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VITALY BERGELSON AND NEIL HINDMAN 

ABSTRACT. Applying ideas from topological dynamics in compact metric spaces 
to the Stone-Cech compactification of a discrete semigroup, several new proofs 
of old results and some new results in Ramsey Theory are obtained. In particu-
lar, two ultrafilter proofs of van der Waerden's Theorem are given. An ultrafilter 
approach to "central" sets (sets which are combinatorially rich) is developed. 
This enables us to show that for any partition of the positive integers one cell 
is both additively and multiplicatively central. Also, a fortuitous answer to a 
question of Ellis is obtained. 

1. INTRODUCTION 

Furstenberg and Weiss [13] proved a number of results in combinatorial par-
tition theory (Ramsey Theory) using recurrence theorems in compact metric 
spaces. These methods were utilized for many additional impressive results 
(See [11].) 

The current authors [1, 2, 3, and 17] have utilized this algebraic structure 
of fJ N , the Stone-tech compactification of the set N of positive integers, to 
obtain other results in Ramsey Theory. (These methods go back to the Galvin-
Glazer proof of the finite sum theorem.) When speaking about these results, 
we would very often be asked "Can you prove van der Waerden's Theorem in 
fJ N?" It was very annoying that the answer was "No," especially since van 
der Waerden's Theorem was needed for many of these results. The answer is 
changed by the current paper, in fact we present two very different proofs of 
van der Waerden's Theorem (or 2 + 1/2 if we count Theorem 2.10 as 1/2). 

The work here is heavily influenced by work of Furstenberg and Katznelson 
on a density version of the Hales-Jewett Theorem [12]. We adapt arguments 
originally used in the context of enveloping semigroups and apply them to fJ N . 
There are three main advantages to these adaptations. The first is that the re-
sulting arguments are actually simpler than the originals. The second is that 
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by departing from the metric situation we end up with results which are more 
widely applicable. The third is that, because p N has two natural algebraic 
structures which interact, we end up with significant strengthenings of old re-
sults. 

§2 is devoted to a proof of van der Waerden's Theorem based on that in [15] 
and an additional short proof of the three term version. We also answer an 
old question of Ellis in this section. §3 consists of an introduction to the main 
technique for the major results by way of another, and quite short, proof of van 
der Waerden's Theorem. In §4 we present the major results, generalizing results 
from [11] to a wide class of semigroups. In § 5 we derive several corollaries, 
showing in particular that there is always a member of any finite partition of N 
which is large in both a multiplicative and additive sense. We close in §6 with a 
proof that our notion of "central" agrees with that from [11] for any countable 
semigroup. 

Recall that an ultrafilter p on a set S is a set of subsets of S satisfying (i) 
o ~ p, (ii) S E p , (iii) A E P and A ~ B ~ S implies B E P , (iv) A E P and 
BEp implies AnBEp and (v) if rEN and S=A i UA2 U···UA r then some 
Ai E p. (In other words, an ultrafilter is a maximal filter.) Alternatively an 
ultrafilter p may be identified with a finitely additive {O, 1 }-valued measure 
J1.p on .9(S) . Thus the statements A E P and J1.p (A) = 1 are synonymous. 

Given a discrete set S the points of the Stone-tech compactification pS 
of S are taken as the ultrafilters on S. A point s in S is identified with the 
ultrafilter {A ~ S: sEA}. Given A ~ S, let A = {p E pS: A E p}. The set 
{A: A ~ S} forms a basis for the open sets (and a basis for the closed sets) of 
pS. If (S, +) is a semigroup the operation can be extended to pS making 
(PS, +) a compact left-topological semigroup (that is, for each pEPS the 
function Ap defined by Ap(q) = p + q is continuous). This extension has the 
additional property that for each XES the function Px defined by px(q) = 
q + x is continuous. The operation can be characterized by the fact that, given 
A ~ Sand p, q E P S, A E P + q if and only if {x E S: A - x E p} E q where 
A - x = {y E S: y + x E A}. (If the operation is written"·" we write A/x = 
{y E S: y . x E A}.) In any compact left-topological semigroup, idempotents 
exist [8, Corollary 2.10]. See [20 or 21] for an elementary derivation of these 
facts. 

Observe that, given any PEPS, p + pS is a right ideal which is compact. 
(Indeed, p + pS is the continuous image of pS under Ap.) Consequently 
one easily establishes via a routine Zorn's Lemma argument that any right ideal 
contains a minimal right ideal which is compact. We remark that not every right 
ideal is of the form p + pS. (For example, the smallest two-sided ideal of P N 
is not closed [16, Corollary 3.10].) On the other hand, any minimal right ideal 
R is representable in this form. Indeed if q E R, then q + pS ~ R + pS ~ R 
while q + pS is a right ideal so R = q + pS . 

We will need the following result. 
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1.1 Lemma. Let (S, +) be a discrete semigroup and let p E fJ S. Then p + fJ S 
is a minimal right ideal of fJS if and only if given any A <;;;; S. if there is some 
XES with A - x E P. then there is some finite F <;;;; S such that for all yES. 
(UxEFA-x)-yEp. 

Proof. [19, Corollary 3.3]. 0 

In fJ N , the distributive laws fail badly. However, a special case does hold. 

1.2 Lemma. Let P. q E fJ N and let x EN. Then (p + q) . x = p . x + q . x . 

Proof. Since both (p + q) . x and p . x + q . x are ultrafilters, it suffices to 
show (p + q) . x <;;;; p . x + q . x. Let A E (p + q) . x. Then A/x E P + q 
so B = {y E N: (A/x) - yEp} E q and hence B· x E q . x. We claim that 
B· x <;;;; {y EN: A - yEp' x} (so that A E p. x + q. x) . To this end let y E B· x 
and pick zEB with y=Z·X. Then (A/X)-zEp so ((A/x)-z)'XEP'X, 
Thus (A/x)'X-Z'XEP'X, Since (A/x)·x<;;;;A,wehave A-YEP'X as 
required. 0 

The first infinite cardinal is w = N u {O}. Given a cardinal A we will 
sometimes write [XJ" = {A <;;;; X: IAI = A} and [X]<A = {A <;;;; X: IAI < ),}. 

2. VAN DER WAERDEN'S THEOREM-

ApPROXIMATE SOLUTIONS TO EQUATIONS 

The first proof of van der Waerden's Theorem which we present is an adap-
tation of the proof in [15, §6.1]. (This proof was itself adapted from [13].) The 
proof there uses metric space properties strongly and fJ N is not metrizable 
(see [14, 14N]). We replace the notion of "closeness" by equivalence modulo a 
partition. 

2.1 Definition. Let [f be a finite partition of N and let p, q E fJ N. We 
write p ~ q (mod g') if and only if for some A E [f, A E P n q [i.e. p, q E A 
where A = {r E fJN: A E r}]. 

Also important to the proof in [15] is the notion of a minimal dynamical 
system. This notion is replaced by that of a minimal right ideal. The corre-
spondence here is not accidental. R is a minimal right ideal of fJ N if and 
only if R = p + fJN for all pER. (If pER and R is minimal then 
p + fJN <;;;; R + fJN <;;;; Rand p + fJN is a right ideal. If R = p + fJN for 
all pER and T <;;;; R is a right ideal then given pET, R = p + fJ N <;;;; 

T + fJ N <;;;; T <;;;; R .) Since a minimal right ideal R is a compact left topological 
semigroup, it has an idempotent p, which then satisfies R = p + fJ N. Also 
p + fJN = cl{p + n: n E N} a forward orbit closure under the transformation 
T(p) = p + 1. If p + fJ N is a minimal right ideal, then (p + fJ N, T) is a 
minimal dynamical system. 

We shall utilize the notion of p-limnENxn (introduced by Frolik in [10]). 

2.2 Definition. Let I be a set, X a topological space, (X)"Ei an indexed 
family in X and p an ultrafilter on I. We write p-lim"Ei x" = Z if and only if 
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Z E X and whenever U is a neighborhood of z one has {a E I: XU E U} E P . 
Observe that p-limuE1 xa must exist in a compact space and is unique in a 

Hausdorff space. 
The following lemma is well known in the context of metric dynamical sys-

tems. 

2.3 Lemma. Let R be a minimal right ideal of (fiN, +) and let g' be a finite 
partition of N. There exists kEN such that for any q, r E R there exists 
some t E {I , 2, ... , k} with q + t ~ r (mod g') . 

Proof. Suppose the assertion is wrong. Then for any n there exists qn' rn E R 
such that qn + t ¢ rn (mod g') for all t E {I, 2, ... , n}. Let p be any 
nonprincipal ultrafilter on N. Let q = p-limnEN qn and r = p-limnEN rn . 

Choose A E g' with A E r. Then A is a neighborhood of rand r E R = 
cl{q + n: n E N} so there exists to E N with q + to EA. Now p-limnEN qn = q 
and A - to E q so {n E N: A - to E qn} E p. Likewise p-limnEN rn = rand 
A E r so {n E N: A Ern} E p. We may thus choose n > to with A - to E qn 
and A E rn' But then 

qn + to ~ q + to ~ r ~ rn (mod g') , 

contradicting our supposition. D 

2.4 Lemma. Let R be a minimal right ideal of (fiN, +), let q E R, n E N 
and define q - n = {A - n: A E q}. Then q - n E R . 

Proof. It is routine to verify that q - n is an ultrafilter (using the fact that q 
is nonprincipal). Now q E R = q + fiN so pick r E fiN such that q = q + r. 
One easily sees that r E fi N \ N (since no congruence class mod (m + 1) could 
be in both q and q + m for mEN). Thus r - n E fiN \ N. Finally one 
routinely verifies that (q+r)-n=q+(r-n) so that q-nEq+fiN=R. D 

The current proof in fact provides something stronger than van der Waerden's 
Theorem; one is allowed to choose the increment from any prescribed set of 
finite sums. (This is not new. It is derivable from the Hales-Jewett theorem 
and is explicitly in [11].) For B ~ N, we write FS(B) = {EF: F is a finite 
nonempty subset of B}. Given d] , d2 E F S(B) we write d] -< d2 if whenever 
d] = EF] and d2 = EF2 with F], F2 ~ B one has maxF] < minF2 . 

The statements defined below depend on the right ideal R as well as on I. 
We suppress reference to R since it will remain fixed. 

2.5 Definition. Let IE NU{O} and let R be a minimal right ideal of (fiN, +). 
(a) S(l) is the statement: "for each finite partition g' of N and each 

infinite B ~ N there exist q E Rand d E F S(B) such that for each i E 
{O, 1, ... , I}, q ~ q + id (mod g') ." 

(b) T(l) is the statement: "for each finite partition g' of N, each infinite 
B ~ N, each S E R and each do E F S(B) there exist q E Rand d E F S(B) 
such that do -< d and for each i E {I, 2, ... , I}, s ~ q + id (mod g')." 
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The result we are after is that for all I S(I) holds. This is accomplished 
by the next two lemmas. In these, an e - c5 argument has been replaced by a 
mechanism for producing appropriately finer partitions. The use of the letters 
g' and g in these proofs is intended to be suggestive of this replacement. 

2.6 Lemma. Let lEN and let R be a minimal right ideal of (fJ N , +) , 

S(l- 1) ::;. T(l). 

Proof. Assume S(I - 1). Let g', B, s, and do be given as in the definition 
of T(I). Pick k as guaranteed by Lemma 2.3 for R and ~. Let g be the 
partition induced by {A - i: i E {a, 1, ... , k} and A E~}. Let B' = {x E 
B: x > do}' Since S(I - 1) holds, pick q' E Rand d E F S(B') such that for 
each iE{O, 1, ... ,I-l}, q'~q'+id (modg). By the choice of k,pick 
jE{I,2, ... ,k} such that q'+j~s (mod~). Let q=(q'-d)+j. 

Observe immediately that do -< d. Now let i E {I, 2, ... , I}. We need 
to show that s ~ q + id (mod ~). Now i-I E {O, 1, ... , I - I} so q' ~ 
q'+(i-l)d (mod g) so by the choice of gq'+j~q'+(i-l)d+j (mod~). 

That is q' + j~ q+id (mod~). Since q' + j ~ s (mod~) we have s ~ q+id 
(mod g') as required. 0 

2.7 Lemma. Let lEN and let R be a minimal right ideal of (fJ N , +) . 

T (I) ::;. S (I). 

Proof. Assume T(l). 
Given any finite partition ~ and any d in N, let g(~ , d) be the partition 

induced by {A - id: i E {O, 1, ... , I} and A E g'} . 
Let a partition ~ = g'o and infinite B ~ N be given and let n = I~I , the 

number of cells of ~. Pick qo E R arbitrarily. Using T(l) pick ql E Rand 
d 1 E FS(B) such that for each i E {I, 2, ... , I}, qo ~ ql +id1 (mod~). Let 
~ = g(~, d 1) • Again using T(l) pick q2 E Rand d2 E F S(B) with d 1 -< d2 
and so that for each i E {1 , 2, ... , I}, ql ~ q2 + id2 (mod ~) . 

Continuing in this way, we have for i E {I , 2, ... , l} : 

qo ~ ql + id1 (mod~) 

ql ~ q2 + id2 (mod~) 

qn ~ qn+l + idn+1 (mod~) 

where, for j E {a, 1, ... , n - I}, Sj+l = g(Sj, dj + 1). 

Since n = I~I , we pick by the pigeonhole principle some t, m with 1 ::s: t < 
m ::s: n+ 1 so that ql ~ qm (mod~). Let q = qm and d = dl+1 +dl+2 + .. +dm . 
Observe that since each d j _ 1 -< d j we have d E F S(B). To complete the proof 
let i E {I , 2, ... , I}. We need to show that q ~ q + id (mod ~) . 
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First qm-l ~ qm + idm (mod ,wm_l)' (If it happens that t = m - 1, we 
are done since then q = qm ~ qt = qm-l ~ qm + idm = q + id .). Now 
,wm-l = 9(,wm_2' dm- 1) so from qm-l ~ qm + idm (mod ,wm_l) we conclude 
qm-l +idm_ 1 ~ qm +idm + idm_ 1 (mod ,wm_2)' Since also qm-2 ~ qm-l +idm_ 1 
(mod ,wm-2) we have qm-2 ~ qm + i(dm + dm_ 1) (mod ,wm_2)' Continuing in 
this way we eventually get qt ~ qm + i(dm + dm_1 + ... + d1+ 1) (mod g;). Since 
g; refines ~ we have q=qm~qt~qm+i(dm+dm_l+···+dt+l)=q+id, 
with all congruences mod ~. 0 

2.8 Theorem. Let R be a minimal right ideal of (fJ N , +). For all I E 
N u {O}, S(l) holds. 

Proof. S(O) holds trivially so apply Lemmas 2.6 and 2.7. 0 

2.9 Corollary (van der Waerden). Let lEN, let B be an infinite subset of 
N and let ,w be a finite partition of N. There exist A E ,w, a EN, and 
dEFS(B) such that {a,a+d,oo.,a+ld}C;A. 

Proof. Let R be any minimal right ideal of (fJ N , +) and pick q ERas 
guaranteed by S(l). Pick A E ,w such that A E q. Then for each i E 
{O, 1, ... , I}, A - id E q so pick a E n;=o A - id. 0 

We now present an extremely short proof of the simplest nontrivial version 
of van der Waerden's Theorem. Unfortunately, as we shall see, this proof does 
not generalize in the obvious way to longer arithmetic progressions. Note that 
2p means 2· p in (fJN, .) and 2p is not in general equal to p + p. 

2.10 Theorem. Let p E fJ N with p = p + p. Then for each A E P + 2p, there 
exist a, dEN with {a, a + d, a + 2d} cA. 

Proof. By Lemma 1.2, 2· p = p . 2 = (p + p) . 2 = p . 2 + p . 2 = 2p + 2p . 
Also observe that, given r E fJ Nand B C; N, B E r + 2p if and only if 
{n EN; B - 2n E r} E p . 

Let A E P + 2p. Let B = {n: A - 2n E p} and C = {n: A - 2n E p + 2p} . 
Since A E P + 2p, B E P and since A E P + 2p = p + 2p + 2p, C E p. Pick 
nEB n C. Let D = {d: A - 2n - d E p} and E = {d: A - 2n - 2d E p} . 
Since A - 2n E p = P + p, D E p. Since A - 2n E p + 2p, E E p. Pick 
d E D n E. Then A - 2n E p, A - 2n - d E P , and A - 2n - 2d E p. Pick 
bE (A - 2n) n (A - 2n - d) n (A - 2n - 2d) and let a = b + 2n. 0 

Note that, in the above proof, since (A - 2n) n (A - 2n - d) n (A - 2n - 2d) E 
p = P + p, we can choose infinite G with FS(G) C; (A - 2n) n (A - 2n - d) n 
(A - 2n - 2d). (Here FS(G) = {"LH: H C; G and H is finite and H 1= 0}.) 
That is, the beginning of the arithmetic progression may be chosen as anyone 
of 2n + FS(G). 

By virtue of Theorem 2.10, one can approximately solve the equation r = 
r + p = r + 2p in fJ N \ N , with p an idempotent. (That is, given any finite 
partition .'7 of N one can find q E fJ N \ N and an idempotent p with 
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q ~ q + p ~ q + 2p (mod sr).) To see this, let p be an idempotent. Given sr , 
pick A E sr with A E P + 2p. Pick n as in the proof of Theorem 2.10 and let 
q = p+2n. Without much difficulty one can show that A E qn(q+p)n(q+2p) . 
(In general, if there exist q, p such that A E n;~ol (q + ip) then A contains a 
length n arithmetic progression.) 

If we could exactly solve the equation q + p = q + 2p , a proof similar to that 
of Theorem 2.10 shows that every member of q + p + 3p contains a 4 term 
arithmetic progression. We show now that this is impossible. (The question of 
which equations are solvable in P N also has some independent interest.) 

We remark that Theorem 2.10 sheds some light on the question of where 
triples "live." We have no such, even partial, characterization related to quadru-
ples. 

2.11 Theorem. Let q, PEP N. Then q + p =I- q + 2p . 

Proof. For each n EN, pick an E {O, 1,2, ... , 3n - I} such that {x E 
N: x == an (mod 3nn E q and let gn: {O, 1, 2, ... , n - I} -+ {O, 1, 2} such 
that an = LZ:6 gn(k) . 3k . (Thus gn gives the ternary representation of an .) 
Note that if m < n, then since {x E N: x == an (mod 3n)} n {x E N: x == am 
(mod 3mn =1= 0, we have gnlm = gm' Let g = U: 1 gn' Given any x E N 
pick hx: w -+ {O, 1, 2} so that x = L~o hx(k) . 3k (so that han1n = gn) . 

Given x E N if hx = g (which can happen at most once) let l(x) = 00. 

Otherwise, let l(x) = min{t E w: hx(t) =I- g(tn. For i E {O, 1, 2} let Ai = 
{x E N: /(x) < 00 and h)l(x)) = i} and let A3 = {x E N: l(x) = oo}. 
Suppose that q + p = q + 2p and pick i E {O, 1, 2, 3} such that Ai E q + p. 
Then {x EN: Ai - x E q} E P and {x EN: Ai - 2x E q} E P so pick x E N 
with Ai - x E q and Ai - 2x E q. Pick m such that x < 3m and pick 
y E {y E N: y == am (mod 3mnnAi-xnAi-2n. Let t = min{k E w: hx(k) =I-
O} and note that t < m and t = min{k E w: h2x (k) =I- O}. Now for some 
bE w, Y = b· 3m + L;~Ol g(k) . 3k . Thus l(y + x) = /(y + 2x) = t. But, as a 
simple consideration of cases on g(t) and hx(t) shows, hv+x(t) =I- hv+2x(t) , a 
contradiction. 0 . . 

We also observe that Theorem 2.11 provides a negative answer to a question 
of Ellis (in unpublished lecture notes). It is a fact [11, Proposition 2.6] that 
given a compact metric space X and continuous T: X -+ X , there exist x 
and sequence (nk)~l so that x = limk--><Xl Tnk(x) = limk--><Xl T 2nk(X). The 
question is whether a similar result must hold in any compact Hausdorff space. 
Since any infinite closed subset of P N contains a copy of P N [14, 6&6] no 
sequence in P N converges unless it is constant. Accordingly, we replace the 
notion of limk--><Xl Tnk(X) with the notion of p-limnEN Tn(x) (Definition 2.2). 

2.12 Corollary. Define T: pN -+ pN by T(p) = p + 1. Let p, q E PN. 
Then p-limnEN Tn(q) =I- p-limnEN T2n(q). 

Proof. We show here that p-limnEN T2n(q) = q + 2p (which is not q + p by 
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Theorem 2.11). Indeed,let AEq+2p. Let B={XEN:A-xEq} so that 
BE 2p and hence BI2 E p. Then BI2 ~ {n: T2n(q) E"A} so {n: T2n(q) E 
A} E P as required. 

Similarly q + p = p-limnEN Tn(q). 0 

3. A SHORT PROOF OF VAN DER WAERDEN'S THEOREM-

AN INTRODUCTION TO CENTRAL SETS 

The rest of the results of this paper are based on a simple construction of 
Furstenberg and Katznelson. Even though a strong version of van der Waerden's 
Theorem is one of the consequences of the general construction, we present 
a proof here to introduce the technique without some of the complications 
involved in the more general results. (Also, we believe this is the simplest proof 
of van der Waerden's Theorem to date.) 

The motivation for the term "central" comes from the definition and results 
of [11, Chapter 8]. For a discussion of the relationship between these notions 
see §6 . 

3.1 Definition. (a) Let T be a compact left-topological semigroup. A point 
pET is a minimal idempotent if and only if p is an idempotent and there is 
a minimal right ideal R with pER. 

(b) Let (S, +) be a discrete semigroup. A set A ~ S is central in S if 
and only if there is a minimal idempotent p of PS with A E P . 

Although we will not use this fact, it is worth noting that the union of all 
minimal right ideals of a compact left topological semigroup is a two-sided 
ideal which is the smallest two sided ideal. (See [26] or [5].) This ideal is 
customarily called the minimal ideal. Thus p is a minimal idempotent if and 
only if it is an idempotent in the minimal ideal. 

It is well known that the relation defined by q :::; p if and only if q = q + p = 
p + q is a partial order on the idempotents of T. (See [5].) It is also well 
known that an idempotent is in the minimal ideal if and only if it is minimal 
with respect to this order. Since this latter fact is important to us, and has an 
easy proof, we shall prove it. 

3.2 Lemma. Let (T, +) be a compact left-topological semigroup. 
(a) Let p be any idempotent of T. There is a minimal idempotent q of T 

with q :::; p. 
(b) Let p and q be idempotents of T with p minimal and q :::; p. Then 

q =p. 

Proof. (a) Since p + T is a right ideal of T it contains a minimal right ideal 
R which has an idempotent t. (Then R = t + T .) Let q = t + p and note that 
q E R. Since R ~ p + T , pick rET such that t = P + r. Then q = p + r + p . 
Now q+q = p+r+p+p+r+p = p+r+p+r+p = t+t+p = t+p = q so q 
is an idempotent. Also q + p = t + p + p = t + p = q and p + q = p + p + r + p = 
p + r + p = q so q :::; p . 
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(b) (Of course, had we defined "minimal" in terms of ::; this statement 
would be a complete triviality.) Pick a minimal right ideal R such that pER. 
Since q = p + q, q E R so q + T ~ R so q + T = R. Pick rET such that 
p = q + r. Then q = q + p = q + q + r = q + r = p. 0 

The proof of the following lemma is completely routine and we omit it. 

3.3 Lemma. Let T, and T2 be compact left topological semigroups. Then 
T, x T2 with the product topology and coordinatewise operations is a compact 
left topological semigroup. Further if x E T" Y E T2 , P x: T, -+ T, and 
P : T2 -+ T2 are continuous, then p(x }: T, x T2 -+ T, X T2 is continuous. Y .Y 

We are now ready to outline the general procedure which we will follow in 
this and the next section. We start with a fixed lEN and a discrete semi-
group S and let T = (pS)1 (which is by Lemma 3.3 a compact left topological 

. fi * *f I * semlgroup). One then de nes subsets E and J 0 (S) and lets E = clT E 
and J = clT J*. One then shows that E is a (necessarily compact) subsemi-
group of T, I is an ideal of E, and whenever p is it minimal idempotent 
of pS, then (p, P, ... , p) E E. Using Lemma 3.2 one shows that necessar-
ily (p, p, ... , p) E J. These essential steps (but in the context of enveloping 
semigroups) are all contained in the paper of Furstenberg and Katznelson [12]. 

We now display the definitions of E* and J* which are relevant for van der 
Waerden's Theorem (with the understanding that the definitions will become 
"inoperative" at the end of the section). 

3.4 Definition. Let lEN. 
(a) T = (pN)1 with addition as the operation. 
(b) E*={(a,a+d,a+2d, ... ,a+(/-1)d):aEN and dEW}. 
( c) J* = {(a, a + d, a + 2d , ... , a + (l - 1 )d): a, dEN} . 
(d) E = clTE* and J = clTJ*. 

3.5 Lemma. E is a compact left topological semigroup and J is a (two-sided) 
ideal of E. 

Proof. The topological conclusions are inherited from T. We let p = (p, ' P2' 

... , PI) and q = (q, ' q2' ... , ql) be in E and show that p + q E E. We 
show further that if either p or q is in J, then p + q E J. 

To this end let ~ x V2 X ... x ~ be a basic neighborhood of p + q. Pick, 
by left continuity a neighborhood U, x U2 X ... X UI of q such that p + (U, X 

U2 X ... x UI) ~ V, x V2 X ... x ~. Pick a E Nand dEW (with d > 0 if 
q E I) such that (a, a + d , ... , a + (/ - 1 )d) E U, x U2 X ... X UI and let 
x = (a, a + d, ... , a + (I - 1 )d). Then p + x E ~ x V; x ... x ~ and, by 
Lemma 3.2, P-; is continuous so pick a neighborhood W, x W2 X ... x Tf/ of P 
with W, x W2 X ... x Tf/ + x ~ ~ X V2 X ... x ~. Pick bEN and e E W (with 
e > 0 if P E I) such that (b, b + e, ... , b + (l - l)e) E W, X W2 X ... x Tf/ . 
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Let y (b, b + e, ... , b + (I - l)e). Then y + X E ~ x V; x . . . x J:j, 
y + x = (a + b, (a + b) + (d + e), ... , (a + b) + (1- l)(d + e)), and if either 
pEl or q E I , then d + e > 0 . 0 

3.6 Lemma. If p EPN and p = (p,p, ... ,p), then pEE. 

Proof. Let VI x V2 X ... X VI be a neighborhood of p . Then VI n V2 n ... n VI 
is a neighborhood of p so pick a E N n VI n V2 n· .. n VI . Then (a, a, ... , a) E 
(VI X V2 X ... X VI) n E*. 0 

3.7 Theorem. Let p be a minimal idempotent in pN and let p = (p, p, ... , 
p). Then pEl. 

Proof. We have by Lemma 3.6 that pEE so p is an idempotent in E. 
Pick by Lemma 3.2(a) a minimal idempotent q of E with q ~ p. Write 
q = (q\ ' q2' ... , ql) . Then q = q + P = p + q so for each i E {I, 2, ... , l} , 
qi = qi+P = P+qi so that by Lemma 3.2(b), qi = p. Thus q = P so that p is 
a minimal idempotent of E. Pick a minimal right ideal R of E with pER. 
Since I is a left ideal of E, I n R 1= 0. (Indeed, pick x E I and y E R . 
Then y + x E I n R .) Since I is a right ideal of E, and 0 1= I n R S; R, 
I n R = R. But then pEl as required. 0 

3.8 Corollary. Let A be a central set in N. Then A contains an I term 
arithmetic progression. In particular some element of any finite partition of N 
contains an I term arithmetic progression. 

Proof. Pick a minimal idempotent p in P N with A E p. Let p = (p , p , ... , 
p) .. Then pEl and A x A x ... x A is a neighborhood of p so pick a, dEN 
with (a, a + d, a + 2d, ... , a + (1- l)d) E A x A x ... x A. 0 

4. CENTRAL SETS IN SEMIGROUPS 

Using the methods from §3 we produce here a version of [11, Proposition 
9.21] which is applicable to a wide class of semigroups. For convenience, we 
give this class a name. 

4.1 Definition. A pre-natural semigroup is a triple (S, +, qJ) where (S, +) is 
a commutative semigroup and qJ is a homomorphism from (S, +) to (N, +) . 

Examples of pre-natural semigroups include (N, +, I), (N \ {I}, ., qJ) 
(where qJ(x) is the length of the prime factorization of x), and the non-
constant polynomials over any integral domain under multiplication (where 
qJ(P) = degree of Pl. Also, if (SI' +, qJ\) and (S2' +, qJ2) are pre-natural 
so is (S\ X S2' +, qJ) (where qJ(x, y) = qJI (x) + qJ2(y)). Finally observe that if 
(SI' +, qJI) is a pre-natural semigroup, (S2' +) is a commutative semigroup, 
and qJ2 is a homomorphism from S2 to S\, then (S2' +, qJ\ 0 qJ2) is a pre-
natural semigroup. Consequently, the Gaussian integers with norm greater than 
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1 from a pre-natural semigroup under multiplication, since II II is a homomor-
phism to (N \ {I}, .) . 

Note that, since ° 1- N, a pre-natural semigroup cannot have an identity, 
not even an idempotent. 

We have already defined F S(B) for B <; N and the same definition applies 
to any commutative semigroup. Given a sequence (Xn):1 in a commutative 
semigroup (S, +) we define analogously F S( (Xn):I) = {EnEF xn: F is a 
finite non empty subset of N}. (So, if (Xn):1 is one-to-one, FS((Xn):I) = 
FS({xn: nEN}).) 

4.2 Definition. A sequence (Xn):1 in a pre-natural semigroup (S, +, rp) is 
thin provided whenever m, r E N with m < rand t E OJ, if i :::; rp(Xm) , 
then i+1Irp(xr ). 

4.3 Lemma. Let (Xn):1 be a sequence in a pre-natural semigroup (S, +, rp). 
(a) There exists a sequence (Fm t::= 1 of pairwise disjoint finite nonempty 

subsets of N such that for all m, maxFm < minFm+1 and (EnEF Xn):=1 is 
m 

thin. 
(b) If (Xn):1 is thin and F is a finite nonempty subset of Nand 

ilrp(EmEF xm), then for each mE F, ilrp(xm)· 

Proof. (a) We construct the sequence (Fm):=1 inductively. Let FI = {I}. 
Given (F/:I' let t E OJ be the largest such that i :::; rp(EnEF xn). Choose by 

the pigeon hole principle a E {a, 1,2, ... , i+l} and a sub;et Fm+1 <; {n E 

N: n > maxFm} such that IFm+11 = i+1 and for each n E Fm+l , rp(xn) === a 
(modi+ I ). Then rp(EnEF xn)===O (modi+ l ) as required. 

m+! 
(b) For this one simply observes that if n < m and rp (xn) and rp (xm) are 

written in binary, their supports are disjoint and hence no carrying occurs when 
they are added. 

We need to modify the style of the construction of §3 somewhat by restricting 
ourselves to a semigroup of pS. 

4.4 Definition. Given a pre-natural semigroup (S, +, rp) and n EN, Xn = 
{x E S: 2nlrp(x)}. 

Observe that, as a consequence of the existence of thin sequences (Lemma 
4.3(a)) each Xn # 0. 

The following lemma is well known, although we have not found an explicit 
statement in the literature. 

4.5 Lemma. Let (S, +) be a commutative discrete semigroup and let p E 

pS with p + p = p. Given any A E P there is a sequence (Xn):1 with 
FS((Xn):I) <; A. 

Proof. Galvin's original argument presented in [18, Theorem 3.3] applies. 0 
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4.6 Lemma. Let (S, +, rp) be a pre-natural semigroup and let n be an arbi-
trary member of N. Then X n is a (compact) subsemigroup of p S. Further 
each idempotent of pS is in X n . 

Proof. Let p, q E X n . To see that Xn E p+q, we show Xn ~ {x E S: Xn -x E 
p}. To this end, let x E Xn . We claim Xn ~ Xn - x. Let Y E Xn . Then 
rp(y + x) = rp(y) + rp(X) , 2nlrp(y) , and 2nlrp(x) so 2nlrp(y + x) as required. 

Now let PEPS with p + p = p . 
Suppose Xn 1:- p. Then S \ Xn E p so pick a sequence (Xm):'=l with 

FS((Xm):'=I) ~ S \ Xn . As in the proof of Lemma 4.3, pick F ~ N such that 
2nlrp2:mEFxm)' Then 2:mEFxm E FS((Xm):'=I) nxn , a contradiction. 0 

As in §3 we make a local definition of E*, /*, E, and /, to remain in 
effect through Theorem 4.11. (Also, as in §3, the notation does not express the 
dependence on I, the choice of (S, +, rp) , and the choice of (Y i , n):;': I .) 

4.7 Definition. Let lEN, let (S, +, rp) be a pre-natural semigroup, and for 
each iE{I,2, ... ,l},let (Yi,n):;':l be a sequence in S such that (Yl,n):;':l 
is thin. 

(a) T = (pS)I+1 . 
(b) /* = {(a, a + 2:nEF YI ,n' a + 2:nEF Y2,n' ... , a + 2:nEF YI,n): F IS a 

finite nonempty subset of N and a E S} . 
( c) E* = /* U {( a, a, ... , a): a E S} . 
(d) / = n:;':l clT(X~+1 n /*). 
(e) E = n:;':l clT(X~+1 n E*) . 

Unlike the situation in §3, it is no longer obvious that / =I- 0. 

4.8 Lemma. / =I- 0. 

Proof. Since T is compact and / = n:;':l clT(X~+1 n /*), it suffices to let 
n E N and show X~+l n /* =I- 0. (Note that each Xn+l ~ Xn .) Pick 
a E X n . It is enough to produce finite non empty F ~ N such that for each 
i E {I, 2, ... , l}, 2nlrp(2:mEFYi,m)' For then 2nlrp(a + 2:mEF Yi,m) so that 
(a, a + 2:mEF Yl ,m' a E 2:mEF Y2,m' ... , a + 2:mEF YI,m) E (Xn/+ l n /* . 

We show this can be done by induction on I. If 1= 1, since (Yl,m):'=l is 
thin, F = {n + I} will do the job. Assume I > 1 and, applying the induction 
hypotheses in times, produce pairwise disjoint (~)~~nl such that for each 
tE{I,2, ... ,22n } and each iE{I,2, ... ,I-l}, 2nlrp(2:mEF,Yi,m)' Choose 
by the pigeonhole principle, G ~ {I, 2, ., . , 22n} with IGI = 2n and for t, 
sEG, (2:mEF,YI,m)=rp(2:mEf~YI,m) (mod2 n ). Let F=UtEGFt . 0 

4.9 Lemma. E is a compact left topological semigroup and / is an ideal of 
E. 

Proof. Let p = (po' PI'"'' PI) and q = (qo' ql'"'' ql) be in E. We show 
that p + q E E and, if p or q is in /, then p + q E /. For notational 
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convenience we agree that a + LnE0 Xn = a for any a E S and any sequence 
(Xn):1 in S. 

-;. --+ 1+1 * . ----+ --+.. Let sEN. We show p + q E clT(Xs n E ) and, If p or q IS III I then 
............ '+1 * P + q E clT(Xs n I ). Let Va x VI X ... x J.! be a basic neighborhood of 
p + q. Pick by left continuity a neighborhood Uo x UI X ... x U, of q such 
that p + (Uo X UI X ... x U,) ~ Va x ~ x ... x J.!. Pick a E S and a finite subset 
F of N (with F=I=0 ifqEI) sllchthat (a,a+LnEFYI,n' a+LnEF Y2,1l' 

'" 1+1...... '" "', a+ L..JnEFY"n) E (Uo X UI x··· x U,)nXs . Let x = (a, a+ L..JnEFYI,n' 
a+LnEF Y2,n' ,." a+LnEFY"n)' Let m=maxF (or m= 1 if F=0) and 
let t be the largest integer with i ~ qJ (y I . m) and let r = t + 1 . By continuity of 
p;,pickaneighborhood WoxWlx .. ·xWf ofp with (WoxWlx."xWf)+x~ 
Va x ~ x ... x J.!. Since p E clT(X;+1 n E*) , pick b E S and a finite subset 
G of N (with G =1= 0 if PEl) such that (b, b + LnEGYI,n' b + L nEG Y2,n' 
... , b + LnEGY"n) E Wo X WI X ... x Wf and such that b E Xr and for 
each i E {I, 2, ... , I}, b + LnEGYi,n E Xr . Let y = (b, b + LnEGYI,n' 
b '" b '" ...... ...... '+1 +L..JnEGY2,n' ... , +L..JnEGYI,n)·Then Y+XE(VoXVlx···xJ.!)nXs • 

It suffices to show F n G = 0. For then, letting H = F u G, Y + x = (b + a, 
b+a+LnEHYI,n' b+a+LnEHY2,n' ... , b+a+LnEHY"n) and if either 
F =1= 0 or G =1= 0 , then H =1= 0 . 

To this end, we may assume F =1= 0 and G =1= 0. Now 2r[qJ(b) and 
2r[qJ(b+LnEGYI ,n) so 2r[qJ(LnEGY I.n)· Let k = min G. Then, since (YI.n):1 
is a thin sequence 2r[qJ(Y I ,k) by Lemma 4.3(b). Since 2r > qJ(Y I, m) we have 
max F = m < k = min G. 0 

4.10 Lemma. Let PEPS with p+p=p and let P=(p,p, ... ,p). Then 
pEE. If p is minimal in pS, then pEl. 

Proof. Let n E N and let Uo x UI X ... X UI be a neighborhood of p. Then 
Uo n U I n ... n U, is a neighborhood of p while, by Lemma 4.6 p E X n' Let 

'+1 * a E uonuln·· ·nu,nxn . Then (a, a, ... , a) E (UOxUI x· ··xU,)n(Xn nE). 
The proof the second assertion is identical to the proof of Lemma 3.7. 0 

The following theorem, the major result of this section, corresponds to Propo-
sition 8.21 of [11] (except in one detail-see Theorem 4.12). 

4.11 Theorem. Let lEN, let (S, +, qJ) be a pre-natural semigroup, and for 
each i E {I, 2, ... ,l}, let (Y i n):1 be a sequence in S. Let A be a cen-
tral set in S. There exist a sequence (an):1 in S and a sequence (Hn):1 
of pairwise disjoint finite nonempty subsets of N such that, whenever F is 
a finite non empty subset of N one has (LnEF an' LnEF (an + LmEHn Y I. m) , 

LnEF(an + LmElln Y2.m)' ... , LnEF(an + LmElln YI.m)) E AI+I . 
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Proof. It suffices to prove the theorem under the additional assumption that 
(Y"n):ol is a thin sequence. (For then, choose a sequence by Lemma 4.3(a) 
(Fn):, such that (L:mEFnY"m):, is thin and let for each i and n, Y;,n = 
L:mEF Yi m' Given (an):, and (H~):, working for (y; n):, we let Hn = 

UrEH~ Fl" Then an + L:mEHn Yi,n = an + L:IEH~ L:mEF, Yi,m'= an + L:IEH~ Y;,I') 
Accordingly we do assume that (Y, n):, is a thin sequence. 

Let T, 1* , E* , I, and E be as i~ Definition 4.7. Pick a minimal idempotent 
PEPS with AEP and let P=(p,P, ... ,p). By Lemma 4.10, pEl. 

Let A, = A. Since A, E p, we have (A,/+' is a neighborhood of p = 
---+ ---+ • ••• -+ • -+ - 1+1 P + p . PIck by left contmUlty a neIghborhood U, of p wIth p + U, ~ (A,) . 
Pick B, Ep with (B,/+' ~ U, and B, ~A,. Then (B,/+'n/* =1-0 so pick 
x, E (B, /+' n 1* and pick a, E S and finite nonempty H, ~ N such that 
x, = (a" a, + L:mEHI Y" m' ... , an + L:mEHI YI, m)' Let t, be the largest 

I ---> ---> - 1+' integer such that 2! ~ cp(a, + L:mEH Y, m)' Since p + x, E (A,) and p-
I ' XI 

i~ continuous, pick a neighborhood ~ of p with ~ + x, C (A, /+'. Pick 
- 1+' A2 E P with A2 ~ X II +, n B, and (A 2) ~ V\ . 

At step n of the induction, having chosen An' Bn_, , X n-" an_, , Un_" 
Vn _" Hn_, and tn_" we proceed in an identical fashion. That is, we have 
- 1+1 -+ --+ -+ --+ (An) is a neighborhood of p = p + p so we pick a neighborhood Un of p 

---> - 1+' - 1+' with p + Un ~ (An) . We pick Bn E p with (Bn) ~ Un and Bn ~ An' 
We pick xn E (Bj+' n 1* and choose an E S and finite nonempty Hn ~ N 

with xn = (an' an+L:mEHnY"n' ... , an+L:mEHnYI,m)' We let tn be the 
largest integer with in ~ cp(an + L:mEHn Y, ,m)' By the continuity of p-; we 

pick a neighborhood Vn of p with Vn + X n ~ (An)I+' and we pick An+: E p 
--1+' with An+, ~ XI +, n Bn and (An+,) ~ Vn · 

Observe that n max Hn_, < min Hn' Indeed, let k = max Hn_, and let t = 
tn_I' Now 

---> (B )1+' C (X )1+' 
X n E n - 1+' . 

Thus i+'lcp(an) and i+'lcp(an + L:mEHJ, ,m) so i+'lcp(L:mEHn Y, ,m)' Thus, 
by Lemma 4.3(b) for each mE Hn i+'ICP(Y"m)' Since 

i+' > cp (an_, + L Y, ,m) > cp(Y, ,k) 
mEHn_1 

we have k < min Hn as required. 
We finish the proof by showing that (an):, and (Hn):, satisfy the conclu-

sion of the theorem. For this we show by induction on IFI, that if r = min F , 
---> 1+' ---> ---> 1+' 1+' then L:nEF x n E (Ar) . If IFI = 1, then L:nEF x n = X r E (Br) ~ (Ar) . 
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Assume IFI > 1, let r = minF, let G = F \ {r}, and let s = minG. Then 
2:nEG X n E (As)I+1 by our inductive hypothesis. Since As ~ As_I C ... C 

-> 1+1 -> - 1+1 Ar+1 ' we have 2:nEG x n E (A r+l ) ~ ~. Since ~ + x r ~ (Ar) we have 
'" -> -> 1+1 . 
~nEG X n + X r E (Ar) as reqUIred. 0 

Proposition 8.21 of [11] is stronger than the case of Theorem 4.11 with S = N 
since the sequences are allowed to come from Z. We indicate now how to 
obtain this result by our methods (and for our version of "central" sets). 

4.12 Theorem. Let lEN and for each i E {I, 2, ... ,l} let (Yi n) be a 
sequence in Z. Let A be a central set in N. There exist a sequenc~ (an):1 
in N and a sequence (Hn):1 of pairwise disjoint finite nonempty subsets of 
N such that, whenever F is a finite nonempty subset of N one has (2:nEF an ' 
2:nEF (an + 2:mEH YI m)' ... , 2:nEF (an + 2:mEH YI m)) E AI+I . 

n ' n ' 

Proof. We can presume that whenever 2n ~ IY 1 ,ml, then 2n+IIYI,m+1 and that 
all terms of (y I, m):= 1 have the same sign. (That is essentially that (y I, m) :=1 is 
"thin.") We now define T = (f3N)I+1 , [* = {(a, a+ 2:nEF YI, n' a+ 2:nEF Y2, n ' 
... , a + 2:nEF YI, n): a EN, F is a finite nonempty subset of N, and for each 
i E {I, 2, ... , I}, a + 2:nEF Yi ,n E N}, E* = [* U {(a, a, ... , a): a E N}, 
[ = n: 1 clT ((N2n)I+1 n [*) and E = (n: 1 clT ((N2n)I+1 n E*). To see, for 
example, that [* n N2n =f. 0, one gets, as in Lemma 4.8, F ~ N such that for 
each i E {I , 2, ... , l}, 2n l2:mEF Y" m . One then picks a such that 2n la and 
for each i, a + 2:mEF Y" m > O. No major adjustments are required for the 
rest of the proof. 0 

It would be nicer if, for example, (N, .) were a pre-natural semigroup (or if 
the set of all nonzero polynomials over an integral domain were a pre-natural 
semigroup under multiplication). We conclude this section with two corollaries 
to Theorem 4.11 which do allow us to work with such semigroups which are 
almost pre-natural. 

4.13 Corollary. Let (S, +) be a commutative semigroup and assume that there 
exist J ~ Sand (jJ: J -+ N so that (J, +, (jJ) is a pre-natural semigroup 
and J is an ideal of S. Let lEN and for each i E {I, 2, ... ,l} let 
(y. \ be a sequence in J. Let A be a central set in S. There exist a se-

I, n l 

quence (an):1 in J and a sequence (Hn):1 of pairwise disjointfinite nonempty 
subsets of N such that, whenever F is a finite nonempty subset of N 
one has (2:nEFan' 2:nEF (an + 2:mEHJI,m), 2:nEF (an + 2:mEHJ2,m) , ... , 
'" '" 1+1 ~nEF(an + ~mEH YI m)) EA. 

n ' 

Proof. By Theorem 4.11, it is enough to show that A n J is central in J. To 
this end pick a minimal right ideal R of f3S and pER with p + p = p such 
that A E p. Define r:] -+ f3J by r(q) = {B n J: B E q}. It is routine to 
verify that r is an isomorphism and a homeomorphism. It thus suffices to show 
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that R is a minimal right ideal of J. (For then r[R] is a minimal ideal of 
pJ, r(p) is an idempotent in r[R], and An J E r(p).) 

We claim that J is an ideal of pS. To see this, let q E pS and r E J. 
Then S = {x E S: J - x E r} so J E r + q while J ~ {x E S: J - x E q} so 
JEq+r. 

Since J is an ideal and R is a right ideal, J n R =I- 0 and hence J n R is 
a right ideal of J. Pick a minimal right ideal R* of J with R* ~ J n R. By 
[4, 11.1.8] R* is a right ideal of pS and hence R* = R so R ~ J and R is a 
minimal right ideal of J as required. 0 

Our last corollary applies to any pre-natural semigroup with an identity 
adjoined-most conspicuously to (N, .). It allows exactly the same conclusion 
as Theorem 4.11 with only the additional assumption that our hypothesized 
sequences are one-to-one. 

4.14 Corollary. Let (S, +) be a commutative semigroup and assume that there 
exist J ~ Sand rp: J ~ N so that (J, +, rp) is a pre-natural semigroup, J is 
an ideal of S, and IS \ JI < w. Let lEN and for each i E {I, 2, .,. , I}, let 
(Yi,n):' be a one-to-one sequence in S. Let A be a central set in S. There 
exist a sequence (an):, in J and a sequence (Hn ):, ofpairwise disjoint finite 
nonempty subsets of N such that, whenever F is a finite nonempty subset of N 
one has CI:'nEF an' LnEF(an + LmEH y, m)' LnEF(an + LmEH Y2 m), ... , 

n ' n ' 

LnEF(an + LmEH y, m)) E A'+' . 
n ' 

Proof. There is some kEN such that for each i E {I , 2, ... , l}, (Yi, n):k 
is a sequence in J so Corollary 4.13 applies. 0 

5. PROPERTIES OF CENTRAL SETS 

We derive here some consequences of Theorem 4.11. We first observe that 
an analogue of van der Waerden's Theorem holds in any pre-natural semigroup 
S. Defining for XES and n EN, nx as usual to be x + x + ... + x 
(n times) one has that any central set A ~ S has, for each lEN, some 
a, dES with {a, a + d, .. , , a + Id} ~ A. (We remind the reader that 
trivially any finite partition of S contains at least one central set.) Indeed let 
(xn):, be any sequence in S and for i E {I, 2, ... ,I}, let Yi,n = ixn . Pick 
(an):, and (Hn):l as guaranteed by Theorem 4.11. Let any finite nonempty 
subset F of N be given, let a = LnEF an and d = LnEF LmEHn x m ' Then 
{a, a + d, ... , a + Id} ~ A. In the case of (N \ {I}, .), this yields arbitrarily 
long geometric progressions with common ratio chosen from any pre-designated 
FP((xn ):,) lying in any central set. 

~ 

Given any mEN, (wm \ {O}, +, rp), where rp(a" a2 ,· .. ,am) = L;:, ai' 
is a pre-natural semigroup. Using this fact we obtain an m-dimensional version 
of van der Waerden's Theorem due to Grunwald (in [25]). For example, with 
m = 2 let 1=8 and for each n E N let x',n = (n, 0), x 2 ,n = (2n, 0), 
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X3 ,n = (0, n)x4 ,n = (0, 2n), XS,n = (n, n), X6 ,n = (n, 2n), X7 ,n = (2n, n), 
and Xg,n = (2n, 2n). Then applying Theorem 4.11 we get that each central set 
in w2 \ {(O, O)} contains a lattice as drawn: 

(a, b+2d) (a+d, b+2d) (a+2d, b+2d) 

(a, b + d) (a + d, b + d) (a + 2d , b + d) 

(a , b) (a + d , b) (a + 2d , b) 

Likewise using I = 15, one gets 4 x 4 lattices and so on, (Of course Theorem 
4.11 applied here says more. It yields a system of lattices and all of their sums.) 

We now turn our attention to deriving a version of Deuber's (m, p, c)-sets 
Theorem ([6], or see [15, §3.3]). The (m, p, c)-sets are of interest because, 
given an r x s matrix A with integer coefficients the following statements are 
equivalent: 

(1) Whenever gr is a finite partition of N there exist B E gr and x E BS 

such that Ax = (). (That is, the system Ax = () is partition regular.) 
(2) There exist m, p, c E N such that, given any (m, p, c)-set B there 

-> 

exists x E BS with Ax = ° . 
Our proof was suggested in the last paragraph of [11, Chapter 8]. 
The definition of (m, p, c)-set which we give below differs from that in [6 

and 15] (and for that matter from [1]) in two respects. A trivial difference, for 
our notational convenience, is to require the coefficient c last rather than first. 
The other difference is that we restrict the coefficients to {I, 2, ... , p} rather 
than to {-p, -p, + 1, .,. , p - 1, p}. We shall point out after the definition 
why this difference is not substantive. The reason for using the different restric-
tions is that we want to consider the possibility of extending the (m, p, c)-set 
Theorem to arbitrary pre-natural semigroups, in which case -Ix and -2x may 
not make sense. (It will turn out not to be possible to adapt our proof, but we 
want this impossibility to be for substantive reasons.) 

5.1 Definition. Let m,p, c EN and let x E N m , then S(m,p, c, x) = 

{cxl}U{2.:::7=lAiXi+CXk+l:kE{1,2, ... ,m-l} and for each i, Ai E{1,2, 
... , p}}. 

We show that any central set in (N, +) contains for each m, p, c some 
S(m, p, c, x). If S' (m, p, c, x) is defined as above except that each Ai E 
{ -p, -p + 1, ... , p - 1 , p} the corresponding result follows from the fol-
lowing simple fact: Given m, p, c and x, let p* = (c + 1)(1 + p)m-l and 
for i E {1, 2, ... , m} let Yi = 2.::::=1(1 + p),-tXt . Thel' S'(m, p, c, y) t:;; 
S(m, p* , c, x). Thus given a central set A, one finds x with S(m, p* , c, x) 
t:;; A and concludes S' (m, p, c, y) t:;; A . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



310 VITALY BERG ELSON AND NEIL HINDMAN 

5.2 Theorem. Let A be a central set in (N, +) and let m, p, c EN. For each 
i E {I, 2, ... , m}, there exists a sequence (Xi, n): I such that for any finite 

nonempty subset F of N, S(m, p, c, x F) <;;; A, where x F = (~nEF xI,n' 
~nEFx2,n' ... , ~nEFxm,n)' 

Proof. Pick a minimal idempotent q with A E q. Note that, as in the proof of 
Lemma 4.6, Nn E q for each n. We prove the theorem by induction on m. 
For m = 1, since q+q = q and AnNc E q, pick by Lemma 4.5, some sequence 
(YI,n):1 with FS((YI,n):I) <;;;AnNc. For each n let xI,n =YI,n/e. Then 
given F, S(I, p, e, XF) = {e~nEFxI,n} = {~nEFYI,n} <;;; A. 

Now let m, p, e EN be given. We assume the theorem is valid for (m, p, c) 
and show it holds for (m+l, p, c). Foreach i E {I, 2, ... , m} pick (Xi,J:I 

such that S(m, p, e, X F) <;;; A for each finite nonempty F <;;; N. We apply 
Theorem 4.11 with I = pm . For each A: {I , 2, .,. , m} -> {I , 2, ... , p} , and 
each n EN, define y, = ~~I AX. . Since AnNe is a central set, pick A,n L-,;l_ I l,n 

a sequence (an):1 in N and a sequence (Hn):1 of pairwise disjoint finite 
nonempty subsets of N such that whenever F is a finite non empty subset of N 
one has ~nEF an E AnNe and, for each A: {1 , 2, ... , m} -> {I , 2, ... , p} , 
~nEF(an + ~IEHn Y;.) E AnNe. For each i E {I, 2, ... , m} and each n E N 

let zi,n=~IEHnxi,1 and let zm+l,n=an/e. 

Let F be a finite nonempty subset of N. We claim S(m+ 1, p, e, -; F) <;;; A. 
Let G = UnEF Hn' Now 

e'LzI,n=e'LLxI,1 
nEF nEF IEHn 

= e· LXI,I ES(m,p, e, xG) <;;; A. 
lEG 

Likewise if k E {I, 2, ... , m - I} and for each i E {I, 2, ... , k}, Ai E 
k k 

{I, 2, ... , p}, then ~i=1 Ai'~nEF zi,n+e'~nEF zk+l,n = ~i=1 Ai'~IEGXi,l+ 

e· ~IEG X k + l , 1 E S(m, p, c, x G) <;;; A. Finally let 
A: {I, 2, ... , m} -> {I, 2, ... , p} 

and consider d=~;:IA(~nEFzi,n+e'~nEFzm+l,n' Then e'~nEFzm+l,n = 

~nEF eZm+1 ,n = ~nEF an' Also ~;:I Ai' ~nEF zi,n = ~;:I Ai ~nEF ~IEHn Xi,1 

= ~;:I ~nEF ~IEHn AiXi , 1 = ~nEF ~IEHn ~;:I AiXi , I = ~nEF ~IEHn Yu . 
Thus d = ~nEF(an + ~IEH Y;. I) EA. 0 

n ' 

We note that Theorem 5.2 does not generalize to arbitrary pre-natural semi-
groups. Our definition of S(m, p, e, x) makes sense in any semigroup. 
However as a consequence of Theorem 5.3, {{X2: X E N and X > I}, 
N \ {X2: X E N}} is a partition of N \ {1} whose only multiplicatively central 
set is N\ {X2: X E N} which trivially cannot contain the multiplicative version 
of any S(m, p, 2, x) . 
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5.3 Theorem. The set {X2: x E N and x> I} is not central in (N \ {I}, .). 

Proof. Let A = {x2: x E N and x > I} and suppose that A is central in 
(N \ { 1 } , .). Pick a minimal right ideal R of P (N \ { I}) and pick q E R such 
that q. q = q and A E q. Let S = N \ {I}. Then q. pS S;; R . pS S;; R 
so q. p S = R. Since A E q = q . q, {x E S: A/x E q} E q and is hence 
nonempty. Thus, by Lemma 1.1, there is some finite F S;; S such that for 
all YES, (UXEFA/x)/yEq. Pick nEN with FS;;{2,3,4, ... ,n} and 
pick a prime p > n. Now (U XEF A/x)/p E q and (UXEF A/x)/p2 E q so 
pick z E ((UxEF A/x)/p) n ((U xEF A/X)/p2). Then for some x and y in F 
zpx E A and z/y EA. Then x and y have no factors of p. Thus, since 
zpx E A, z has an odd number of factors of p while since zp2y E A, z has 
an even number of factors of p, a contradiction. 0 

One of the major combinatorial advantages of working with P N is the ex-
istence of two interacting operations. We see here that this interaction applies 
also to central sets. 

5.4 Theorem. Let M = cl{p: p is a minimal idempotent in (P N, +)}. Then 
M is a right ideal of (PN, .). 

Proof. Let q EM, let r E PN, and let A E q . r. We need to show there is 
some minimal idempotent of (PN, +) in A. Now {x E N: A/x E q} E r so 
pick x E N with A/x E q. Since q EM, pick a minimal idempotent p of 
(PN, +) with A/x E p. Then A E p·x. Also by Lemma 1.2, p·x+p·x = p·x. 

To complete the proof we need to show that p. x is minimal, that is that p. x 
is in some minimal right ideal of (P N, +). Since p·x = p·x+p·x E p·x+ pN , 
it suffices to show p. x + P N is a minimal right ideal. 

Now p is in some minimal right ideal Rand p + P N S;; R + P N S;; R so 
p + pN = R. To see that p. x + pN is a minimal right ideal we use Lemma 
1.1. Let B S;; N and assume there is some n E N with B - n E p . x. We need 
to produce a finite F S;; N such that for each YEN, (U~EF B - z) - yEp· x . 

Pick nEN with B-nEp,x and pick iE{O, I, ... ,x-l} such that 
n+iENx. Then (B+i)-(n+i)=B-nEp·x so (B+i)/x-(n+i)/xEP. 
(Recall that (B + i)/x = {y E N: yx E B + i} = {z/x: z E (B + i) n Nx}.) 

Let C = (B + i)/x. Since C - (n + i)/x E p, pick by Lemma 1.1, finite 
F S;; N such that for all YEN, (U zEF C - z) - yEp. Pick kEN with 
F S;; {I , 2, . " , k} and let G = {I, 2, ... , (k + 1) . x}. We claim that for 
each YEN, (UzEG B - z) - yEp' x. To this end, let YEN and pick 
a E N such that (a - I)x ~ Y < ax. Then (UzEFC - z) - a E p and 
(U~EF C - z) - a = U~EF C - (a + z) so pick t E F with C - (a + t) E p. 
Then Cx - (a + t)x E P . x. Now Cx - (a + t)x S;; B + i-ax - tx so 
B + i-ax - tx E P . x. Pick s E {I , 2, ... , x} such that ax = y + s. Then 
B+i-ax-tx = (B-(tx-i+s))-y S;; (U- B-z)-y so (U- B-z)-y E _EG .EG 
P . x as required. 0 
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5.5 Corollary. Let g- be a finite partition of N. There is some A E g-
which is central in (N, +) and in (N, .). In particular, there is one cell of g-
satisfying both the multiplicative and additive versions of Theorem 4.11. 

Proof. Let M = cl {p: p is a minimal idempotent in (fi N, +)}. By Theorem 
5.4 M is a right ideal in (fi N , .) so, by Zorn's Lemma pick a minimal right 
ideal R <;;:: M. By [S, Corollary 2.10], pick an idempotent q = q . q in R. Pick 
A E g- with A E q. Since q is a minimal idempotent in (fi N , ·)A is central 
in (N, .). Since A E q and q EM, there is some minimal idempotent p in 
(fiN,+) with AEp. Thus A is central in (N,+). D 

In [1] we established the existence of a "combinatorially large"ultrafilter in 
fi N , deducing that some cell of any finite partition of N satisfies a long list 
of combinatorial statements. We show here, in Theorem 5.6, that we may 
choose a combinatorially large ultrafilter such that each member of q is central 
in (N, +) and in (N,·). We thus add both the additive and multiplicative 
versions of Theorem 4.11 to our list of combinatorial conclusions about one 
cell of a partition. 

It would take us too far afield to include all of the definitions from [1]. The 
reader who wants to follow the proof of Theorem 5.6 will need to have a copy 
of [1] available. 

5.6 Theorem. There is a combinatorially large ultrafilter q such that q is a 
minimal idempotent in (fiN, .) and each member of q is central in (N, +). 

Proof. Let M be as in Theorem 5.4 and let M PC, LF S, Ll, Lli ' Llm and U 
be as defined in [1]. We need to show there is some q, a minimal idempotent 
in (fiN, .) with q E MPC n LFS nLl I nLlm n M. 

Now Ll is a right ideal of (fiN, +) [20, Theorem 10.S] so pick a minimal 
right ideal R <;;:: Ll and pick an idempotent r E R. By Theorem 5.2 and the 
remarks preceding Theorem 5.2, r E U. By [1, Lemma 2.4] rEM PC. Since 
r E Rand r + r = r, rEM. Thus rEM n M PC. Since M is a right ideal of 
(fiN, .) (by Theorem 5.4) and MPC is a right ideal of (fiN, .) (by [1, Lemma 
2.4]), we have MnMPC is a right ideal of (fiN,·) so r·rEMnMPC. By 
[1, Lemma 2.13] r·r E LFS so MnMPCnLFS i-12'l so, by [1, Lemma 2.14] 
M n M PC n LF S is a right ideal of (fiN, .). Pick a minimal right ideal J of 
(fiN, .) with J c M n MPC n LFS and pick q E J such that q. q = q. We 
claim q is as required. Immediately q is a minimal idempotent in (fiN,·) 
and q E M n M PC n LF S. To show q E Lli n Llm it suffices to show M <;;:: Lli 
and J <;;:: Llm . By [1, Lemmas 2.6 and 2.S] Lli and Llm are ideals of (fiN, +) 
and (fi N , .) respectively while J is a minimal right ideal of (fi N, .) and M 
is contained in the closure of the minimal ideal of (fi N , +). D 

We conclude this section by showing in Corollary 5.9 that central sets are 
common in N; in fact sets which are central both multiplicatively and addi-
tively are common. 
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5.7 Lemma. Each right ideal in (P N , .) contains 2c idempotents, where c is 
the cardinality of the continuum. 

Proof. It is well known (see for example [22, Corollary 2.6]) that each right 
ideal in (P w, +) has 2c idempotents. 

Let R be a right ideal in (P N , .). We may presume R is a minimal right 
ideal (since R contains a minimal right ideal). Define rp: N ---> w by rp(x) is 
the length of the prime factorization of x. Then (jJ is a homomorphism from 
(N, .) onto (w, +). By a theorem of Milnes [24] (or see [22]), the continuous 
extension rpP: pN ---> pw is a homomorphism from (PN,·) onto (pw, +). 
Consequently P = rpP[R] is a right ideal of (pw, +) and hence contains 2c 

idempotents. It thus suffices to show that if q E P and q + q = q, then 
(rpp) -I [{ q}] n R contains an idempotent. Since q E rpP [R], this intersection 
is nonempty and is thus a compact left topological semigroup which therefore 
contains an idempotent as required. 0 

5.8 Theorem. There are 2c combinatorially large ultra filters which are mini-
mal idempotents in (PN, .) and every member of which is central in (N, +). 

Proof. In the proof of Theorem 5.6, we obtain a right ideal J of (PN, .) such 
that every idempotent of J satisfies the conclusions of this theorem. By Lemma 
5.7, there are 2c such idempotents. 0 

Our proof of Corollary 5.9 uses a standard topological argument. 

5.9 Corollary. There is a partition of N into infinitely many cells, each one of 
which is central in (N, +) and is a member of a combinatorially large ultrafilter 
which is a minimal idempotent in (P N, .) . 

Proof. By Theorem 5.8, pick a sequence (qn):1 of distinct combinatorially 
large ultrafilters which are minimal idempotents in (P N, .) and each member 
of which is central in (N, +) . Pick BI,o E ql and BI,I E q2 with BI,onBI,1 = 
0. Pick 0'(1) E {O, I} so that C I = {k E N: qk tJ- BI,a(I)} is infinite. Let 
PI = ql or PI = q2 depending on whether 0'(1) = 0 or 0'(1) = 1. 

Inductively, given infinite Cn_ 1 = {k EN: qk tJ- U~:/ Bi , a(i)} pick distinct 
s, t E Cn_ 1 and pick Bn,O E qs and Bn,l E qt with Bn,onBn,1 = 0. Pick 
O'(n) E {O, I} such that Cn = {k E Cn_ l : qk tJ- Bn,a(n)} is infinite. Note that 
Cn = {k E N: qk tJ- U~=I Bi ,a(i)}' Let Pn = qs if O'(n) = 0 and let Pn = qt if 
O'(n) = 1. 

For each n> 1,let An=Bn.a(n)\U~:/Bi,a(i) and let Al =N\U:2 An · 
Observe that B I , a(l) ~ A I . Then each An E p n hence is as required. 0 

6. THE NOTIONS OF "CENTRAL" 

We were motivated to call members of minimal idempotents "central" when 
we found out we could prove Theorem 4.11 which is, as we have seen a gen-
eralization of [11, Proposition 8.21], a result about "central" sets in N. We 
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establish here that the similar results obtained are not a coincidence. In fact, 
for a countable semigroup 5, the notions coincide.! (One of the two implica-
tions involved is due to B. Weiss.) 

We are grateful to Dennis Davenport who pointed out that we need not 
restrict ourself to commutative semigroups. 

We first recall some definitions (following [11] in generalizing the notion to 
arbitrary semigroups). 

6.1 Definition. A dynamical system is a pair (X, (Ts) SES) where (X, d) is a 
compact metric space, (5, +) is a semigroup, each Ts is a continuous function 
from X to X, and for s, t E 5, Ts 0 ~ = Tl+S . 

6.2 Definition. Let (X, (TS)SES) be a dynamical system. 
(a) Points x and y in X are proximal if and only if there is a sequence 

(s(k))~! in 5 such that limk~oo d(~(k)(x), Ts(k)(Y)) = O. 
(b) A subset D of 5 is syndetic if and only if there is a finite subset G of 

5 such that for each s E 5 there exists Z E G with s + zED. 
(c) A point y in X is uniformly recurrent if and only if for each neigh-

borhood U of y, {s E 5: Ts (y) E U} is syndetic. 
In [11], the definition of "central" applied only to subsets of N. However, 

a verbatim application is meaningful in any semigroup. We denote this notion 
here by "*-central." 

6.3 Definition. Let (5, +) be a semigroup. A set A S;; 5 is *-central if and 
only if there exist X and {TS)sES such that (X, (TS)SES) is a dynamical system 
and there exist x, y E X and a neighborhood U of y such that x and yare 
proximal, y is uniformly recurrent, and A = {s E 5: ~(x) E U}. 

In showing that *-central sets are central, the main tool is the notion of en-
veloping semigroup developed by Ellis [7 and 9]. Given a dynamical system 
(X, (TS)SES) one takes the set x X of all functions from X to X under com-
position with the product topology and lets E = cl{Ts: s E 5}. Then E is a 
compact right topological semigroup. That is, for each fEE, the function 
P f defined by P f(g) = g 0 f is continuous. Further, if f is continuous (in 
particular if f = Ts for some s E 5) then A f is continuous. (See for example 
[11, p. 159].) 

Our first lemma is essentially [8, Lemma 5.15] except that we are not working 
with a group. 

6.4 Lemma. Let (X, (Ts)sES) be a dynamical system, let E be its enveloping 
semigroup, and let x and y be proximal in X. There is a minimal left ideal 
L of E such that f(x) = f(y) whenever f E L. 

Proof. Let L = {f E E: f(x) = f(y)}. It suffices to show that L -=1= 0. For 
then L is trivially a left ideal and hence, by an easy application of Zorn's lemma 

I This result was anticipated by S. Glasner who showed essentially the same thing for abelian 
groups in Proposition 4.6 of Canad. J. Math. 32 (1980), 993-1007. 
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(using the fact that E is right topological) L contains a minimal left ideal. 
Pick a sequence (s(k))';:1 E S such that limk -+ oo d(Ts(k)(x), TS(k)(Y)) = 0 

and let f be a cluster point of (TS(k)';:1 in E. Suppose that f(x) -I- f(y) 
and let e = d(f(x), f(y))/3. Pick m such that for all k > m 

d(Ts(k)(x), Ts(k)(Y)) < e. 

Let V = n;I[N(f(x), e)] n n;I[N(f(y), e)]. Then V is a neighborhood of f 
in x X so pick k > m such that Ts(k) E V. Then d(TS(k)(X), TS(k)(Y)) < e, 
d(TS(k)(X), f(x)) < e, and d(Ts(k)(Y)' f(y)) < e so we obtain a contradic-
tion. 0 

6.5 Lemma. Let (X, (Ts) SES) be a dynamical system and let E be its envelop-
ing semigroup. Let L be a left ideal of E and let D be a syndetic subset of S . 
Then L n cl {Ts: sED} -I- 0 . 

Proof. Since D is syndetic, pick a finite subset G of S such that for each 
s E S there exists Z E G with s + zED. Pick f E L. We claim there is some 
Z E G with Tz 0 f E cl{ Ts: SED}. Since L is a left ideal this will suffice. 

Suppose instead that for each Z E G there is a basic neighborhood of Tz 0 f 
missing {Ts: SED}. Pick for each Z EGa finite subset Fz of X and 
an ez > 0 such that {Ts: sED} n nXEF_ n;I[N(Tz(f(x)), ez)] = 0. Now 
each Tz is continuous so, since X is compact, is uniformly continuous so 
pick <>z > 0 such that d(Tz(x), Tz(Y)) < ez whenever d(x, y) < <>z. Let 
F = UzEG Fz and let <> = min{r>z: Z E G}. Let W = nxEF n;1 [N(f(x), r»]. 
Since W is a neighborhood of f and f ELand L ~ E = cl{T,: s E S}, pick 
s E S with Ts E W. Pick Z E G with s + zED. Now Ts E W so given 
x E Fz , d(Ts(x), f(x)) < r> ::; r>z and hence d(TJTs(x)), Tz(f(x))) < ez · 
Thus Ts+z E nXEF_ n;1 [N(Tz(f(x)), ez )] while s + zED. Thus we have a 
contradiction. 0 -

6.6 Lemma. Let (X, (TJsES) bea dynamical system and let E be its envelop-
ing semigroup. Let y be uniformly recurrent in X and let L be a left ideal of 
E. There exists f E L with f 0 f = f and f(y) = y. 

Proof. We may presume L is compact since, if f E L, Eo f = Pf[E] ~ L 
and is compact. Thus it suffices to show there exists f E L with f(y) = y. 
For then {f E L: f(y) = y} = L n n; 1 [{y}] is a compact subsemigroup which 
then contains an idempotent. 

Suppose instead each f E L has f(y) -I- y and let e r = d(f(y), y)/2 and 
let Vf = n;I[N(f(Yl, efl]. Then {Vf: f E L} is a~ open cover of L so 
pick finite F ~ L with L ~ UfEF Vf. Let e = min{ef: f E F} and let 
D = {s E S: T,(yl E N(y, e)}. Since y is uniformly recurrent, D is syndetic. 
Pick by Lemma 6.5, gEL n cl{T~: sED}. Pick f E F such that g E Vf 
and, since Vf is a neighborhood of g, pick sED with Ts E V(. Then 
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d(f(y), ~(y)) < 8 f and, since sED, d(Ts(Y), y) < 8 ~ 8 f' But then 
d (f(y) , y) < 28 f' a contradiction. 0 

6.7 Lemma. Let (X, (TS)SES) bea dynamical system and let E be its envelop-
ing semigroup. Define rp: S -+ E by rp(s) = ~ and let rpP be the continuous 
extension of rp to pS. If f is an idempotent in a minimal left ideal of E , then 
there is a minimal idempotent PEPS with rpP (p) = f. 
Proof. Note that rpp[PS] is compact so that rpp[PS] = E. We now establish 
that rpP is an antihomomorphism. To this end, let p, q E pS and suppose that 
rpP (p + q) =I- rpP (q) 0 rpP (p). Pick U and V disjoint open neighborhoods of 
rpp(p+q) and rpp(q)orpp(p) respectively. Pick A Ep+q such that rpP(A] ~ U 
and let B={SES:A-SEp},sothat BEq. 

Pick W a neighborhood of rpp(q) with Pq!p(p)[W] ~ V. Pick CEq with 

rpP [C] ~ W. Pick s E B n C. Since SEC, Ts E W so Ts 0 rpP (p) E V . Since 
AT is continuous, pick a neighborhood M of rpP (p) with AT[M] ~ V. Pick 

D sE p with rpP [D] ~ M. Since S E B, A - s E P so pick t E ~ - s n D. Since 
tED, Tt E M so Ts 0 Tt E V. Since t + sEA, Tt+s E U and we have a 
contradiction. 

Now pick a minimal left ideal L of E with f E L. Then (rpP)-I[L] is a 
right ideal of pS so pick a minimal right ideal R of pS with R ~ (rpP)-I[L]. 
Then rpP[R] is a left ideal of E, rpP[R] ~ L, and L is minimal so rpP[R] = L. 
Consequently (rpp)-I[{f}] n R is a (nonempty) compact subsemigroup of pS 
so pick an idempotent p E (rpp) - 1 [ {f} ] n R . 0 

6.8 Theorem. Let (X, (T\)SES) be a dynamical system, let x and y be prox-
imal in X with y uniformly recurrent. There is a minimal idempotent PEPS 
such that, whenever U is a neighborhood of y, {s E S: Ts(x) E U} E p. In 
particular, each *-central set in S is central in S. 

Proof. Let E be the enveloping semigroup of (X, (TS)SES) and define rp: S -+ 

E by rp(s) = Ts' Pick by Lemma 6.4 a minimal left ideal L of E such that 
f(x) = f(y) whenever f E L. Pick by Lemma 6.6 an idempotent f E L with 
f(y) = y. Pick by Lemma 6.7 a minimal idempotent pEPS with rpP (p) = f. 

Let U be a neighborhood of y and let A = {s E S: Ts(x) E U}. Now 
rpp(p)(x) = f(x) = fry) = y and y E U so n;I[U] is a neighborhood of 
rpp(p). Pick BE P such that rpP(B] ~ n;I[U]. We claim that B ~ A so that 
A E p. Let s E B . Then Ts En; 1 [U] so sEA. 0 

The notion of "central" is closed under supersets while it is not obvious 
that the corresponding statement holds for "*-central". Accordingly we asked 
(with S as the natural numbers under addition): "Given a central set A in S 
must there be a *-central set B with B ~ A?" This question was answered in 
the affirmative by B. Weiss. We are grateful to him for permission to present 
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his elegant proof (in Theorem 6.11). The proof uses the notion of "p-lim" 
(Definition 2.2). 

6.9 Lemma. Let (X, (T)SES) be a dynamical system. Let R be a minimal 
right ideal of ps and let pER. If y E X and p-limsES ~(y) = y, then y is 
uniformly recurrent. 

Proof. Let e > 0 be given and let A = {s E S: d(T/y) , y) < e}. We need 
to show that A is syndetic. Let B = {s E S: d(Ts(Y) ' y) < eI2}. Since 
p-limsEs Ts(Y) = y, we have BE P . 

Let C = {t E S: B - t E p}. We claim that C is syndetic. Since p + pS ~ 
R + pS ~ R we have p + pS = R. Thus p + q = p for some q E PN. Since 
B E p, CEq so C -=I- 12). Pick by Lemma 1.1 a finite F ~ S such that for all 
YES, (UXEF B - x) - yEp. Then, given YES, UXEF B - (y + x) E p so 
there is some x E F with B - (y + x) E p (so that y + x E C as required). 

We now claim that C ~ A, so that A is syndetic. To this end let tEe. 
Since TI is continuous and X is compact, ~ is uniformly continuous. Pick 
J > 0 such that d(~(x), ~(z)) < el2 whenever x, Z E X with d(x, z) < J . 
Let D = {s E S: d(Ts(Y) ' y) < J}. Since p-limsEs Ts(Y) = y, we have DE p. 
Pick sED n (B - t). Since SED, d ( Ts (y) , y) < J so 

d(Tt(Ts(y)) , Tt(y)) < e12. 

Since s + t E B, d(Ts+1(y) , y) < e12. Since Tt 0 Ts = TSH ' d(Tt(y) , y) < e as 
required. D 

6.10 Lemma. Let X be a Hausdorff space, let S be a semigroup, let p, q E 
pS and let (x) sES be an indexed family in X. Assume that for each t E 
S, q-limsEs xs+t exists and that p-limIEs(q-limsEs xs+t ) exists. Then (q + p)-
limrES xr = p-limtEs(q-limsEs xs+t) . 

Proof. For each t E S let Yt = q-limsEs xs+1 and let z = p-limt+s Yt' To 
see that z = (q + p)-limrEs x r ' let U be an open neighborhood of z and let 
A = {r E S: xr E U}. We show that A E q + p. Let B = {t E S: YI E U}. 
Then B E p. We claim that B ~ {t E S: A - t E q}. Let t E B and let 
C = {s E S: xs+r E U}. Since YI E U, CEq. To complete the proof we show 
C ~ A - t. Let SEC. Then xs+1 E U so s + tEA as required. D 

6.11 Theorem (Weiss). Let S be a countable semigroup and let A be central 
in S. Then A is *-central in S. 

Proof. Let S* = S u {O} , where 0 is a new two-sided identity adjointed to S. 
Let X be the set of functions from S* to {O, I} with the product topology. 
Enumerate S* faithfully as {an: n E N} and for x -=I- y in X define d(x, y) = 
lit where t = min{n: x(an ) -=I- y(an )}. Then d is a metric on X and the 
metric topology and the product topology agree. 

For each s E S, define Ts: X ---+ X by Ts(x)(t) = x(s + t) . Then each Ts is 
continuous. (Let s E S and consider a subbasic open set n; 1 [{ n}] where t E S* 
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and a E {O, I}. Then Ts-I[n~I[{a})] = n;+I/[{a}].) Also, given r, s E Sand 
t E S* and x E X we have (Tr 0 Ts)(x)(t) = Tr(~(x))(t) = Ts(x)(r + t) = 
x(s + r + t) = Ts+r(x)(t). Thus (X, (TS)SES) is a dynamical system. 

Let x = XA ' the characteristic function of A. Pick a minimal right ideal R 
of pS and an idempotent pER with A E p. Let y = p-limrES Tr(x). As 
is easy to verify, given t E Sand (ZS)SES in X, p-limsEs Tt(zs) 
Tt(p-limsES zs). Since p = p + P we have, using Lemma 6.10, 

y = (p+p)limT(x) 
rES r 

= p-lim (p-lim Ts+t(X)) tES sES 

= p-lim (p-lim T/(Ts(X))) tES sES 

= p-lim ~ (p- lim (X)) tES sESTs 

= p-lim ~(y). 
tES 

Thus by Lemma 6.9, y is uniformly recurrent. Since p-limsEs ~(x) = 
p-limSES Ts (y) , we easily get that x and yare proximal. 

Let U = n~I[{y(O)}] = {z E X: z(O) = y(O)}. We show that A = {s E 
S: Ts(x) E U} so that A is *-central. Since y = p-limSES Ts(x) , we have 
that {s E S: Ts(x) E U} E P so we may pick tEA with ~(x) E U. Then 
y(O) = x(t) = 1, since tEA. Thus U = {z EX: z(O) = I}. But then, given 
s E S, 

Ts(x) E U ¢} Ts(x)(O) = 1 
¢} x(s) = 1 
¢} sEA. o 

6.12 Corollary. Let S be a countable semigroup and let A <:::; S. Then A is 
central in S if and only if A is *-central in S. 

As we remarked earlier, it is not obvious that the notion of *-central is closed 
under supersets. It is, however, true, at least for countable semigroups. 

6.13 Corollary. Let S be a countable semigroup and let A <:::; B <:::; S. If A is 
*-central, then B is *-central. 

Proof. A is *-central so by Theorem 6.8, A is central. Pick a minimal idem-
potent p in pS with A E P . Then B E P so B is central so by Theorem 6.11, 
B is *-central. 0 

We also see that (for countable semigroups) in the definition of *-central, it 
suffices to work with one concrete dynamical system. 

6.14 Corollary. Let S be a countable semigroup and let X and (~)sES be as 
in the proof of Theorem 6.11. Let A <:::; S. Then A is *-central if and only if 
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there exist X, Y E X with y uniformly recurrent and x proximal to y, and a 
neighborhood U of Y such that A = {s E S: Ts(x) E U}. 

Proof. The sufficiency is trivial so assume A is *-central. By Theorem 6.8 A 
is central so the proof of Theorem 6.11 applies. 0 

The semigroup S must be countable in order for the space X produced in 
the proof of Theorem 6.11 to be metric. In light of Theorem 6.8, the following 
question is thus natural. 

6.15 Question. Let S be an uncountable semigroup. Must every central set in 
S contain a *-central set? 

Note that the correspondences established in Theorems 6.8 and 6.11 are of 
a different nature. Central sets are produced by minimal idempotents while 
*-central sets are produced by pairs (x, y). In Theorem 6.8 it was shown that 
given a pair (x, y) there is a minimal idempotent p such that all *-central sets 
produced by (x, y) are central produced by p. On the other hand, in Theorem 
6.11, the pair (x, y) depends both on the central set and the idempotent. We 
conclude by showing that this distinction is necessary. 

6.16 Theorem. Let R be a minimal right ideal of (/1 N , +) and let pER 
with p + p = p. There do not exist a dynamical system (X, T) and x, y E X 
such that 

( 1) y is uniformly recurrent. 
(2) x and yare proximal, and 
(3) for each A E P there exists a neighborhood U of y with {n EN: Tn(x) 

E U} ~ A. 

Proof. Suppose we have such (X, T), x, and y. For each mEN let Bm = 
{n E N: d(Tn(x), y) < 11m}. Then each Bm is infinite. (In the context of 
the current paper one can see this by observing that' Bm is *-central, hence 
central.) For each m pick am E Bm \ ({ak : k < m} U {bk : k < m}) and bm E 
Bm \({ak : k:-=::; m}u{bk : k < m}). Then {am: mE N}n{bm: mEN} = 0 so, 
without loss of generality {am: mEN} tt. p. Let A = N \ {am: mEN}. Pick 
U, a neighborhood of y, with A 2 {n EN: Tn(x) E U}. Pick mEN with 
{z E X: d(z, y) < 11m} ~ U. Then d(Tam(x) , y) < 11m so Tam (x) E U so 
am E A , a contradiction. 0 
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