view that all observations are categorical. That is, we view an observation
variable as consisting of observations xvhich fall into a variety of categories,
such that all observations in a particular category are empirically equivalent.
Furthermore, we take this "categorical" view regardless of the variable’s
measurement level and regardless of the nature of the process which generated
the observations. Stated most simply, it is our view that the observational
process delivers observations which are categorical because of the finite
precisiot~ of the measurement and observation process, if for no other reason.
For example, if one is measuring temperature with an ordinary thermometer
(which is likely to generate interval level observations reasonably assumed to
reflect a continuous process), it is doubtful whether the degrees are reported
with any more precision than whole degrees. Thus, the observation is cate-
gorical: there are a very large (indeed infinite) number of uniquely different
temperatures which would all be reported as say, 40°. Thus, we say that the
observation of 40° is categorical.
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As we will see, the three types of measurement restrictions (level, process,
and conditionality restrictions) concern three different aspects of the obser-
vation categories. The process restrictions concern the relationships among
all the observations within a single category; the level restrictions concern
the relationships among all the observations between different categories;
and the conditionality restrictions concern the possibility of sets of categories.
We will first take up the process restrictions, then the level restrictions, and
finally the conditionality restrictions.

There are two types of process restrictions, one invoked when we assume
that the generating process is discrete, and the other when we assume that
it is continuous. One or the other assumption must always be made. If we

believe that the process is discrete, then all observations within a particular

category should be represented by the same real number after the trans-
formation t has been made. On the other hand, if we adopt the continuous
assumption, then each of the observations within a particular category should
be represented by a real number selected from a closed interval of real num-
bers. These process restrictions are related to the "primary-secondary"
distinction discussed by Kruskal [1964], and to the "weak-strong" distinction
discussed by Guttman [1968]. In the discrete case, the discrete nature of the
process is reflected by the fact that we choose a single (discrete) number 
represent all observations in the category. In the continuous case, the con-
tinuity of the process is reflected by the fact that we choose real numbers
from a closed (continuous) interval of real numbers. Formally, we define the
two restrictions as follows. The discrete restriction is

where ~- indicates empirical equivalence (i.e., membership in the same cate-
gory) and where the superscript on ~ i ndicates t he discrete a ssumption. The
continuous restriction is represented as

(4) t~:(o,~ o ..... )._~ (d,,o- = d ....
- _< d,~* _< d ÷ =

÷

d + +[(d,~- d .... - <_ d,..o* <_ ,~,, d,..o ),

where d,~0- and d,~÷ are the lower and upper bounds of the interval of real
numbers. Note that one of the implications of empirical (categorical) equiv-
alence is that the upper and lower boundaries of all observations in a particular
category are the same for all the observations. Thus, the boundaries are more
correctly thought of as applying to the categories rather than the observa-
tions. Denoting this, however, would involve a somewhat more complicated
notational system. Note also that for all observations in a particular category
the corresponding rescaled observations are required to fall in the interval
but not to be equal.
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We now turn to the second set of restraints on the several measurement
transformations t, the level restraints. With these restraints we determine the
nature of the allowable transformations t so that they correspond to the

assumed level of measurement of the observation variables. There are, of
course, a variety of different restraints which might be of interest, but we only
mention three here. With these three, we can satisfy the characteristics of
Stevens’s four measurement levels.

For nominal variables, we introduce no level restraints as the charac-
teristics of nominal variables are completely specified by the previously
mentioned process restraints.

For ordinal variables, we require, in addition to the process restraints,

that the real numbers assigned to observations in different categories represent
the order of the empirical observations. That is,

(~,) t° : (o,i,, < o ....) ~ (d.~* ~.,~*),

where the superscript on t ° indicates the order restriction, and where ~ indi-
cates empirical order. Note that we require weak order; i.e., the assigned
numbers are permitted to be equal even if the observations are not. The
problem of what to do about ties has already been handled by our previous
discussion of the process restrictions. If the variable is discrete-ordinal (t’*°),

then tied observations remain tied after transformation, whereas for con-
tinuous-ordinal (t ~) variables, ~ied observations may be untied after trans-

formation.
For quantitative (interval or ratio) variables, we require that the real

numbers assigned to the observations be linearly related to the observations.
That is,

(6) t~ : d~* = ~o + ~o~i~,

where 5o = 0 for ratio variables. When necessary we denote the interval
transformation as t~ and the ratio transformation as t~. More generally, we

may require that the assigned numbers be related to the observations by 8
polynomial of known degree:

(7) t’: dill* = ~ ~ooii~~,

(where the summation starts at 1 for ratio variables). Note that we still
think of the observations as being categorical even if the measurement level

is quantitative, although this is not very illuminating since each category
will generally have only one observation (i.e., there are usually no ~ies).
Thus the discrete-continuous distinction is usually only of academic interest
with quantitative variables and will not be pursued further.

Finally, we [arn to the third type of measurement restrictions, those
concerning the conditionality of the observations. As has been emphasized
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by Coombs [1964], it may be that the measurement characteristics of the
observations are conditional on some aspect of the experimental situation in
such a way that some observations cannot be meaningfully compared with
other observations. For example, if several subjects in a paired comparison
similarity experiment are required to judge the similarity of all pairs of
stimuli, we are usually unwilling to say that one subject’s judgment of 7
(on a similarity scale of 1 through 9, for example) can be said to represent

more similarity than another subject’s judgment of 6. We just are not sure
that the subjects are using the response scale in identical ways. In fact, we
are pretty sure that they do not use the scale identically, so we say that the
measurements are conditional on the subject. More generally, we refer to
this type of conditionality as matrix-conditionality, since all observations
within a matrix are comparable, but not those observations between matrices.

It is also possible to have row-conditional observations, as discussed by
Coombs [1964, Ch. 17], and unconditional observations. (Note that Coombs’
unconditional case corresponds with our matrix-conditional case.)

Formally, we state that the domain of the measurement transformation
t is dependent on the type of conditionality. For unconditional data the domain

is the entire set of observations and the transformation is denot, ed t. For
matrix-conditional data the domain is a single matrix of data and the trans-
formation is denoted t, . Finally, for row-conditional data the domain is a
single row of a single matrix, and the transformation is denoted t, . The
previous discussion of measurement level and process wei~e implicitly in terms
of unconditional data, and all of the definitions of level and process must be
modified appropriately. We do not explicate these modifications here as they
are lengthy and obvious. Of course other patterns of conditionality are
possible, though unlikely. It may also sometimes be the case that different
measurement levels or processes may be associated with conditionality.

We do not go into these generalizations in this paper, although they have
been discussed by Young [1973] and Kruskal, Young and Seery [Note 14].

Optimization Criteria

Most of the procedures for fitting the weighted Euclidian model which
we discussed in the first section were in the STRAIN framework. That is,
they tvere designed to optimize a suitably normalized version of the function

N

(8) t~(X, W, P*) = Y:~ tr (P,* - XW,X’)’(P,* - XW~X’),

where P* is the collection of P~* for i = 1, ... , N, where W~ is a diagonal
matrix of weights for subject i, and where P~* is the matrix of pseudoscalar
products derived from subject i’s dissimilarities under either metric or non-
metric assumptions. It should be emphasized that the pseudoscalar products
P* are determined from the optimally scaled data D* according to the pro-
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cedure first suggested by Eckart and Young [1936]. This procedure involves
multiplying each element d~.2 by -1/2 and then, using these -1/2d~1,.2,

subtracting the row and column mean from and adding the matrix mean to
each -1/2d,~*". This process, known as doubling centering, yields the

elements p,~* of P*. The matrix P~* is called a matrix of pseudoscalar
products because if r real principal components of P~* are obtained, and if
these, components are arranged column-wise in a matrix F~, then P~ = F,F~’

is the rank r matrix which is a least squares fit to P~*. Commonly, both P~
~nd P~* are referred to as scalar product or product moment matrices, but
sometimes, for the sake of clarity, we refer to P~* as "pseudo" scalar products,
and P~ as scalar products.

Equat)on (8), STRAIN, is a least squares criterion defined between 
scalar products derived from the data and the scalar products derived from

the model. Although the optimization of STRAIN is very straightforward
when the data are metric, it is rather complicated when they are nonmetric.
Two fundamentally different optimization procedures have been proposed.
The more satisfactory of these approaches, proposed by Carroll and Chang

[Note 3], assumes that the observed dissimilarities must be monotonic with
a set of values from which the scalar products P~* are computed. That is,
it is required that

(,~) t°[o.,~] = [d.,~*].

so that P~* may be computed from D(* in a way which optimizes STRAIN.
While the measurement aspects of this approach are sound, the optimization
problem is very complex, and the efficiency and robustness of the procedure
is yet to be documented. The other, less satisfactory approach, taken by
Levinsohn and Young [1974], involves computing a matrix of scalar products
P~ directly from the raw observations at the outset of the analysis. The

procedure then optimizes STRAIN under the assumption that P, is non-
metric. That is, this procedure requires that

(10) t°[p,~] = [p,~.~*].

C~rtainly the measurement aspects of this approach are confusing since the

data must be assumed to be metric in order to derive the scalar products
which are themselves assumed to be nonmetric. It might be pointed out,
however, that this approach is by far the simplest computationally, and has
the desirable property of requiring much less storage than any of the other
procedures discussed in this paper. Th~s procedure, then, is particularly
suited to small computers.

Due to the complexity of the first procedure and the measurement
characteristics of the second, we arc inclined to adopt a criterion which is more
consistent with the STRESS framework. More precisely, we define a least
squares criterion on the squared distances, namely
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where d¢i~.2 is an element of D~*, where d,i~:* is defined by (1), and where (11)
is subject to suitable normalization conditions. Since (11) is in the STRESS
framework, but differs in that it is defined on squared distances d,.~: 2 and
squared estimates d.~ .2, we refer to the formula as SSTRESS. (Note that
d.~.2 is the least squares estimate of d~~, not the square of the least squares

estimate of d~, .) Hayashi [1974] and Obenchain [Note 15] have developed
multidimensional scaling procedures within the SSTRESS framework, and
Young [Note 18] has discussed the index.

While SSTRESS and STRESS are not strictly equivalent, the monotonic
restriction

defined on o~ and d.~?~ is precisely equivalent to the monotonic restriction

defined on o.~ and d~,*. While this precise equivalence also follows with the
nominal and ratio levels of measurement, it does not follow with the interval
level of measurement, where a linear relationship between o,.~,= and
implies a nonlinear relationship between o.~~ and d,.~ *~. We will further

investigate this inconvenience later on, but at the moment it suffices to say
that this difficulty can be surmounted. This allows us to state that the mea-

surement restrictions

and

(~2’) t[o.,~~] =

are equivalent over the four measurement levels.
We do not mean to imply that SSTRESS is in every w~y equivalent to

STRESS, of course. One important difference is that l~rge values of d~
~nd d.~,* receive more emphasis with SSTRESS than STRESS. A simple
example will make this clear. Suppose we have the following two eases:

(A) d.~ = 2, d.~* = 1,

(B) d.~ = 5, d.~* = 6.

If we use STRESS the relative contribution of these discrepancies is equal,

but if we use SSTRESS we have a r~tio of 3 to 11, which is quite different
from equality. This effect is more marked ~vhen we compare the case

(C) d.~¢ = 5, d.~,* = 4,

with Case (B). In Case (C) we have squared discrepancies of 9 if evaluated
by (11). So even if we have the s~me d.~, ~nd the difference is equal when
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STRESS is used, the direction of the difference differentially contributes to
SSTRESS. A simple algebraic manipulation clarifies the point even further.
Define

where e~i1: may be positive or negative. With STRESS the amount that the
discrepancy between d,1.. and d,i:* contributes is simply e~:2. However,

with SSTRESS we have

[d,,i~:" - d, ik*2] ~ = [d~i~~ -- (d,~ -~-e,i~,.)’~]’~

= e,~,-:[e,¢k ~- 2d, i~]"-,

so that not only the absolute magnitude of e~i~: but also the sign of e~, (d,~, is
always non-negative) and the magnitude of d,.i~, are related to the overall
evaluation of fit. The relation, although algebraically tractable, is not straight-

forward and not entirely illuminating. We cam~ot compare the absolute
magnitude of fit because the normalization factors in the two formulas may
be different..

There is, of course, no a priori reason for choosing one or the other of the
two formulas. The important point is that the adoption of the SSTRESS
formula is perfectly compatible with the measurement level restrictions
mentioned above (just as is STRESS), whereas the STRAIN formula is not.
Our basic reason for choosing SSTRESS over STRESS is, simply, algorithmic
convenience. As you may have noticed, the individual differences weights W
(Eq. 1) are linear with respect to the squared distances, but not with respect
to the distances themselves. This greatly simplifies the estimation procedure
since the least squares estimates of W can be obtained by a series of elementary

matrix operations when SSTRESS is adopted as the optimization criterion.

3. The ALSCAL Algorithm

In this section we present in detail an alternating least squares algorithm
for individual differences scaling (ALSCAL).

The alternating least squares (ALS) method is a general approach 
parameter estimation which involves subdividing the parameters into several
subsets, and then obtaining least squares estimates for one of the parameter
subsets under the assumption that all remaining parameters are in fact known
constants. The estimation is then alternately repeated for first one subset
and then another until all subsets have been so estimated. This entire process
is then iterated until convergence (which is assured) is obtained.

With this general definition of ALS one can find its beginnings in the
work of Yates [1033] and Horst [Note 11], and follow its development through
many researchers, culminating in the NILES/NIPALS work of Wold and
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associates [Wold & Lyttkens, 1969]. Generally ALS has been used in the
metric situation where one is concerned only with estimation of the model
parameters. The extension of ALS to the nonmetric situation in which the
procedure is used to estimate data parameters (i.e., to optimally scale the

data) as well as model parameters was first made by Torgerson, in the initial
configuration routine of the TORSCA algorithm for nonmetric multidimen-

sional scaling [Young & Torgerson, 1967]. Since then ALS has been used by
Roskam [Note 16] in the nonmetric principal components situation, Young
[1972] for initial values in the polynomial conjoint scaling situation, de Leeuw
[Note 4] for the canonical analysis of categorical data, de Leeuw, Young and
Takane for nonmetric ANOVA [1976] and Young, de Leeuw and Takane for
nonmetric multiple and canonical regression [1976]. The most recent non-

metric results directly motivated the present work, which extends the ALS
approach to quadratic models.

The ALSCAL algorithm involves two major phases and two minor
phases. The first major phase involves obtaining the least squares estimates
of the optimally scaled observations D* under the assumption that the
configuration X and the weights W are constants. That is, we solve the
conditional least squares problem which minimizes SSTRESS (11) under
the condition that X and W are not variables. Notationally, we indicate
this as MIN~. [Oz(D* ] X, W)]. The second major phase involves two separate
minimization subphases, the first solving the problem MIN~[~b~(W I X, D*)]

and the second the problem MIN.x-[¢~(X I W, D*)]. The two minor phases are
initialization and termination phases. The flow we have chosen is as follows.

O. Initialization phase

Compute the initial values of X and W directly from O using a
modification of Sch6nemann’s algebraic solution.

1. Optimal scaling phase

1.1 Calculate the squared weighted Euclidian distances D using
X and W.

1.2 Obtain the optimally scaled (least squares estimated) dis-
parities D* from the distances D, the observations O, and

the relevant measurement restrictions. Use the de Leeuw,
Young and Takane [1976] method.

1.3 Normalize appropriately.

2. Termination phase

Determine whether the rate of improvement of SSTRESS is
sufficiently low to warrant termination. If so, print results and
stop. If not, go to the next step.
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3. Model estimation pi~ase

3.1 Calculate the new least squares estimates of the weights W
from the old X and the new D* (from step 1.3) by regression

techniques.
3.2 Impose nonnegativity constraints on W, if necessary, by

an ALS technique developed here.

3.3 Calculate the new least squares estimate of the configuration
X from the new weights just calculated in steps 3.1 and 3.2

and the D* computed in step 1.3, by using Gill and Murray’s
modification of the Newton-Raphson procedure.

3.4 Return to step 1.1 for another iteration.

Finally, a comment should be made about the ensuing discussion, which
is limited to the weighted Euclidian model as applied to symmetric data
with no missing elements. These limitations are only made to simplify the
discussion. The unweighted Euclidian model may be fit to the data by simply
skipping the weight estimation phase (which implicitly fixes the weights

to unity). Asymmetric data may be easily handled by changing summation
ranges and matrix orders. Missing data may be treated by excluding all
missing elements from the optimization criterion, with estimates of the
missing data being generated from the model parameters obtained at the
conclusion of the analysis. All of these options have been included iu the
ALSCAL program, and, as will be demonstrated in Section 4, have been
extensively evaluated.

Initialization Phase

The initialization procedure discussed in this section is very similar to
the Work presented by SchSnemann [1972] in which he obtained an algebraic

solution to (8) for the error-free ratio measurement level case.
Let us suppose that there are N scalar product matrices P~ (one for each

of the N subjects i) of order n (there are n stimuli) which satisfy

(13) P, = XW~X’,

where the symbols are defined as in (8). (Recall that W~ is a diagonal matrix
of weights for subject i, whereas W is a rectangular matrix of weights for all
subjects.) The problem is to recover X and W, from the P~ , under the
assumption that X is of full column rank, and that the diagonal elements
of W~ are strictly positive for at least one subject. For any nonsingular
diagonal matrix T of order t (there are t dimensions), we have

(14) P, = XT(T-~W,T-’)TX’,

and consequently must make some restriction on the size of the W~ for
identification purposes. Thus, we define
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and assume that D. = I, implyin~ that P. = xX’ (where P. is the average
P~). Solutions to this particular equation are determined up to a rotation.
We select an arbitrary one of them, for example by using t steps of a Cholesky
process or by using the t dominant eigenvalues and vectors of P.. Call this
arbitrary solution Y. It follows that

X = YK,

where K is a rotation matrix. We also know that

(X’X)-~X’P,X(X’X) -’ = W,,

should be diagonal for each i. It follows that we should select our rotation

K in such a way that

(15) K’(Y’Y)-’Y’P,Y(Y’Y)-’K = 

is diagonal for each i. (Note that K’K = KK’ = I, and that K-I = K’).

Let

(16) C, = (y,y)-ly,p,y(y,y)-~.

It is the case that any linear combination of the N matrices C~ (with different

roots) can be used to find the rotation K. Assume that such a linear combina-
tion e is possible. We then compute the (unique) set of eigenvectors 

N

(17) = e,C,,

to find K and compute W~ from (15). Thus we have obtained the configuration
X, and the weights W. It follows from the assumption we have made that the
solution is unique (up to permutations of the dimensions). Note that the
assumption that there is a linear combination e is, essentially, equivalent to
the assumption that the weights for at least one subject i are all different.

The preceding developments, which closely follow those presented by
SchSnemann [1972], are only appropriate to error-free data due to the rela-
tionship defined by (13). In the fallible case in which the relationship is only
approximately true we need to make two choices. First, we need to define P. ,
and second, we need to define e. The first problem is quite easily solved by
simply double centering the elements of each data matrix O~ with elements
o,e 2 (and dividing by -2) to obtain a matrix P~ of scalar products for each
subject. We then average over subjects to obtain P., which can be decomposed
into

(18) P. = YY’,
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to obtain Y, the arbitrarily oriented configuration which best reproduces
the averaged scalar products. Note that a) if the data are asymmetric, we
average o,.ii: 2 and o~.i "~ for all /~ and j within each matrix i before double
centering; b) if the data contain missing elements, each element is estimated

as being equal to the subject’s mean judgment; and c) the conditionality
of the data is ignored.

The second problem, that of defining the best orientation of the con-
figuration and the associated weights, is solved by obtaining a rotation matrix

K which simultaneously diagonalizes the matrices,C~ as much as possible.
The method suggested by de Leeuw and Pruzansky [Note 7] is used.

Since the procedure just outlined assumes that the data are metric, it is

possible to obtain negative weights, especially when the metric assumption
is radically violated. (Note that our definition of the weighted Euclidian
model includes the requireme!~t that all weights be non-negative.) When

negative weights are observed we use the following admittedly arbitrary
procedure: We simply add the absolute value of the largest negative weight
to all weights, thus ensuring that all weights are non-negative. We then calcu-
late the distances (1) and disparities (as explained in the next section),
replace the raw data with the disparities and repeat the procedure outlined
above. We are not certain of the theoretical consequences of this procedure
a)~though in all cases we have tested the results are satisfactory.

Optimal Scaling P]mse

In the optimal scaling phase we ~vish to optimally scale the squared
observations 0 to obtain the disparities D* which a) meet the selected measure
merit restrictions, and b) are least squares estimates of the squared distances
D, given the measurement restrictions. We call this the optimal scaling
phase because it obtains a scaling of the raw observations that is optimal in
the Fisher [1946] sense of optimal scaling. That is, it maximizes the correlation
between observations and model while respecting the measurement charac-
teristics of the observations. In this phase we assume that only the optimal
scaling variables D* are free to vary; the stimulus configuration X and the
subject weights W are held constant. Thus we solve the conditional least
squares problem MIN..[~b2(D* ] X, W)].

Compute distances. The first step in the optimal scaling phase is to
compute the D~ from the current X and W by (1).

Optimal scaling. The second step in the optimal scaling phase is to
actually perform the optimal scaling. As we will see, for most of the data
types discussed in Section 2 the optimal scaling procedure is quite familiar
(linear or monotone regression), although some of the types result in rather
novel procedures. However, all of the various types oi’ optimal scaling trans-
formation can be defined as a linear transformation of the squared distances.
That is,
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(20) d,k*~ = l(d,i~),

where 1 indicates a linear transformation paralleling the measurement restric-

tions used to define t earlier. Furthermore, 1 defines d~ik*~ so that SSTRESS
(11) is minimized for fixed values of W and X, in a least squares sense.

We will not discuss the specific features of these transformations here
since a detailed account is already presented in an earlier paper [Young,
de Leeuw & Takane, 1976]. Instead, we present a simplified characterization
of l using matrix notation. Since we are regressing d~i~~ onto oii~~ in the least
squares sense under the various measurement restrictions mentioned above,
1 may be represented by a projection operator of the form

(21) l: F, = Z(Z’Z)-’Z’,

where Z is, in general, a matrix of vectors defining the space onto which the
vector of d~,~ is regressed.

For the ratio transformation t~, Z is simply the vector 0 of squared
observations. For the interval transformation t~, Z reduces to the ratio case
after the appropriate additive constant is estimated. In both these cases
the least squares estimates may be obtained by well-known regression tech-
niques. In the ordinal and nominal cases Z is defined as a matrix of dummy
variables indicating the distances which must be tied to satisfy the measure-
merit restrictions. For the continuous-ordinal transformation t~°I the elements

to be tied involve order violations, whereas for the discrete-ordinal trans-
formation t ~°, the elements to be tied also involve observations which are
categorically equivalent. Kruskal’s least squares monotonic transformation
[1964] defines t ~° when the primary approach to ties is chosen, and defines
t~° when the secondary approach is used. For the discrete-nominal case the

matrix Z indicates that distances which correspond to categorically equivalent
observations are to be tied. The obvious least squares estimates in this case
simply involve category mean~. Finally, for the continuous-nominal case the
matrix Z indicates those distances which fall outside of the desired interval.
In this case the least squares estimates are the interval boundaries for those

distances ~vhich are in violation, and the distances themselves for those which
are not in violation. We use de Leeuw, Young and Takane’s [1976] pseudo-
ordinal procedure to determine the optimal boundaries.

Note that for some transformations Z is known before the analysis is
made, and in other cases it is not. Specifically, for all discrete transformations
except the discrete-ordinal transformation Z is known a priori, and for the
remainder Z is only known after the analysis is made. F~rthermore, in these
cases Z varies from iteration to iteration depending on the nature of the
distances. To be precise, we should indicate that Z (and therefore E) is 
function of d; but the notation Z(d) or E(d) would soon become very cumber-
some, and is thus suppressed.
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The important thought at this point, however, is that for all four measure-
ment levels, and for both measurement processes, we can represent the optimal
sc.aling as a projection operator of the form shown by (21). This means that

d 2if we define a column vector d containing the Nn(n - 1)/2 elements ,k and
another column vector d* containing the corresponding elements d,k.2, then
we can make the important observation that

(22) d* = Ed.

Yurthermore, this equation, which is implicitly in terms of unconditional data,
can be easily extended to conditional data. For matrix-conditional data we

define Z~ for each individual separately and then construct a block-diagonal
supermatrix Z with the Z~’s on the diagonal. For row-conditional data we
define Z, for every row of every individual’s data matrix and then construct

the block-diagonal supermatrix Z with these Z,’s on the diagonal. In both
cases E remains defined as before. Thus the projection operator notion and
(22) apply for all three types of conditionality. Note that the various rows
or matrices of conditional data may be defined with any mixture of measure-
ment characteristics, as there is nothing requiring them to all be defined

identically. Also~ any other pattern of conditionality is acceptable.
The chief importance of (22) is that we can now easily express SSTRESS

entirely in matrix notation, and entirely in terms of the distances. If we define

~.’ = I - E, then SSTR.ESS (11) can be rewritten 

(23) ~b~(X, W, D*) d’~,d.

I~ a parallel manner we can rewrite the normalized SSTRESS formula as

(24) ¢’~(X, W, D*) = d’~d/d’d

.= d,~(d,d)-~,’d.

Note that in this form SSTRESS involves only the distances and not the
disparities, a point which has been discussed at length by Young [!975a].

The final issue to be raised in this section is the procedure for estimating
the additive constant when the data are defined at the interval measurement
level. (A similar problem has been solved by Messick and Abelson, 1956.)
The problem is as follows. When we assume ~hat the o~servations a.re defined

at the interval level, then

(25) d,~* = a(o,~) ~- 

for some unkno~vn constants a and b. If we were optimizing STRESS, then
the estimation problem would be a simple regression problem involving the
distances d,~ and the observations o~. However, the situation is complicated

by the fact that we are actually optimizing SSTRESS. Instead of the simple
linear relationship above, we are actually faced with the quadratic relationship
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(26) d,i~ .2 = a2(o,i~) ~ + 2ab(o,i~) + ~.

This is clearly different from the simple regression of d,~~ on o~:, which is
implied by a linear relationship between d,~~ and o~~ (unless b = 0 as in

the ratio case).
While it is possible to directly solve (26), it is much simpler to redefine

the problem as

(27) d,i,, *~ = a + ~(o.~) + "~(o.~)~,

for which we wish to obtain the best estimates of a, ¢/, and % under the con-
straint that

(28) ¢? = 4~.

We now introduce three definitions. First, we define the parameter
vector x’ = [a, ~3, ~,]. Second, we define an N[n(n - 1)/2] by 3 matrix of
second degree polynomials of the observations (unities in Column one, obser-
vations in Column two, and squared observations in Column 3). We denote

this matrix 0 (note that this is not the same 0 as used in other sections of the
paper). Finally, we define a column vector d having the N[n(n - 1)/2]
elements d,k ~ arranged in the same manner as the o,~ in O.

These definitions allow us to express SSTRESS in the interval measure-
ment situation as

(29) ¢2(x, ~ [0, d) = (d - 0x)’(d - 0x) ~ - 4~),

which we seek to minimize by solving for x and k (the Lagrangian multiplier).
The least squares estimate for the constrainted parameters is

(30) ~ = (O’O)-’O’d + ~,q.

To solve for the Lagrangian multiplier, we define

(31) (O’O)-’g = q~ 

q~

where g’ = I--2% f~, -23] is the derivatives of (28). Then we must solve

(32) (¢] + ~q2)~ = 4(a + hq~)(-~ + kq.~).

We select the best of the two solutions (i.e., the one which minimizes
SSTRESS) by evaluating the set of 2 corresponding to each root.

Normalize. The third and final step in the optimal scaling phase is to
normalize the solution. There are two separate considerations at this junc-
ture, one concerning the normalization of the parameters (the configura-
tion, weights and optimal scale values) and the other the normalization
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of the loss function. While the normalization of the loss function must be
performed on every iteration and must be performed in a specific manner
i~ order to avoid certain kinds of degenerate solutions, the normalization of

the parameters need only be done prior to printing the final solution. In
tlhis way the numbers displayed to the user are in some standard units that

enable comparison with other solutions the user may have.
Carroll and Chang [1970] have discussed the relevant issues concerning

normalizing the parameters. As they pointed out, two of the three aspects of
the problem represented by (1) and (11) (the data, the weights, and 
configuration) must be normalized, with the remaining aspect being left

unnormalized. While the choice and the actual details of the normalization
are arbitrary, we choose to continue the conventions adopted by Carroll

and Chang. Specifically, the configuration is normalized so that the mean
projection on each dimension is zero and the variance of the projections
on each dimension is unity. However, whereas Carroll and Chang nor-
realize the data, we must normalize the optimally scaled data. After all,
we cannot normalize qualitative data, whereas we can normalize the optimally
scaled data even when the data themselves are qualitative, since the optimally

scaled data are always quantitative. It is interesting to note that there is a
subtle reason which disallows normalizing the distances D instead of the
optimally scaled data D*, even though it has been argued by Kruskal and
Carroll [1969] and Young [1972] that the choice is arbitrary. While the argu-
ments of Kruskal and Carroll and Young apply for a single matrix of uncon-
ditional data, or even for several matrices of either matrix conditional or
unconditional data, they do not apply to row conditional data. The problem
is that the distances for a particular subject are all jointly determined up to
a single multiplicative constant. They are all defined on a single measurement
scale at the ratio level of measurement. Thus, in the case of row conditional
data, it is not possible to adjust the distances in one row of the matrix by one
multiplicative constant, and the distances in another row by another constant.
Since we are not allowed to apply different multiplicative transformations

to each row of the distance matrix, we are forced (at least in tim row condi-
tional case) to normalize the optimally scaled data (which may legitimately
be subjected to different transformations as discussed in Section 2). Thus,
for each partition (row, matrix, or whatever) of optimally scaled data, 
normalize so that the sum of squares of the squared optimally scaled data
is a constant.

There is one final consideration in the normalization of the parameters.
One of the conventions adopted by Carroll and Chang [1970] was to normalize
the "pseudo" scalar products so that their sums of squares was constant.
They chose to do this (instead of normalizing the sums of squares of the

raw data) for a number of reasons, one of which is highly relevant here. They
showed that if one were to set the total sums of squares of an individual’s
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pseudoscalar products equal to one, then the individual’s sum of squared
weights could be interpreted as indicating, roughly, the proportion of variance
in the pseudoscalar products which is accounted for by the model. (The word
"roughly" can be eliminated from the previous sentence when it is true that
X’X = I, which is not usually ~he case.) There is, unfortunately, no corre-
sponding procedure which allows for the sum of squared weights to be inter-

preted as indicating the proportion of variance accounted for in the optimally
scaled data. Thus, when the analysis is completed, we perform one final
normalization which involves computing the pseudoscalar products from the

optimally scaled data, and then setting each individual’s sum of squared
pseudoscalar products equal to unity. This allows for the interpretation
that an individual’s sum of squared weights roughly indicates the proportion
of variance in his pseudoscalar products which is accounted for by the solution.
This is the same interpretation as afforded by Carroll and Chang’s procedure.
Note, however, that the conditionality of the data and the resulting dif-
ferences in normalization have certain implications for interpreting the
weights. These implications are discussed in Section 5.

We now turn to the second normalization consideration, that of normal-
izing the loss function. Although we actually perform the optimization
relative to the unnormalized loss function stated in (11), we can indirectly
optimize a normalized function if suitable steps are taken, as has been dis-
cussed by de Leeuw, Young and Takane [1976]. This characteristic is very
convenient, since we do not have to deal directly with the normalized function
(which is the ratio of two quadratic forms) whose partial derivatives are
considerably more complicated than those of the unnormalized function.
We only gain this simplicity, however, if we normalize the function relative
to the optimally scaled data. No gain is made if we normalize relative to the
distances. This is important to note since normalization is commonly relative
to the distances, and since the arguments of Kruskal and Carroll [1969] and
Young [1972] would again lead one to suspect that the choice is arbitrary.
The reasoning given in the previous paragraph which led us to conclude that
the choice is not arbitrary is the same reasoning which leads to the same
conclusion here.

Thus, we normalize the loss function relative to the optimally scaled
data D*. There are two more considerations, however. One is a point empha-
sized by Kruskal and Carroll [1969] and Roskam [Note 16] which leads to
the conclusion that the normalization must be within partitions (to use the
terminology of Young, 1973). That is, for unconditional data, where all of
the data form a single partition, we compute a single normalized SSTRESS:

{~u
2 

~
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whereas for matrix conditional data, where each matrix forms a separate

partition, we must compute a normalized SSTRESS value for each matrix,
and then obtain their average:

Finally, for row conditional data, where each row is a partition, we compute a
normalized SSTRESS for each row and then average:

\iik iik] 

(:Note that we use the sum of squares of the squared optimally scaled data,
since the loss is defined on squared distances and squared optimally scaled
data. This is the reason for the appearance of the fourth power in the denom-
inator.) We can summarize the above formulas in a single formula by intro-

ducing a new symbol ~,~ which has a value of 1 if d~* is in partition 1 and
~ value of zero otherwise. We can then write the above formulas as

which is the complete expression for the normalized SSTRESS function being
optimized by ALSCAL.

The remaining point to be considered is whether we should actually
normalize by the sum of squares of the squared optimally scaled data, as
in (33), or by the variance of the squared optimally scaled data. This question,
which has also been addressed by Kruskal and Carroll [1969] and Roskam

[Note 16], is probably best answered by saying that for row conditional data
we should probably use the ~ariance, whereas for the other types of data we
should use the sums of squares. In this paper, however, we use only (33)
given above. We do plan on incorporating both types of formulas into the
ALSCAL program, however.

Finally, if we are solving the unnormalized problem represented by (11)
(as we are), and we actually wish to optimize the normalized problem repre-
sented by (33) (as we do), then it can be shown that all we have to do is solve
the unnormalized problem and adjust the length of the vector of squared
optimally scaled data by multiplying all of its elements by the ratio of the
sums of squares of the squared distances to the sums of cross products of the
squared distances and squared optimally scaled observations:

i i k



YOSHIO TAKANE, FORREST W. YOUNG AND JAN DE LEEUW 29

Termination Please

The termination phase is extremely simple. We must only determine the
value of SSTRESS on the current iteration (11) and compare this value with
the previously determined value. If the amount of improvement is less than
some arbitrary criterion, then we terminate; if not we continue. The simplicity
of this phase is due to one of the characteristics of an ALS procedure, namely
that an ALS iteration never worsens the value of SSTRESS (a proof of this
characteristic may be found in de Leeuw, Young and Takane, 1976).

Model Estimation Please

In the model estimation phase we solve two conditional least squares

problems successively. The first subphase solves the conditional least squares
problem MINw[O2(W I X, D*)], whereas the second subphase solves the prob-
lem MINx[~b2(X I W, D*)]. In this section we discuss both of these problems.

Compute weights. To estimate W we obtain the partial derivatives of (1l)
with respect to the elements of W and set the derivatives to zero. This system
of homogeneous equations is then solved with respect to W. To simplify
the derivation we define an order n(n - 1)/2 by t matrix Y, where the columns
of Y contain all interpoint distances as projected onto each dimension (i.e.,
each element of column a of Y is (x~o -- xi~) ~, the dimension-wise squared

difference between stimuli i and j). We also define an order N by n(n - 1)/2
matrix D*, whose rows contain the n(n - 1)/2 optimally scaled observations

for each individual, with the elements arranged to correspond with Y. (This
D* contains the same information as the D* used in earlier parts of this paper,
but organized differently. In this section we refer to this organization of the
information when we use the symbol D*.) These definitions allow us to

write SSTRESS as

(35) ~b~(Y, W, D*) tr (D* - WY’)’(D* -- WY’

from which we see that the least squares estimates of W ~re

(36) W = D*Y(Y’Y)-’.

Nonnegativity weight constraint. There is one difficulty in using the regres-
sion approach just outlined for obtaining W: The non-negativity constraints
placed on the weights (1) may be violated. Thus we now discuss a method 
incorporating this constraint (or any other linear inequality constraint)
which is strictly within the ALS framework.

An observation basic to the procedure to be presented is that the esti-
mation process presented in (36) is independent for each individual. That is,
the values estimated for the weights for one individual do not affect the
estimated values of the weights for any other individual. This can be seen
from the fact that SSTRESS (35) can be decomposed into a summation 
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separate components, each of which is a function of only a single subject.
Since the weights for one subject are independent of those for the others,
we can impose a non-negativity constraint on subjects with negative weights

without having to modify the weights for other subjects. Note, however, that
the weights for a given subject are not independent of each other, which means
that we cannot simply set a subject’s negative weights to zero and leave his
positive weights unchanged. If we do this we destroy the least squares
properties of the weight estimates.

Our solution to this problem is as follows. First, we obtain the uncon-
strained least squares estimates of W by (36). We use these estimates for
those subjects with non-negative weight vectors. For the other subjects we
set one of the negative weights to zero, which is the constrained least squares
estimate under the condition that all the other weights are constant. Then

we re-estimate the value of another weight under the assumption that all
c,ther weights are constant. The conditional least squares estimate for a single
weight is

(37) w~. = (d,* - ~., w, byb)’yo/(y.’yo),

where ya is the a’th column of matrix Y (35) which contains the squares 

the interpoint distances as projected onto the a’th dimension. If this uncon-
strained conditional least squares estimate is negative, we set it to zero. We
then repeat this process for each dimension until all weights for the subject
s,re non-negative.

Compute coordinates. The second subphase of the model estimation phase
is to determine the stimulus coordinates X. This subphase is somewhat more

complicated than the weight estimation subphase, since the partial derivatives
of SSTRESS with respect to the elements of X are not linear in the x~o’s.

Rather, SSTRESS is quartic in the x~’s, so the derivatives are a .system of
cubic equations. There are several ways of solving such a system. We first
review some of the possibilities, and then present the method we have adopted.

Perhaps the most elegant solution, at least for a theoretical point of view,
would be to analytically solve the system of m = n*t simultaneous cubic
equations for the m unknowns. This has been suggested by Oberchain [Note
15]. It is possible to do this by either Euclid’s or Kronecker’s elimination

method [BScher, 1907], in which the system of m simultaneous polynomial
equations is eventually reduced to a single polynomial equation in one
unknown and m - 1 linear simultaneous equations in m - 1 unknowns. The

problem is then reduced to finding the numerical solutions to a simple poly-
nomial equation and, after substitution of the solution into the remaining
linear equations, finding the solution to a system of m -- 1 linear equations

[Wilf, 1960]. The method is particularly favorable in our situation since we
have only to solve cubic equations, and there is an analytic solution for a cubic
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equation with one unknown. While this approach has theoretical beauty,
it is impractical due to the number of equations in our case (as many as

500 or 600).
The opposite extreme is to solve for only a single coordinate xia at a

time, with a total of m such solutions on each iteration. That is, we could use
the analytic solution to a cubic equation with one unknown to obtain the

conditional least squares estimates for a single coordinate, under the assump-

tion that all other coordinates (and of course all the W and D*) are fixed.
The previous estimate for this coordinate is then immediately replaced with
the new estimate. Note that after m such estimations we have obtained new

estimates for all of the coordinates, but that these are not the same as those
obtained by the simultaneous method discussed in the previous paragraph.
This is the case despite the fact that the two procedures will eventually
converge on the same estimates. For any given iteration the simultaneous
method achieves the most improvement in fit, but takes the most time

to do it.
Of course we are not limited to only these two choices; the quickest

method probably lies somewhere in between the two extremes. That is, it
may be best to estimate a block of x~a’s simultaneously, making sure that the
number of coordinates being simultaneously estimated is not so large that
it slows down the entire process to the point where it cancels the benefits

derived from simultaneous estimation.
Optimizing the efficiency Of our algorithm is a difficult yet crucial prob-

lem. After several trials and errors we have found a method which appears
to be more efficient than any other currently available algorithm (some
sketchy evidence on this point will be presented later). We apply a modified
Newton-Raphson method to obtain a new set of conditional least squares
estimates for all of the coordinates of a single point simultaneously, success-
ively solving for each point in turn. Thus we estimate x~o (a = 1, ... , t)
simultaneously for a specific j and successively for each stimulus j
(j = 1, ... , n). This is the approach taken by Yates [1972].

The Newton-Raphson method is well-known, of course, but our applica-
tion of it is unique. We use it to obtain conditional least squares estimates
which solve the problem MIN~, [O(x~ I xk, W, D*), (j ~ to)]. Thus our approach

is to place the Newton-Raphson method within the ALS framework to solve
a system of cubic equations in t unknowns. This demonstrates again the
flexibility of the ALS approach. The use of Newton-Raphson in conjunction
with ALS is particularly attractive in the present context because the function
being optimized is smooth and the evaluation of the function requires very
few computations. Thus the approach should be quick and robust, as indeed
it is.

We actually use a recent modification of the Newton-Raphson pro-
cedure developed by Gill and Murray [Note 8] which ensures the positive
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definiteness of the Hessian at the current point. This guarantees that we are
proceeding in a downhill direction. Since the Hessian is always positive semi-
definite at a minimum, it is desirable to ensure that it is so during the entire
estimation process. If it is not "sufficiently" so (in a complex sense discussed
at length by Gill and Murray), deliberately chosen values are added to the
diagonal to force it to be positive definite. This avoides convergence to a

maximum or to some other stationary point that is not a minimum.
We now provide the first and second derivatives of SSTRESS with

respect to xi. for fixed j and a = 1,
note that

(38)

¯ .. , t. To simplify the derivation, we

w~(xio -- Xk~)~,

WiaXia
2 

~- 2 E ~UiaXiaXka -- WiaXka2’

and we introduce several definitions. First, we collect the terms which do ~ot
involve x~. (the fixed terms) and define them to 

(39) h,~ = d,~*~ -- ~ w~.x~.2.

We organize these terms into a vector hi which contains all h,~ for fixed j
and for k ~ ~ (this vector has N(n - 1) elements). We also define a super-

matrix G = [G~ , G2], with N(n - 1) rows and 2t columns. The two sub-
matrices are defined as follows:

(40) G~ = -2
Wl 1X.

and

(41)

-WN 1 Xn I

LWNlU " " ¯ WNIUJ

"W~tXlt

Wl tXnt

’WNtXnt_

,

where u is an n - 1 component column vector of unities. We also define a
2t component supervector a~ , consisting of a vector x; of coordinates of
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stimulus j on t dimensions and a vector whose elements are the squares of
the elements in xi ¯ Since it is possible to express the squared elements as the
product of a diagonal matrix and a vector, we further define X~ to be an
order t diagonal matrix with the coordinates of stimulus j on its diagonal

(do not confuse this with the entire matrix of coordinates denoted X). Then

(42) ai -- ¯

Xix~

We can now define SSTRESS as

1
~ (hi - ~,~)’(h~ - ~c,~)(43) ~(x, w, D*) = ~ .

(The 1/2 is present since the summation is over all N.n~ elements
whereas in previous definitions of SSTRESS the summation was over only
the lower triangular portion of each matrix.)

The gradient vector (first derivatives of SSTRESS with respect to x~)
can be expressed as

(44) g = -[I, 2X~]G’h, q- [I, 2X~]G’Ga~

= [GI’G~ -t- 2XiG~’G~ -q- G~’G2X~ q-- 2X~G~’G2X~]x~

-- [G~h~ q- 2XiG~h~].

The off-diagonal elements of the Hessian (matrix of second order partial

derivatives) are (for a ~ 

(45)
I_.Xibeb_J

where eo is a vector with unity in the a’th position and zeros elsewhere.
The a’th diagonal element of the Hessian is

(46) h°. = -[o, 2e.’]G’h, + [e.’, 2x~.eo’]G’GI e~ ? q_ [o’, 2e’]G’GI x, 1"

l_2x ~oe._l ~_X ix i_l

We use the gradient and Hessian with Gill and Murray’s [1974] procedure
for the Newton-Raphson method. With this procedure one obtains the/’th
estimate of x~, which we denote x~(*), according to

(47) xi

where ~ is a stepsize determined to ensure that ff~(*) < :(’-~), where/~ = H
when H is positive definite, and where/~ = H q- F for F, a diagonal matrix
with positive diagonal values when H is not positive definite. The matrix F
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is determined according to Gill and Murray’s developments. While it is the

case that SSTRESS must be evaluated several times in determining the
estimate of x, each point’s coordinate vector, it is a very simple and quick
evaluation since the optimal scaling D* is fixed during the evaluation. Thus,

we do not have to perform this time-consuming operation, which is one of the
:nice features of the ALS approach. If we were using the more standard gradient
approach we would have to perform the optimal scaling for each evaluation
of SSTRESS, and the algorithm would be very slow. (This may account for
the inefficiency of Yates’ [Note 17] procedure which performs the optimal
scaling after each point’s coordinates are estimated.)

Once we have minimized SSTRESS relative to a single point, we repeat
the procedure for another point, until all points have been subjected to the

process. This defines a single iteration. The entire process is repeated until
convergence is obtained. Note that once a point’s coordinates have been

estimated, the old coordinates are immediately discarded and the new esti-
mates are inserted before the next point’s coordinates are estimated. This
prompt replacement is mandatory since each suboptimization is not inde-
pendent from the others.

There is one minor theoretical problem with the procedure just proposed.
The function being minimized (43) is a quartic function; therefore its gradient
(44) is a system of cubic equations. This system of cubic equations has, 

most, 2’ minima, of which not more than 2’ - 1 are local minima, and 1 is
the global minimum (these assertions will be supported in Section 5). Thus,
in one dimension there may be one local minimum in addition to the global
minimum, in two dimensions there may be as many as three local minima,
in three dimensions up to seven local minima, etc. The procedure we have
proposed converges on one of the minima without ensuring that it is the global
minimum. While numerical analysis results indicate that we will most often

converge on the optimal minimum (especially if we have a good initial esti-
mate, as we do, and if the optimal minimum has a rather better value than
the local minima, a situation ~vhich may or may not exist here), ~ve will at
least occasionally converge on non-optimal minima. An alternative procedure
which is free of this problem will be proposed in Section 5. Regardless, we

are of the opinion that this theoretical difficulty with the proposed procedure
will have little practical effect, an opinion supported by the results presented
in the next section. When we recall that the present part of the estimate
process seeks the optimal location of a single point, we see that there are many
self-correcting opportunities built into the overall estimation process. This

~nay be the reason that the theoretical difficulty has little practical effect.
Finally, we note that with previous nonmetric procedures the local minimum
problem ~vas so complicated that it defied analysis. We believe that our
procedure, while not totally free from local minimum problems, is clearly
superior to previously proposed procedures in this regard.
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~,. Examples

In this section we present examples of the use of ALSCAL to demon-
strate its efficacy. The first examples utilize the weighted Euclidian model,

and the last the unweighted model. For the weighted model we first perform
a small Monte Carlo study which allows us to compare the structures obtained
by ALSCAL with the true structures which were used to generate the arti-
ficial data. We further evaluate the performance of ALSCAL in the weighted
Euclidian case by comparing the structures obtained by ALSCAL with those
obtained by INDSCAL when both are used to analyze the same real (not

arti’ficial) data. For the unweighted model we evaluate ALSCAL by com-

paring the structures it obtains for sets of real data with those obtained by

other investigators using the standard MDS algorithms for applying the

unweighted model. Finally, we evaluate the ability of ALSCAL to analyze

nominal data by comparing the structure obtained from a set of data which

has been previously analyzed under the assumption that the measurement

level is ordinal. It is not possible to compare these results with other algorithms

designed to multidimensionally scale nominal data since no such algorithms

have been proposed previously.

We believe that the reader will conclude, from the evaluations outlined
in the previous paragraph, that ALSCAL is very robust in all the situations

for which it was designed.

Monte Carlo Study

The general outline of the Monte Carlo study is as follows. First, we
generate an arbitrary "true" configuration and "true" weights, which together
we call the "true" structure. We then determine the dissimilarities by com-
puting distances (according to the weighted Euclidian distance formula)
and introducing either random or systematic error, or both. We then submit

these errorful dissimilarities to ALSCAL to obtain the "derived" structure
(stimulus configuration and weights). Finally, we compare the derived

structure with the true structure in order to evaluate hoxv robust ALSCAL
is to random and systematic error.

Actually, the purpose of the experiment is twofold. First, it should be the
case that analysis of dissimilarities which contain no random error but which
are systematically distorted monotonically should, if we assume that the
data are ordinal, produce a derived structure which is identical to the true
structure no matter how severely we distort the true distances. Furthermore
it is anticipated that if we analyze these same systematically distorted dis-
tances while inappropriately assuming that the data are interval, the~ a
systematic bias should be found in the derived structure. Of course, the degree
of bias should be a function of the degree of distortion.
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The second purpose of the Monte Carlo study is to determine the
robustness of ALSCAL in the face of random error. Ideally, ALSCAL should
be able to recover the true structure when there is a moderate degree of
random error no matter what measurement assumptions we make about the
data (at least when there is not much systematic error). Note that this point

relates not only to the ALSCAL algorithm, but also to the weighted Euclidian
model itself. To the authors’ knowledge there has been no Monte Carlo study
which evaluated the effect of error (either random or systematic) on the
recovery of the true structure, and which attempted to evaluate the goodness
of recovery to such aspects of the model as the number of points or subjects,

the number of true and recovered dimensions, the amount of error, etc.
(Note that Jones and Waddington [Note 13] have investigated the effect of

subjects who use only a subset of the dimensions.) Our study is by no means
a complete or exhaustive study of these variables. Nonetheless, we believe
that such a study needs to be done and that ours may be viewed as a precursor
to such comprehensive studies.

We hypothesized the "true" structure shown in Tables 1-a and 1-b.
We chose a small two-dimensional structure for ease of presentation, with the
actual numbers arbitrarily assigned.

We emphasize that our results are not independent of this particular
structure, particularly with respect to the number of stimuli (which is rather

small compared to most empirical studies using this model), the number of
subjects (which is also on the small side), the number of dimensions, and the

actual structure. The configuration of stimuli is shown in Figure 1 by the
black circular dots (the lines connecting the dots differentiate the true con-
figuration from several other configurations also presented in this figure).

The "true" subject weights are given by the black circular dots in Figure 2.
Note that these weights, which are equally spaced along a straight line,
indicate that the subjects are "moderately" heterogeneous in terms of their
relative weighting of the dimensions. This situation, in our experience and
in the experience of Carroll (personal communication), is optimal for obtaining

a robust and meaningful analysis with INDSCAL. Note also that subjects
generally attach relatively more importance to Dimension I than to Dimension

II.
Weighted Euclidian distances were calculated from these stimulus

coordinates and individual weights. While computing these distances random
error was introduced. It is debatable when and where the error component
should be added (i.e., to the distances, to the coordinates, or to the weights;
before or after the systematic monotonic distortion; etc.). We arbitrarily
chose to follow the procedure of Young [1970] in which independent random
normal error is added to the stimulus coordinates. Such error is generated.
anew for each pair of stimuli. Thus d~ i, ~, under the/th degree of error perturba-
tion, is generated by
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Table 1-a Hypothesized stimulus .c, gnfi~uration
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Stimulus Dimension I Dimension II

1 1.37198 1.36082

2 0.77174 1.36082

3 0.77174 -1.49691

4 -1.02899 0.40824

5 -1.62923 -0.54433

6 -0.42874 -0.54433

7 0.17149 -0.54433

Table l-b Hypothesized weight configurat$on

Subject Dimension I Dimension II

1 0.40917 0.01805

2 0.36371 0.03610

3 0.31824 0.05415

4 0.27278 0.07220

5 0.22731 0.o9o25
6 0.18185 0.I0831

7 0.13639 0.12636

8 0.09092 0.14441

9 0.04546 0.16246

Table l-c Values. of

Error Level Dimension

1 0 0

2 .180 .286

3 .600 .953

I ~1/2

[Z \ (1)\2!

where z.ko = z~i. - z~. , where z.a ~ N(0, 1)(i, j = 1, ... , 7), (a = 
and where v. (~) is a parameter specifying the variability of the errors. Note
that d.k(~): does not follow the noncentral chi-squares distribution (as it does
in Young, 1970) since the variability is different across dimensions
depends on dimensions and moreover, dimensions are differentially weighted).

Note also that the same z.k~’s are used for different error levels. The values
of ~,o (~) are shown in Table 1-c. Since z,i. and z~q are independent, the variance
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x large error

FIGURE l

Monte Carlo study: Effects on the stimulus configuration when the data are assumed

to be ordinal.

of (z~;~,)3,o(~) is 2(’~o(~)). Note that the stimulus configuration xi~’s are standard-
ized so that they have unit variances for both dimensions. We refer to the

case when l = 1 as the error free case, l = 2 as the moderate error case, and
l = 3 as the large error case. (For l = 3 the error variance is .720 for Dimension
I and 1.816 for Dimension II, which is much larger than the error variance

used in most Monte Carlo studies.)
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.1 .2
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FIGURE 2

Monte Carlo study: Effects on the weight space whea the data are assumed to be ordinal.

Next we introduced systematic monotonic error by either squaring the

randomly perturbed distances in (45), or by raising these distances to the
fourth power. Thus we have three levels of systematic error: No distortion
(the error perturbed distances themselves), moderate distortion (the squared
perturbed distances), and high distortion (the perturbed distances raised 
the fourth power).

Finally, these systematically and randomly distorted distances served
as the dissimilarities input to ALSCAL for analysis. The derived structures
are displayed in Figures 1 (the stimulus configuration) and 2 (the weights).
First of all, the algorithm perfectly recovered the true structure form the
error-free dissimilarities. The structure, which is indistinguishable from the
true structure, is presented in these figures as the black circular dots. The
structures, resulting from the moderate and high degrees of systematic

(monotonic) distortion when there was no random error in the data are also
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:indistinguishable f~om the t~ue structure when the assumption is (correct!y)
:made that the data are measured at the ordinal level. Thus the dots in Figures
1 and 2 represent four structures: The true structure and the structures
derived by ALSCAL for three levels of monotonic distortion when there is

no random error in the data and when the data are assumed to be ordinal.
We will discuss what happens when these data are assumed to be metric

in a moment.
Figures 1 arid 2 also display the structures derived b~ ALSCAL when

there is moderate random error (the triangles) and When there is large random

error (the squares). Note that there is, once again, no discernible effect for
systematic distortion when the data are assumed to be ordinal, with all three
levels producing identical structures. The effect of random error shows up in

these.figures in a very interesting and somewhat surprising way. As the level
(if error increases, the actual structure of the stimulus configuration (as
evidenced by the interpoint distances) is relatively unaffected. However, the

entire configuration changes from the true orientation towards an orientation
which is more nearly like the principal components fo the group space (i.e.,
the variance on the first dimension is increasing and that on the second
decreasing, a change which is reflected in the overall magnitude of the weights).

This effect is most pronounced for the highest amount of error. However,
considering i~ particular that the same z,.k~ is added across different error
levels, we refrain from definitive comments at this stage of investigation.

The weights, on the other hand, simply show a nonsystematic deteriora-
tion as the amount of error increases. Although the relatively heavier weight-

ing on Dimension I is preserved, the order of individual subjects along the
dimensions of the weight space is destroyed, let alone the ratio of an indivi-

dual’s weights to each other. Note also that the weights on the second dimen-
sion (which suffers from relatively more random error) tend toward their
mean as the error increases. These results appear to the authors to be very
provocative and worthy of systematic study. However, since the main intent
of this paper is not to perform a systematic investigation, we will not dwell

on the matter any further, although we Will examine a possible cause in the
discussion section. Finally, let us emphasize that these results are identical

for all levels of systematic monotonic distortion when the data are assumed
to be ordinal. This shows that the theoretical invariance of the results over
monotonic distortion is also an empirical invariance.

This is not to say that systematic monotofiic distortion has no effect

when we (incorrectly) assume that the data are metric. The fact that does can
be seen in Figures 3 and 4. These figures show the effects of assuming that the
data are ratio when there is systematic monotonic distortion. The results
are shown separately for each level of random error since there is a substantial
interaction between the effect of systematic and random error in this case.
Thus we have Figures 3a, 3b, and 3c for the stimulus configurations obtained
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by ALSCAL for the three levels of random error, and Figures 4a, 4b, and 4c
for the corresponding subject weights.

Figures 3a and 4a present the results from data with no random error.
In these figures there are three points plotted for each stimulus and individual,
one for the "true" and "no distortion" configurations (which are identical),
One for the "moderate distortion" configuration, and one for the "high

distortion" configuration. The effect of monotonic distortion of the data is
small (though obvious) upon the stimulus configuration (Figure 3a); 
general configural relations among the stimuli remain intact (though modified).
When we recall that there was no effect of systematic monotonic distortion
when the ordinal measurement assumption was made, and when we compare
those results with the present results, we see that appropriate measurement

assumptions .can in fact improve the descriptive quality of the weighted
Euclidian model. Note that the effect of systematic error on the configuration
is random (there is no discernible pattern of point displacement). There is,
however, a systematic effect of systematic error, but it is now contained in
the weight space (Figure 4a). There seem to be two general tendencies. First,
as the distortion increases the weights tend to show less variance on Dimension
II. Second, as distortion increases the configuration of weights becomes
slightly concave upward (in contrast to the true linear, equal-spaced weight
confi[Iuration). We find it very difficult to rationalize these effects.

We now turn to the worst possible case, that involving systematic mono-
tonic error when the wrong measurement level is assumed and when there is
random error as well. The results are presented in Figures 3b and 3c (stimuli)

and 4b and 4c (weights). Each of these figures contains four plotting symbols
for each stimulus (or weight), one for the true value and one for the observed
values under the three levels of systematic error (the "no distortion" and
"true" values no longer coincide due to the presence of random error). As
opposed to previous results there seems to be very little systematic effect

of both kinds of error combined, except to say that increasing error yields
further deterioration of both stimulus and weights spaces. It appears to be
the case (though we may be stretching it a bit) that the effects are more
pronounced on Dimension II than on Dimension I. Specifically, the variance
of a point’s projection on Dimension II is larger than on Dimension I in
Figures 3b and 3c (and even perhaps in 3a), which indicates that a point 
more poorly determined on Dimension II and on Dimension I. Correspond-
ingly, we see in the weight space that the variance of weights decreases
faster on Dimension II than on Dimension I as error increases. This suggests
that our hypothetical subjects are becoming less differentiated by Dimension
II more quickly than by Dimension I.

This small and admittedly very incomplete Monte Carlo study tells us
several important things. First, ALSCAL recovers a known configuration
when there is no error, for ordinal measurement assumptions as well as
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FIGURE 3

Monte Carlo study: Effects on the stimulus coafiguration when the data are assumed to be ratio.
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Monte Carlo study: Effects on the weight space when the data are assumed to be ratio.
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interval. Second, ALSCAL is robust in the face of monotonic transformations
of ordinal data. Third, the recovery of the structure of the stimulus configura-
tion in the face of large amounts of random error remains surprisingly accurate
when the appropriate (or weaker) measurement assumption is made. Fourth,

the weight structure is degraded by the presence of random error. And fifth,
the combination of monotonic and random error is totally detrimental when
the measurement level is assumed to be ratio.

Real Data and the Weighted Model

We now investigate the behavior of ALSCAL with real data appropriate

to the weighted Euclidian model. We choose data which have been previously
analyzed so that we can compare our results with those already published.
Specifically, we employ data gathered by Jones and Young [1972] who suc-
cessfully employed the weighted model to describe the social structure of a
small, intact, and naturally occurring task-oriented group (the staff, students,

and faculty of a university-based teaching and research laboratory). They
used Carroll and Chang’s INDSCAL algorithm to obtain three dimensions
which, with the help of additional data and analysis, they interpreted as
representing the status, political persuasion, and professional (task) interests
of the members of the group. They were able to interpret detailed charac-
teristics of both the stimulus and weight spaces with great success.

When we analyzed these data with ALSCAL under the assumption that
they were measured at the ordinal level, we obtained a solution whose stimulus
was essentially identical to that obtained by Jones and Young (who used the
ratio assumption). However, the ALSCAL weight structure was more
homogeneous than the one found by Jones and Young. When these data were
reanalyzed under the ratio assumption, the stimulus configuration was
essentially unchanged, but the weights were more heterogeneous. In both
eases the weight structure was interpretable in a manner similar to the Jones
and Young interpretation, even though it was not identical. Although the
homogeneity of the weights is partly a function of measurement level, more
homogeneous weights can be expected with ALSCAL than with the INDSCAL
method, as will be discussed in Section 5. Finally, we note that these analyses
assumed the data were matrix-conditional, which is, implicitly, the assumption
made by Jones and Young in their use of INDSCAL. When the analysis is
performed with the unconditional assumption, the results are quite different,
and not easily interpretable.

The second set of real data analyzed with the weighted Euclidian model
was collected by Jacobowitz [Note 12; Young, 1975b]. These data are partic-
ularly suited to our purposes since they are row-conditional data, and since
there hard been no previously developed algorithms for applying the indivi-
dual differences model to such data. (There are, however, several algorithms
for fitting the simple Euclidian model to conditional data.)
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The stimuli forming the basis of the~e data are fifteen names of body
parts. Each subject was presented with a single one of these fifteen stimuli
and was asked to ra~ik order the remaining fourteen stimuli in terms of ~heir
similarity to the fifteenth (called the standard stimulus). Another stimulus
was then selected to be the standard and the process was repeated. The
subject was required to produce fifteen such conditional rank orders, each

a rank order of fourteen stimuli with respect to thei~ similarity to the fifteenth.
(The study also involved three other sets of stimuli.., kinship terms, color
terms, and "have" verbs.., wi~ich we do not cover.)

There were fifteen subjects at each o~ four age levels, the ages being

6 year olds, 8 yea.r olds, 10 year olds and adults. In our analysis we included
only the youngest and oldest groups since if there are any reliable individual
differences (which Jacobowitz found by analyzing each age group separately
with the Euclidian model), they should most certainly appear betweeii the

two most extreme age grotips. ¯
ALSCAL obtained three dimensions which were similar to those obtained

in Jacobowitz’s previous analyses with the simple Euclidian model (see
Figures 5 and 6). Dimensio.n I (vertical) is interpreted as face terms vs. limbs

(both upper and lo4¢er) with "body’’ in between. Dimension II (horizontal)
cohtrasts upper limbs with lower limbs, with face terms and "body" in

between. Dimensioi~ III (front-to-back) represents "body" vs. everything
else (or more precisely, whole vs. parts hierarchy). In Figure 6 we present the

associgted weight configurations in which the weights for adults and children
are indicated by different symbols. (Zero weight on all dimensions is at the

lower back corner bf the cube; the further away from this corner, the heavier
the weight.) We observe a clear distinction between the two groups of subjects;
the groups are almos~ perfectly separated. Every child puts more weight on

Dimension II (horizontal) than each adult, whereas adults are nearly always
better represented by the combination of Dimensions I and III. In light of
the previous interpretation this indicates that 6 year old children are relatively
homogeneous (they uniformly emphasize the second dimension), whereas
adults are more heterogeneous (they split between Dimensions I and III).
No adults evaluate Dimension II highly, but three of them are inclined to
emphasize Dimension III rather than I. We do not have any further evidence,
however, concerning which factors distinguish Dimension III adults from
Dimension I adults (who are in the majority). The clear distinction between
younger children and adults in their way of evaluating dimensions of body
parts seems very interesting and of empirical importance.

Real Data and the Unweighted Model

The evidence supporting the robustness of ALSCAL in the’unweighted

case is clear and abundant. We have analyzed Funk et al.’s ethnic data [1975],
McGuire’s size confusion data [Shepard, 1958, p. 511], Ekman’s color data
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FIGURE 5

Jacobowitz Body parts data: Three-dimensional stimulus space.

[1.954, p. 468], Miller and Nicely’s sound data [1953], Peterson and Barney’s

vowel data [1952], Green and Rao’s breakfast menus data [1972], and
Hayashi’s rice data [1974] among others. In all cases the obtained stimulus
configuration was virtually indistinguishable from the published results, even
though the latter were obtained by a variety of MDS algorithms.

We do not present any of the above results in detail. Instead we present
some of th~ results we obtained under measurement assumptions weaker than
those made by the above authors. Hayashi [1974] analyzed the dissimilarity

of various rice strains by his recently proposed MDS method, which makes
the assumption that the dissimilarities are defined at the ordinal level. We
reanalyzed his data with ALSCAL under the assumption that they are defined
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at only the nominal level, a particularly weak assumption in this case since
there are only four observation categories. Our results are in close agreement
with Hayashi’s (see Figure 7). Note that the (nominal) observation categories
are ordered, at the conclusion of the analysis, in the fashion assumed by
Hayashi. We obtained these results from (ordinally incorrect) initial category
values which were generated randomly, as well as from the (ordinally correct)

[] Adults

[] Children
FIGURE 6

Jacobowitz Body parts data: Threeodimensiona| weight space (C for chi|dren, A for adu|ts)
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FIGURE 7

Hayashi’s rice-strain data: Stimulus space (unweighted mode]).
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values used by Hayashi. Thus, we see that ALSCAL converges to the same
sol~ition independently of the initial category values, though the number of
iterations required to reach convergence is of course larger for the random

values.
We reanaiyzed Ekman’s color data using the nominal measurement

assumption, and collapsing the number of observation categories to nine by
combining them. We analyzed the collapsed observation categories under
both ordinal and nominal assumptions and in both cases obtained essentially
the same color circle as Ekman (see Figure 8 where the numbers indicate
color wavelength). This is in spite of the fact that the data are similarities
(not dissimilarities), which means that the order of the values assigned to the
observation categories is the reverse of the order of the desired distances.

For the ordinal assumption, the user informs ALSCAL to compensate for
the reversal, of course. However, for the nominal assumption the initial
category values, being equal to the raw observations, are in the worst possible
order relative to the desired distances. They are worse than randomly gen-
erated values. Even so, ALSCAL is able to overcome this very poor initiali-
zation and obtain the desired configuration (at the cost of a number of
iterations). Finally, it should be pointed out that the quantification of the
category values which was obtained was essentially the same for both measure-
ment assumptions, implying that the ordinal assumption is appropriate.

For the unweighted Euclidian model we conclude that a) ALSCAL
reveals the same stimulus structure as other algorithms; b) ALSCAL is able

to obtain identical solutions under the nominal measurement assumption as
uader the ordinal assumption when the stronger assumption is appropriate;
and c) the obtained stimulus structure is uneffected by choice of initial
category values when the nominal assumption is used.
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FIGURE 8
Ekman’s color data: Stimulus space (unweighted model).

5. Discussion

Having completed the presentation and evaluation of the model and
method, we now turn to a discussion of some related issues.

Interpretation o] X and W

We will not dwell at length on the interpretation of X and W since
Carroll and Chang [1970] have already done so. The interpretation of X is in
every way identical to the interpretation given in the earlier work (X repre-
sents the stimuli as points in an unrotatable Euclidian space with dimensions
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of unit length). However, there are three subtle differences in the interpreta-
tion of W, although its general nature is unchanged (W represents the subjects
as vectors whose direction indicates the relative importance of each dimension
to each subject).

The first difference in the interpretation of W is that with unconditional

data it is permissible to make direct intersubject weight comparisons, whereas
for conditional data (of either type) and for Carroll and Chang’s method
(which is tacitly matrix-conditional), inter-subject comparisons can only 
made indirectly via within-subject weight ratios (a point often overlooked
with the earlier procedure, by the way). For example, if Subject A has weights

of .80 and .60 on the two dimensions of a configuration, then for any type of
data we may say that Subject A places 1.33 = .80/.60 more weight on Dimen-
sion one than on Dimension two. Similarly, if Subject B has weights of .40
and .60 on the same two dimensions, then we may say that he places .67 as
much weight on Dimension one as he does on two. Such within-subject
comparisons are straightforward. However, with between-subject compari-
sons we must be careful, as it is only for unconditional data that we can make
the simple statement that Subject A finds Dimension one twice as relevant

as Subject B does, and that they both find Dimension two to be equally
relevant. For conditional data, on the other hand, we must say that Subject A
emphasizes Dimension one relative to Dimension two twice as heavily as
Subject B does (since 1.33/.67 = 2). It is the case, however, for all types 
data that the magnitude of the weights (the length of the weight vector, say)
indicates in a general way the degree to which the subject’s data are repre-
sented by the solution obtained by ALSCAL. We discuss this topic next.

The second difference is in the interpretation of the length of the weight
vectors. The general interpretation is the same for both procedures; it is said

that they loosely represent the goodness of fit of the model to the data obtained
from the individual subject. More specifically, for both procedures it can
be said that the length of the weight vector (sum of squared weights) roughly

represents the proportion of variance accounted for in the subject’s scalar
products. The difference is that in the Carroll and Chang approach this
"variance accounted for" is being optimized, whereas in our procedure it is
not. As was noted by Carroll and Chang, the "variance accounted for"
notion is only precisely true when the configuration is exactly orthonormal
(X’X = I). When the configuration is only approximately orthonormal, as
is the usual case, then this interpretation of the length of the weight vector
is only roughly true. Note carefully that the weight vector length does not
represent the proportion of variance (or of anything else) accounted for 
the subject’s judgments.

The third difference in weight interpretation is in the meaning of a vector
of zero weights when the data are assumed to be at the ratio level of measure-
ment. In the Carroll and Chang situation, zero weights for a subject means
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that the model of his judgments consists of a scalar product matrix which
is entirely zero. In our situation, however, the same subject would have a

distance matrix which was entirely zero. Now in the Carroll and Chang
approach the model’s zero scalar products matrix is fit to a set of (pseudo)-
scalar products (those computed from the data) which have a zero mean.
Thus the mean of the two matrices is the same. However, in our approach

the zero distance matrix is fit (in the ratio case) to the raw data. The data 
not have a zero mean, and thus the means of the data and distances are not
the same. Therefore, in our approach a vector of zero weights is going to

contribute relatively more to the apparent lack of fit than in the Carroll and
Chang approach. In a practical sense this means that for ratio data, zero
weights are tess likely to occur with our approach, and that the weight struc-
ture obtained with our approach may be similar to the Carroll and Chang
weights, but certainly not identical (except in certain unlikely situations).
In particular, we expect that our weights should tend to be more nearly
homogeneous than those obtained from the Carroll and Chang procedure,

when the data are assumed to be measured at the ratio level. Thus, we caution
the user to be careful in opting the ratio assumption, due to the effect of the
weigh[s. (Carroll, in a personal communication, also warns of the use of the
ratio assumption with his procedure, but for different reasons.)

Individual Di ff erences

As was briefly mentioned in the introductory section, there are several
different multidimensional scaling models realizable within the ALSCAL
framework. The models are obtained by combining either the weighted or
unweighted Euclidian model with one of the three types of conditionality,
and with either one or more than one subject (several of the combinations

are either impossible or nonsensical). We discuss the meaningful models
briefly in this section.

While most of the models can be collectively referred to as individual
differences models, there are two distinct types of non-individual differences

models. One of these is the standard unweighted Euclidian model applied
to a single matrix of data (i.e., when N = 1). Clearly this is not an individual
differences model since there is but one individual. The other non-individual
differences model is obtained when one analyzes several matrices of data with
the unweighted Euclidian model under the assumption that the data are
unconditional. While it might appear that this is an individual differences

model (since there are several matrices), the reasons that we view it as 
non-individual differences model will become clear after the discussion of
individual differences in the next few paragraphs.

There are three psychologically distinct individual difference models
realizable within the ALSCAL framework. Individual differences can be
allowed only in the response process (i.e., response bias), only in the judg-
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mental process (including perceptual and cognitive processes), or in both the
response and judgmental processes. It should be clear by now that individual
differences in judgmental processes are reflected by the weights of the weighted

Euclidian model. Thus we must choose this model if we are interested in
allowing for the Horan [1969] and Carroll and Chang [1970] type of individual

differences. It may not be so clear, however, that by assuming the data are
conditional we are implicitly allowing for individual response bias differences,
the type allowed for by McGee’s [1968] developments. Thus, if the data are

measured at the ordinal level, each individual is allowed to have his own
unique monotonic response transformation, while if the data are interval,
each individual has a unique linear response transformation. Note that this
type of individual differences results from either type of conditionality, since
for row-conditional data each individual has a unique set of response trans-
formations, while for matrix-conditional data each has a single unique trans-

formation. However, if we make the assumption that the data are uncondi-
tional, then we are assuming that all individuals have identical response
biases, and thus tacitly assuming that there are no individual differences
in this regard.

Thus, we can allow for two types of individual differences via eigher the

model weights or the data conditionality. Obviously, we can permit both
types of individual differences to occur by simply applying the weighted
Euclidian model to conditional data. But what happens if we apply the
unweighted model to unconditional data? Then we have the second type of
non-individual differences model discussed above. This model allows for
replicated data, but assumes that the replications arise from subjects with
identical judgmental .and response processes.

Oblique Axes and Individual Rotations

Several weighted models have been proposed which are more general
than the one discussed here. Among these are IDIOSCAL, a model which

allows for individual differences in the orientation of axes [Carroll & Chang,
Note 2]; PARAFAC, a model which permits individuals to have weighted
oblique dimensions [Harshman, Note 10]; and an extension of Tucker’s
three-mode factor analysis [Tucker, 1966; Levin, 1965] to multidimensional
scaling [Tucker, 1972]. All of these models have .been proposed in the scalar
products framework. Thus they optimize the STRAIN index (8) with the
definition of the weights matrix changed in different ways for the different
models.

As has been discussed by Carroll and Chang [Note 2], the distance
version of these models (as well as the models covered by our previous develop-
ments) are all special cases of the following distance model:
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or, in matrix no~at~on,

(50) d, ik ~ = (x, -- xi)’R~(x, - x,).

Here x~ is a column vector of coordinates for point i, and R~ is a square sym-

metric matrix of inter-dimension r~lations for subject ]¢. The relationship
of this model to the one treated by ALSCAL is that ALSCAL restricts R~ to
be a diagonal matrik.

The other models mentioned at the beginning of this section are obtained
as follows. For Carroll and Chang’s model we obtain the spectral decomposi-

tion of RI~ ̄

(51) R~ = U~W~U~’,

where U~ is orthogonal and W~ is diagonal; where U~ can be interpreted as a
subject’s orthogonal rotation of the original coordinates.X to a new orienta-
tion; and where his weights W~ are applied to the rotated configuration. Thus
this model allows for individual differences in the orientation of axes as well
as the types of individual differences discussed in the preceding section.
(Note that the orientation of X is not unique.)

For Harshman’s model we decompose R~ so that

(52) R~ = W~oCW~’,

where W~, is diagonal, and C is square symmetric with unit diagonals; where
C is interpreted as a matrix of cosines of angles between oblique dimensions;
and where W~ is a subject’s weights on the obliquely transformed dimensions.
Thus this model allows for the same types of individual differences as discussed
in the previous section, but makes the fundamentally different assumption
that the axes which are being weighted are oblique transformations of the
stimulus space X (whose orientation is uniquely determined). Note that all
subjects weight the same oblique dimensions.

For Tucker’s model we decompose R, so that

(53) R~ = W,,C~W~’,

where the matrices have the same nature as in Harshman’s model, with the
essential difference that each subject lc has his own oblique transformation
as indicated by the subscript. Thus Tucker permits a type of individual
difference not covered by the previous models, namely that each individual
has his own personal oblique transformation of the coordinate space, as well
as his own weighting of the dimensions of his space. (Note that the orientation
of X is not unique here.) This decomposition of R~ is the most general of those
presented in this section, including all of the models previously discussed
in this paper.

ALSCAL can be easily extended to cover any of the models treated in
this section by modifying the weight estimation phase (Section 3). The
modification is to redefine the matrix Y so that all pairs of dimensions are
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present as well as all pairs of points. Thus, if we define Y to be an order
n(n -- 1)/2 by t(t ~- 1)/2 matrix with general element (x,a - x~o)(x~ - x~b),

and then apply (36) we would obtain least squares estimates of the R~ 
which can then be decomposed in the desired way.

M inlcowslci Spaces

One of the limitations of the work presented here is that it only encore-
passes Euclidian coordinate spaces and does not include other Minkowski
spaces. Such a generalization, ~vhich is very simple with the standard gradient
approach [Kruskal, 1964; Lingoes, 1973; Young, 1972], is annoyingly difficult
in the ALS approach. In fact, the extension is impossible within the ALS

framework unless we adopt a different optimization criterion. If we defined
/STRESS on the/-power weighted Minkowski distances, i.e.,

so that/STRESS would become

then with some rather minor modifications in Section 3 we could extend our
developments to other Minkowski spaces. However, this proposal is not
entirely meaningful, especially when the value of 1 is at all large. It is interest-
ing to note, though, that for City Block (1 = 1) /STRESS is identical 
STRESS. Thus it would be both simpi~ and meaningful to extend ALSCAL
to include City Block space. Such an extension would also be rather useful
since City Block space is probably the most commonly used non-Euclidian
coordinate space in applications of multidimensional scaling to social science
data. However, this extension might not be robust due to the well-known
frequency of local minima in City Block space.

Weighted Unlolding Models

A further limitation of the work discussed in this paper is that it does not
apply to Coombs’s unfolding model [1964]. This model can easily be incor-
porated into nonmetric multidimensional scaling programs as has been
discussed by Young [1972], and carried out by Kruskal, Young and Seery
[Note 14], Lingoes and Roskam [1973] and Young [1973]. It would be possible
to incorporate the unfolding model within the ALSCAL framework by using
t:he notions discussed by these authors. If this were done, then the full model
(:incorporating the oblique axes and individual rotations notions as well as
the Minkowski notions discussed in Section 5) would be
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where the new terms Yio and ylb are coordinates of the "ideal point," in

Coombs’s terminology. We obtain Coombs’s unfolding model by assuming
that the space is an unweighted Euclidian space (i.e., 1 = 2, and the matrices
Rk are identity matrices). When these restrictions are placed on (56) 
obtain Coombs’s method for modeling individual differences, as has been
discussed extensively by Coombs. We also obtain a way of modeling any
second set of objects as points in the Euclidian space, as has been discussed
by Young [1972] among others. For example, if we have a matrix of judgments
concerning the degree to which each of several American Ethnic subgroups
can be described by each of several adjectives, ~then we can use the unfolding
model to develop a "joint" Euclidian space containing points representing
both the Ethnic groups and the adjectives. Precisely this approach was taken
by Funk, et al. [in press]. If the ALSCAL procedure were extended to incor-
porate the model implied by (56), then we could also perform an individual

differences unfolding analysis of the type of data gathered by Funk, et al.

Whereas Funk, et al. had to average the data they gathered from 50.. subjects
to obtain a single matrix to be "unfolded," it would be possible to avoid
this averaging procedure and adopt a model incorporating the Carroll-Chang
type of individual differences weights (or indeed, any of the other types of
weights discussed in Section 5). This approach would be particularly ideal
for the Funk, et al. study, since it is reasonable to assume that the particular
Ethnic subgroup to which the judge belongs affects his judgments of the
degree to which certain adjectives describe certain Ethnic groups. We issue
a note of caution, however, as there are some well-known degeneracies which
occur with the unfolding model, and we might expect that this extension of

the ALSCAL procedure would not be any more robust to these problems
than preceding procedures.

Measurement

Within our framework one can obtain empirical information about the
measurement level of his raw data, at least within the context set by the

MDS model. All that has to be done is to analyze the data several times,
making different measurement level assumptions each time. If two (or more)
of these analyses yield precisely the same results, then the appropriate
measurement level is the highest one used for the several equivalent analyses.

He can then conclude that within the MDS situation the true measuremen~
level is that highest one, and that this is not simply an assumption of the
appropriate level, but an empirically determined level.

The reasoning behind these statements is as follows. If a set of raw data
is analyzed twice, and if the only difference in the two sets of analysis options

is the assumed measurement level, and if the obtained results (X, W, D*, and
SSTRESS) are identical for both analyses, then the lower measurement level
(which places relatively weak restrictions on the optimal scaling) is yielding
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exactly the same transformation as the higher measurement level (which
enforces stricter conditions). That is, if the two analyses involve nominal
anal ordinal assumptions and yield identical results, then in the nominal case

the transformation actually satisfies the ordinal requirements. When this
occurs it is appropriate to conclude that the data are in fact measured at least
at the higher of the two levels of measurement when these data are analyzed
with the chosen model.

Note that the view of measurement implied by the preceding statements
is not the common view. We do not adopt the commonly held position that

measurement level is a characteristic (~f data in vacuo. Rather, it is our view
that the measurement level of a particular set of data is dependent on the
interaction of that data with the model chosen to describe the data. When
a set of data is analyz.ed by some model, the method of analysis necessitates
assuming that certain types of data transformations are permissible. These
transformations, and the operations they entail, imply that a certain level of
measurement has been assumed to exist in the data. If one can vary the types

of allowable transformations, and only perform operations on the data which
are commensurate with the transformations, then one can determine how well
the data "measure up", as it were, to the requirements of each measurement
level. This is the approach taken here. Note ,however, that this cannot be
done outside of the context created by the chosen model, as should be clear.

It may be that a set of data is monotonica!ly (but not linearly) related to the
distances of an MDS model, but it would not be correct to conclude that they
are ordinal for it may be the case that they are linearly related to some
other model.

It may appear to be the case that the argument is purely academic, and
that the situation will never arise in practice. After all, we are requiring that
the results of the several analyses be exactly equivalent. However, the situa-
tion actually occurred in one of the examples given above. For the Hayashi
[1974] data the nominal and ordinal results were precisely identical, allowing
us to conclude that the raw data that we analyzed were at least ordinal in
the MDS context. We do believe ,though, that our requirement of strict
equivalence is overly stringent, and we would prefer to develop t~ test to
indicate how well a particular set of data approximat/~s a pa.rticular measure-
ment level. We have not yet done this, however.

Our view of measurement differs from the common view in one more
fundamental way. As was implied by the end of the previous paragraph,
we do not view measurement as being at one of a set of discrete levels. Our

view is that measurement level is a continuous notion, not a disc.rete one.
While it is obviously the case that only certain discrete points on the measure-
ment level continuum can be axiomatized, it is not our understanding that
these are the only measurement levels. The intermediate measurement levels
between the various axiomatizable points represent levels of measurement
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which approximate, to a greater or lesser degree, the next higher axiomatized
level. Thus, if we analyzed a single set of data under nominal, ordinal and
interval assumptions, and we discovered that the results were identical for
the nominal and ordinal cases, and "very similar" in the interval case, then

we would conclude that the measurement level of the data when analyzed
by the chosen model is somewhere between the ordinal and interval points,
and perhaps nearer the interval point. The most critical feature of the analysis
for deciding how nearly one approximates a particular measurement level
is the investigation of the nature of the optimal scaling D*. In the example
just given, to conclude that the results were "very similar" in the interval
case, we would have to go back to the ordinal case and determine how far the
optimally scaled data (D*) deviate from linearity. Formally, we might
obtain the Pearson correlation between D* and the set of data 0, as a descrip-
tive indication of deviation from linearity (note that this is obtained for the

ordinal level analysis for which the Spearmen rank order correlation between
D* and 0 is perfect). While this is an adequate descriptive device, clearly
we cannot use it for formally testing a measurement level hypothesis, which
is what we would most like to do.

This notion of a measurement continuum is involved in another important
aspect of our situation. It is commonly stated that nonmetric procedures
quantify qualitative data. Indeed, one of the main reasons for the popularity

of nonmetric procedures is this magical conversion of measurement level.
Strictly speaking, such a conversion of measurement level only occurs, in

our view, when the quantitative model perfectly describes the qualitative
data. Thus in our situation it is necessary to obtain a zero SSTRESS value
in order to precisely quantify qualitative data. The degree to which SSTRESS
is not zero indicates the degree to which we were unable to quantify our data
with the MDS model. Rephrased in the terms used in the preceding para-

graph, the SSTRESS value indicates how far along the measurement level
continuum we have moved from the assumed measurement level towards the
ratio measurement level (which is the level of the MDS model). Perhaps 
more useful index of quantification would be the Pearson correlation between
the optimally transformed data D* and the distances D. Note that if the same

set of data is analyzed under several different measurement level assumptions,
then the SSTRESS (and quantification correlation) will be best for the weakest
assumption, indicating, as it should, that we have moved further along the
measurement continuum. However, this is not due to the fact that we have
reached a higher degree of quantification, but to the fact that we assumed a
lower degree of qualification, as it were.

Finally, these two uses of the measurement continuum, and the two
descriptive correlation indices proposed, are perfectly commensurate with
each other. For the Hayashi [1974] data analyzed in the previous section, a
Spearman rank order correlation performed between 0 and D* for the nominal



58 PSYCHOMETRIKA

analysis would be unity, indicating that the data are actually ordinal when
analyzed by the chosen model. The Pearson correlation between D* and D

would be the same for the two analyses (as in the SSTRESS), meaning that
no more quantification was possible under the nominal assumption that under
the ordinal assumption. This implys that the data are ordinal. Finally, the
Pearson correlation between D* and D is not unity (nor is the SSTRESS
~,ero), indicating that the data are not perfectly consistent with the model,
and therefore that the model has not been able to perfectly quantify the data.
Please keep in mind that we only use the correlations descriptively, and that

the main weakness of our proposal to use such indices to investigate measure-
ment level is that we have no formal methods for deciding when a goodness
of fit measure is significant.

E~ciency

The last topic we take up is the efficiency of ALSCAL, both in terms of
speed and memory requirements. The memory requirements of ALSCAL are
most easily discussed, so we take them up first. As compared with the metric
]INDSCAL, only about one-half of the amount of data may be accommodated
in the s~me amount of space. This follows from the fact that with a nonmetric
program, one must store both the original data and the optimally scaled data,
whereas with a metric program, one only needs to store the data. Thus twice
the core storage is required with a nonmetric program. In most other regards
ALSCAL and INDSCAL are comparable in terms of storage requirements.

Of course, the storage requirements of ALSCAL are roughly comparable to
those for other nonmetric MDS programs, with the added storage for subject
weights being balanced by the lack of a gradient matrix.

Turning now to the speed of ALSCAL, we first discuss the manner in
which the speed is a function of various aspects of the analysis situation. Note
that there are four separate computational sub-problems: a) solving for
initial values; b) obtaining the optimal scaling transformations; c) computing

the weights; and d) determining the configuration. Of these four problems
all except the weight problem are adversely effected by increasing the number
of points. On the other hand, if the number of subjects is increased only
two phases, the optimal scaling and weight phases, will be slower. If we
increase the number of dimensions then all phases should be slower except
the optimal scaling phase which will be uneffected (except in the ordinal case
where increasing dimensionality will improve efficiency, due to the likelihood
that the order will be more nearly correct). Finally, the ordinal measurement
level should take noticeably longer than any of the other levels, due to the

sorting. In Table 2 we present the times required to analyze the Jones and
Young [1972] data as a function of dimensionality and measurement levels.
These times are CPU time only, with no I/0 time included. We have set the
convergence criterion to a value of ~ = .001 where ~ is the improvement in
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TABLE 2

CPU time/ttumber of iteratiotts required for program convergence.

(The CPU units are arbitrary.)

Dimen~ionality Measurement Level

nominal ordin~l in%erv~l r~tio

i 5.2/4 22.1/4 6.4/4 6.0/4

2 7.8/4 16.7/4 8.2/4 6.4/3

3 13.4/5 21.6/5 11.7/4 11.9/4
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SSTRESS from one iteration to the next. (Note we use ~b, that is, the square

root of [11]). We also present the number of iterations to convergence.
Evaluating an algorithm’s speed relative to another algorithm is a difficult

problem, as has been stressed by Spence [1972] and Lingoes and Roskam [1973].
Here the main source of difficulty is the fact that ALSCAL optimizes a
different function than any of the other routines, so it is difficult to ensure
that the various programs are obtaining equally precise solutions. We follow
the lead of Spencc and simply use the default termination values associated
with each program. While this does not get around the precision problem, it
does at least correspond to the likely state of affairs in the real world. In
Table 3 we present the CPU times required to analyze the Hayashi [1974] data
in two dimensions by ALSCAL, KYST and POLYCON, and the CPU times
required to analyze the Jones and Young [1972] data in three dimensions by
ALSCAL and INDSCAL. (KYST and POLYCON were both optimizing
Kruskal’s second STRESS formula whereas ALSCAL was not, which accounts
for the larger stress value obtained from ALSCAL.) We also present the
value of Kruskal’s first STRESS formula for comparison. (Note that none of

the programs optimized this formula but perhaps STRESS 2 is closer to
STRESS 1 than SSTRESS l.) Finally, we have also presented the last im-
provement in the function being optimized as a rough precision indicator.

We believe it is fair to conclude that ALSCAL is more efficient in terms of
computation time than other currently available programs.

We must admit that the relative speed of ALSCAL is a fortuitous rather
than an anticipated result. Perhaps the speed of ALSCAL is related to a fact
recently reported in the numerical analysis literature. There is a class of
algorithms, called nonlinear block successive overrelaxation algorithms
[Hageman & Porsching, 1975] which are very closely related to ALS al-
gorithms, and which are currently quite popular among numerical analysts.
These algorithms are like an ALS procedure in that they divide the estimation
problem into a series of conditional estimation problems (successive blocks),
each of which has an analytic solution. These algorithms differ from an ALS
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TABLE 3
Comparison of the efficiency of several scaling algorithms.

Program CPU Itera- STRESS STRESS Improve- Data
time tions 2 1 ment

ALSCAL 6.3 6 .h76 .251 .0001 Hayash±
(nominal)

ALSCAL 5.7 6 .476 .251 .0001 Hayashi
(ordinal)

KYST 15.1 16 .429 .211 .0001 Hayashi

POLYCON 56.8 25 .455 .225 .0001 Hayashi

ALSCAL 11.9 4 - .302 .0003 Jones & Young

(ratio)

INDSCAL 63.4 a 17 - - .0098 Jones & Young

(ratio)

aAnother run with a different random start took 73.5 CPU seconds.

procedure in that they do not go precisely to the minimum in each subproblem,
but overstep the minimum. The overstepping is referred to as overrelaxation.
It has been found that these procedures are fastest when the several sub-
problems involve approximately the same number of parameters. This
condition holds, roughly, in ALSCAL. It has been found with these procedures
that overrelaxation improves the efficiency of the algorithm. Thus we may
be able to further improve the efficiency of ALSCAL by this technique.
(We are currently looking into this possibility.)

Finally, it should be noted that the order in which the three conditional
minimization problems are solved is not very critical in terms of the parameter
values eventually obtained at convergence. Nor indeed does it appear that
the initialization procedure is very critical in this regard, although other
procedures may evidence more frequent incidents of local minima solutions
(which are seldom, if ever, obtained with the initialization used here). Further-
more, no matter how frequently we solve one of the subproblems relative to
another one (within reasonable limits, of course), we eventually obtain the

same estimates. Thus, the ALS approach is somewhat arbitrary in these
terms. However, it is the case that the speed of convergence is heavily affected,
and our particular choice of flow was strongly related to this concern. From
our experience ~vith ALS procedures, it seems that the most efficient procedure
i~,~ the one in which each subproblem is solved the same number of times in an
iteration. Thus, it is usually more efficient to solve each subproblem once per
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iteration than to solve for X, say, three times and the other aspects once.
This experience is probably closely related to the numerical analysis result
reported in the previous paragraph.

Local Minima

As was mentioned at the end of the section on computing coordinates
(Section 3), a theoretical difficulty was found to exist in the proposed method.
(This difficulty was first pointed out to us by Robert F. Baker, and was
independently noted by J. Douglas Carroll, to both of whom we owe our

gratitude.) In this section we discuss the issue fully, and propose a revised
procedure which is free from local minima problems. It should be emphasized
at this point that the theoretical problem appears to have no practical
consequences, as should be clear from the evaluation presented in Section 4.
Furthermore, the procedure to be proposed, while having a certain theoretical
beauty, is of unknown efficiency, and may prove to be less rapid than the
procedure evaluated above.

Recall that the function being minimized (43) is a quartic function,
and that its gradient (44) is a system of simultaneous cubic equations. Let
us simplify the situation by considering the form of the quartic equation
when there is only a single variable; i.e., for a single coordinate instead of
for all t coordinates of a point. Since SSTRESS can never have a value less
than zero, the quartic equation (which is SSTRESS) must always have 
positive value. This implies that it has at most two minima and one maximum
(is "W" shaped) and cannot have two maxima and one minimum (cannot
be "M" shaped). (We must say "at most" because it will not always be the
case that these minima and maxima will all be distinct.) If we now consider
the case of t coordinates varying simultaneously (as was done in Section 3),
we will come to the conclusion that there are at most a total of 3’ roots to
the system of simultaneous cubic equations forming the gradient of the
function. Geometrically, these 3’ roots correspond to a single maximum,

2’ minima (of which at least one is the overall minimum), and 3’ - 2’ - 
saddle points. The Gill and Murray variation of the Newton-Raphson
procedure which we use to locate the minimum is designed to avoid all saddle
points (and to avoid the maximum, of course), but it cannot distinguish
between the 2~ minima. It simply goes to the "nearest" one. This is the

theoretical problem with our procedure. In fact, in a technical sense, the
procedure we have proposed should not be called an alternating least squares
procedure, since we are not assured of always finding the conditional minimum
in each phase, which is the defining characteristic of such an ALS procedure.

If we consider exactly what happens to each coordinate, one at a time,
we can develop a modification of the proposed algorithm which is truly an
alternating least squares procedure. These are -two basic types of situations
which can occur in the solution of a single cubic equation in one variable.
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Type I:
Type Ia:

Type Ib:
Type Ic:
Type II:

The cubic eq,uation has three real roots.
All three roots are distinct.
Two of the roots are equal.
All three roots are equal.
The cubic equation has one real root and two imaginary roots.

(It is not possible for a cubic equation to have two real roots and one imaginary
root.) When all three roots are real and distinct (Type Ia), the cubic equation
can be written (in general form) (x - a)(~ - b)(x - c) = 0, a, b and c
are the roots and we can assume, for the sake of simplicity, that a < b < c.

In this case the minima of the quartic function will necessarily correspond
to roots a and c, i.e., to the smallest and largest roots (recall the W shape of
the quartic). When either a = b < c, or a ~ b = c (Type Ib), the cubic
equation can be written as either (x - c)(x -- 2 = 0 oras (x - a )( x - b 2

= 0. It can be shown in this case that the distinct root corresponds to the
minimum, and that the non-distinct roots correspond to a stationary point
which is neither a minimum nor a maximum, but a level (plateau) point.
In the case where a = b = c (Type Ic), t~e cubic equation can be written
(x - a)a = 0, and all three real roots correspond to the single minimum of

the (degenerate) quartic (which also has no other stationary points). Finally,
let us consider the case of one real and two imaginary roots (Type II). In this
case the cubic equation c~n be written (x - a)(x ~ "-i- 2dx ~- e) = 0, where

(d~ - e) < 0. (Note that when 2 - e = 0 wehave cas es Ib or Ic, and when
(d~ -- e) > 0 we have case Ia.) In this case the quartic function has only one

minimum and no oth.er stationary points, as in Type Ic. (The difference
between Types Ic and II is that in the former the quartic is symmetric,
whereas in the latter it is not.) Note that it is not possible to have a quartic
which has one minimum and two plateau points since the first derivative

of such a function is not cubic.
Based on the above analysis of the various types of situations which

can occur in the solution of a cubic equation, we notice that we need either
two or zero evaluations of the objective function to locate the global minimum.

For the Type Ia situation we need to evaluate only the smallest and largest
root, since the middle root corresponds to the maximum. For the Type Ib

situation we do not need to evaluate the function at all since the distinct
root will necessarily ~orrespond to the minimum. Similarly, for the Type Ic
and Type II situations we also do not need to evaluate the function since
there is only one minimum (for Type Ic we can select any root, and for Type II
we select the positiveroot).

If we wish to have a truely ALS procedure (which is in itself a debatable
point), we can, then, switch to a procedure which estimates coordinates one

at a time. In fact, this would probably not increase the computation time
since the computations in (44), (45) and (46) (which lead up to [47]) 
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time consuming that the computations involved in (47) or in the procedure
suggested here. We plan on investigating the efficiency of this new approach
in the near future.

It sounds as though the approach just discussed has no local minimum
problems, and is thus the first procedure for nonmetric multidimensional
scaling to guarantee obtaining the global minimum. Unfortunately, this is
not quite the case. While it is true that once the process is started there would

be no local minimum problems, it is.obviously the case that the final solution
point is dependent on the initial solution point. Thus, it is more accurate to
state that the solution obtained is the conditional global minimum, since it is
con.ditional on the values used to start the entire process, but is in every o~her

way free of local minimum problems. One now understands why such effort
is spent on obtaining a good starting point.

6. Conclusions

We conclude that ALSCAL is the first viable algorithm for nonmetric
individual differences multidimensional scaling.

ALSCAL is robust. As has been shown, ALSCAL can recover the true
underlying structure in the Monte Carlo situation, at least when the measure-
ment assumptions are appropriate and when there is not too much error

introduced into the data. Furthermore, ALSCAL obtains the same structure
as that obtained by other algorithms in those special cases for which algorithms
have been previously developed.

ALSCAL is flexible. Most of the currently popular individual differences
models and the widely used simple Euclidian model fall within the ALSCAL
framework, thus ALSCAL is flexible with regard to the models which can be
fitted to the data. Furthermore, ALSCAL is flexible with regard to the data
since essentially all of the commonly discussed types of data (and some types
not previously discussed) fall within ALSCAL’s province.

ALSCAL is rapid. While there are difficulties associated with evaluating
the rapidity of one algorithm relative to another, we tentatively conclude

that ALSCAL is more rapid than previously developed algorithms.
The viability of ALSCAL leads us to feel very encouraged about the two

keystones of our work, namely alternating least squares, and optimal scaling.

Our previous work [de Leeuw, Young & Takane, 1976; Young, de Leeuw &
Takane, 1976] has shown that these two keystones yield viable results with
linear models. The current work extends this viability to quadratic models.

Note that the viability of our research is not bought without cost.
Perhaps the main cost is that a separate, highly specific algorithm must be
constructed for each class of models, thus eliminating the possibility of
developing one very general algorithm for all situations.

An indirect cost associated with our work is that the alternating least
squares approach to solving least squares problems, namely dividing the
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problem into a series of simple subproblems, is only as simple as the simplest

subproblem. In our previous work with linear models each of the subproblems

was very simple. However, with the current work one of the subproblems, that

of obtaining the best coordinate values, was not very simple, and the resulting

Mgorithm is rather complex. Note that the derivation of the solution to a

subproblem, which must be strictly least squares, may sometimes be difficult,

as was the case here.

However, we believe that the costs of our approach are outweighed by
the benefits. We are confident that the alternating least squares and optimal

scaling keystones will provide a viable approach to other models in addition

to the linear and quadratic ones investigated so far.
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