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NONMETRIZABLE TOPOLOGICAL DYNAMICS
AND RAMSEY THEORY

VITALY BERGELSON AND NEIL HINDMAN

ABSTRACT. Applying ideas from topological dynamics in compact metric spaces
to the Stone-Céch compactification of a discrete semigroup, several new proofs
of old results and some new results in Ramsey Theory are obtained. In particu-
lar, two ultrafilter proofs of van der Waerden’s Theorem are given. An ultrafilter
approach to “central™ sets (sets which are combinatorially rich) is developed.
This enables us to show that for any partition of the positive integers one cell
is both additively and muitiplicatively central. Also, a fortuitous answer to a
question of Ellis is obtained.

1. INTRODUCTION

Furstenberg and Weiss [13] proved a number of results in combinatorial par-
tition theory (Ramsey Theory) using recurrence theorems in compact metric
spaces. These methods were utilized for many additional impressive results
(See [11].)

The current authors [1, 2, 3, and 17] have utilized this algebraic structure
of BN, the Stone-Cech compactification of the set N of positive integers, to
obtain other results in Ramsey Theory. (These methods go back to the Galvin-
Glazer proof of the finite sum theorem.) When speaking about these results,
we would very often be asked “Can you prove van der Waerden’s Theorem in
BN ?.” It was very annoying that the answer was “No,” especially since van
der Waerden’s Theorem was needed for many of these results. The answer is
changed by the current paper, in fact we present two very different proofs of
van der Waerden’s Theorem (or 2+ 1/2 if we count Theorem 2.10 as 1/2).

The work here is heavily influenced by work of Furstenberg and Katznelson
on a density version of the Hales-Jewett Theorem [12]. We adapt arguments
originally used in the context of enveloping semigroups and apply them to SN .
There are three main advantages to these adaptations. The first is that the re-
sulting arguments are actually simpler than the originals. The second is that
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294 VITALY BERGELSON AND NEIL HINDMAN

by departing from the metric situation we end up with results which are more
widely applicable. The third is that, because SN has two natural algebraic
structures which interact, we end up with significant strengthenings of old re-
sults.

§2 is devoted to a proof of van der Waerden’s Theorem based on that in [15]
and an additional short proof of the three term version. We also answer an
old question of Ellis in this section. §3 consists of an introduction to the main
technique for the major results by way of another, and quite short, proof of van
der Waerden’s Theorem. In §4 we present the major results, generalizing results
from [11] to a wide class of semigroups. In §5 we derive several corollaries,
showing in particular that there is always a member of any finite partition of N
which is large in both a multiplicative and additive sense. We close in §6 with a
proof that our notion of “central” agrees with that from [11] for any countable
semigroup.

Recall that an ultrafilter p on a set S is a set of subsets of .S satisfying (i)
¢ p,(i) Sep,(iii) A€p and ACBC.S implies Bep, (iv) A€p and
B ep implies ANBe€p and (v)if re N and §=4,UA4,U---UA, then some
A; € p. (In other words, an ultrafilter is a maximal filter.) Alternatively an
ultrafilter p may be identified with a finitely additive {0, 1}-valued measure
K, on Z(S). Thus the statements 4 € p and #,(A) =1 are synonymous.

Given a discrete set S the points of the Stone-Cech compactification 85
of § are taken as the ultrafilters on S. A point s in S is identified with the
ultrafilter {4 C S:s€ 4}. Given 4 C S, let A= {p e pS: A€ p}. The set
{A: A C S} forms a basis for the open sets (and a basis for the closed sets) of
BS. If (S, +) is a semigroup the operation can be extended to £S making
(BS, +) a compact left-topological semigroup (that is, for each p € S the
function ip defined by /Ip(q) = p + g is continuous). This extension has the
additional property that for each x € S the function p, defined by p (q) =
g + x 1s continuous. The operation can be characterized by the fact that, given
ACS and p, gqe S, Aep+q ifandonlyif {x €S: 4—x € p} € g where
A—x={yeS:y+xe A}. (If the operation is written “-” we write A/x =
{y € S:y-x € 4}.) In any compact left-topological semigroup, idempotents
exist [8, Corollary 2.10]. See [20 or 21] for an elementary derivation of these
facts.

Observe that, given any p € 85, p+ BS is a right ideal which is compact.
(Indeed, p + BS 1is the continuous image of BS under 4 ,-) Consequently
one easily establishes via a routine Zorn’s Lemma argument that any right ideal
contains a minimal right ideal which is compact. We remark that not every right
ideal is of the form p + £S5 . (For example, the smallest two-sided ideal of SN
is not closed [16, Corollary 3.10].) On the other hand, any minimal right ideal
R is representable in this form. Indeed if ¢ € R, then ¢ + S C R+ BS CR
while g + #S is a right ideal so R=¢g + 8S.

We will need the following result.
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1.1 Lemma. Let (S, +) be adiscrete semigroup and let p € 8S. Then p+ S
is a minimal right ideal of BS if and only if given any A C S, if there is some
x €S8 with A—x €p, then there is some finite F C S such that forall y € S,
(UgepA4—x)—yED.
Proof. [19, Corollary 3.3]. O

In SN, the distributive laws fail badly. However, a special case does hold.
1.2 Lemma. Let p, g€ N andlet xe N. Then (p+q)-x=p-x+q-Xx.

Proof. Since both (p + g)-x and p-x + g -x are ultrafilters, it suffices to
show (p+q)-x Cp-x+qg-x. Let A€ (p+4q)-x. Then A/x € p+g¢q
so B={ye N:(4/x)—y €p} €q and hence B-x € q-x. We claim that
B.xC{yeN:A-yep-x} (sothat Aep-x+¢g-x). Tothisendlet y € B-x
and pick ze€ B with y =z-x. Then (4/x)—z€p so ((A/x)—z)-xE€p-x.
Thus (4/x) x—z-xe€p-x. Since (A/x)-x CA,wehave A -y e€p-x as
required. O

The first infinite cardinal is w = N U {0}. Given a cardinal 4 we will
sometimes write [X]'={4C X:|4| =2} and [X]"' ={4C X: |4 <2}.

2. VAN DER WAERDEN’S THEOREM—
APPROXIMATE SOLUTIONS TO EQUATIONS

The first proof of van der Waerden’s Theorem which we present is an adap-
tation of the proof in [15, §6.1]. (This proof was itself adapted from [13].) The
proof there uses metric space properties strongly and SN is not metrizable
(see [14, 14N]). We replace the notion of “closeness” by equivalence modulo a
partition.

2.1 Definition. Let & be a finite partition of N and let p, g € SN. We
write p ~ ¢ (mod &) if and only if forsome A€ &, Acpngq [ie.p, ge A
where A= {rc fN: A€r}].

Also important to the proof in [15] is the notion of a minimal dynamical
system. This notion is replaced by that of a minimal right ideal. The corre-
spondence here is not accidental. R is a minimal right ideal of SN if and
only if R =p+ BN forall p e R. (If p € R and R is minimal then
p+BN C R+ BN CR and p+ BN is aright ideal. If R =p+ N for
all p € R and T C R is a right ideal then given p € T, R=p+ N C
T+ BN CTCR.) Since a minimal right ideal R is a compact left topological
semigroup, it has an idempotent p, which then satisfies R = p + fN. Also
p+ BN =cl{p+n:ne N} aforward orbit closure under the transformation
T(p)=p+1. If p+ BN is a minimal right ideal, then (p+ N, T) is a
minimal dynamical system.

We shall utilize the notion of p-lim ., x, (introduced by Frolik in [10]).

2.2 Definition. Let / be a set, X a topological space, (x ) ., an indexed

family in X and p an ultrafilter on /. We write p-lim__, x = z if and only if

ac
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z € X and whenever U is a neighborhood of z onehas {a€l:x, €U} ep.
Observe that p-lim ., x, must exist in a compact space and is unique in a
Hausdorff space.
The following lemma is well known in the context of metric dynamical sys-
tems.

2.3 Lemma. Let R be a minimal right ideal of (BN, +) and let & be a finite
partition of N. There exists k € N such that for any q, r € R there exists
some te{l,2,...,k} with g+t~r (mod &).

Proof. Suppose the assertion is wrong. Then for any n there exists ¢, , 7, € R
such that g, +¢ % r, (mod &) for all ¢+ € {1,2,...,n}. Let p be any
nonprincipal ultrafilter on N. Let ¢ = p-lim,_, g, and r = p-lim, o, .

Choose 4 € & with A €r. Then A4 is a neighborhood of r and r € R =
cl{g+n: n € N} so there exists 7, € N with g+, € A. Now p-limneN q4,=4q
and 4 -t,€q so {n€N:A-1t,€q,} €p. Likewise p-lim , r, =r and
Aerso {neN:A4Aecr,} €p. We may thus choose n > ¢, with 4 -1, €q,
and A4 €r,. But then

g, +to~q+iy~r~r, (modZ&),
contradicting our supposition. 0O

2.4 Lemma. Let R be a minimal right ideal of (N, +),let ge R, ne N
and define q —n={A-n: A€q}. Then g—neR.

Proof. Tt is routine to verify that ¢ — » is an ultrafilter (using the fact that g
is nonprincipal). Now g€ R=qg + SN so pick r € N such that g =g+ r.
One easily sees that r € SN\ N (since no congruence class mod (m+1) could
be in both ¢ and ¢ +m for m € N). Thus r —n € SN\ N. Finally one
routinely verifies that (g +r)—n=qg+(r—n) sothat g—neg+pfN=R. O

The current proof in fact provides something stronger than van der Waerden’s
Theorem; one is allowed to choose the increment from any prescribed set of
finite sums. (This is not new. It is derivable from the Hales-Jewett theorem
and is explicitly in {11].) For B C N, we write FS(B) = {}_ F: F is a finite
nonempty subset of B}. Given d,, d, € FS(B) we write d, < d, if whenever
d =3 F and d, =) F, with F|, F, C B one has max F;, <minF,.

The statements defined below depend on the right ideal R as well as on /.
We suppress reference to R since it will remain fixed.

2.5 Definition. Let / € NU{0} andlet R be a minimal right ideal of (N, +).
(a) S(I) is the statement: “for each finite partition & of N and each
infinite B C N there exist ¢ € R and d € FS(B) such that for each i €
{0,1,...,1}, g=qg+id (mod &).”
(b) T(I) is the statement: “for each finite partition & of N, each infinite
B C N,each s € R and each d, € FS(B) there exist ¢ € R and d € FS(B)
such that d, <d and foreach i€ {l1,2,...,/}, s~g+id (mod &).”
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The result we are after is that for all / S(/) holds. This is accomplished
by the next two lemmas. In these, an ¢ — J argument has been replaced by a
mechanism for producing appropriately finer partitions. The use of the letters
& and Z in these proofs is intended to be suggestive of this replacement.

2.6 Lemma. Let [ € N and let R be a minimal right ideal of (BN, +),
S({-1)=T{).

Proof. Assume S(/—1). Let &, B, s, and d,, be given as in the definition
of T(/). Pick k as guaranteed by Lemma 2.3 for R and & . Let & be the
partition induced by {4 —i:ie{0,1,...,k} and A€ &)}. Let B ={x €
B:x >d,}. Since S(/ - 1) holds, pick ¢ € R and d € FS(B') such that for
each ie{0,1,...,/-1}, ¢ ~q +id (mod &). By the choice of k, pick
je{l,2,...,k} suchthat ¢+ j~s (mod &). Let g=(¢' —d)+ .

Observe immediately that d, < d. Now let i € {1,2,...,/}. We need
to show that s ~ g +id (mod &). Now i— 1€ {0,1,...,/ -1} so ¢' ~
g +(i-1)d (mod &) so by the choiceof & ¢'+j~q +(i—1)d+j (mod &).
Thatis ¢'+j ~ g +id (mod &). Since ¢'+j ~ s (mod &) we have s ~ g+id
(mod &) as required. 0O

2.7 Lemma. Let [ € N and let R be a minimal right ideal of (BN, +).

T() = S(I).

Proof. Assume T(/).

Gtven any finite partition & and any d in N, let Z(&, d) be the partition
induced by {4 —-id:ie€{0,1,...,/} and 4 € &}.

Let a partition & = & and infinite B C N be given and let n = |&}|, the
number of cells of &,. Pick g, € R arbitrarily. Using T(/) pick ¢, € R and

d, € FS(B) such that foreach i€ {1, 2,...,/}, q,~ ¢, +1d, (mod &)). Let
& =2(&,,d,). Again using T'(/) pick ¢, € R and d, € FS(B) with d, < d,
and so that for each ie{1,2,...,/}, g, ~ g, +1id, (mod &)).

Continuing in this way, we have for ie {1,2,...,/}:

4, ~ q, +id, (mod &)
g9, ~ g, +id, (mod &)

4,~4q,,, +id,  (mod &)
where, for j€{0,1,...,n—-1}, E?Hl =9(<9fj,af

j+l) .

Since n = |&;|, we pick by the pigeonhole principle some ¢, m with 1 <1<
m< n+1sothat ¢, ~q, (mod &). Let g=gq, and d =d,_ +d, ,+ +d,,.
Observe that since each d 1 < d ; we have d € FS(B). To complete the proof

let ie{l,2,...,1}. Weneed to show that g ~ ¢ +id (mod &) .
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First ¢, , ~ g, +1id, (mod & _|). (If it happens that t = m — 1, we
are done since then ¢ = g, ~ ¢, = ¢q,,_, ~ g, +id,, = ¢ +1id.). Now
&, = €&, ,,d,_,) sofromgq,  ~gq,+id, (mod &, ,) we conclude
q,_,+id,,_, ~q,+id, +id, | (mod &, _,). Sincealso ¢q,, , ~q,,_,+id,_,
(mod &, _,) we have ¢q, ,~gq, +i(d, +d, ) (mod& _,). Continuing in
this way we eventually get ¢, ~ g, +i(d,, +d,,_, + --+d, ) (mod &). Since
&, refines &, we have ¢ =g, ~q,~q, +id, +d,_ + - -+d,_ ) =q+id,
with all congruences mod &,. O

2.8 Theorem. Let R be a minimal right ideal of (BN, +). Forall | €
Nu{0}, S() holds.

Proof. S(0) holds trivially so apply Lemmas 2.6 and 2.7. O

2.9 Corollary (van der Waerden). Let /| € N, let B be an infinite subset of
N and let & be a finite partition of N. There exist A€ &, a € N, and
de FS(B) suchthat {a,a+d,...,a+1d} CA.

Proof. Let R be any minimal right ideal of (8N, +) and pick ¢ € R as
guaranteed by S(/). Pick 4 € & such that 4 € g. Then for each i €

{0,1,...,1}, A-ideq sopick acN_,4-id. O

We now present an extremely short proof of the simplest nontrivial version
of van der Waerden’s Theorem. Unfortunately, as we shall see, this proof does
not generalize in the obvious way to longer arithmetic progressions. Note that
2p means 2-p in (SN, -) and 2p is not in general equal to p+p.

2.10 Theorem. Let p € BN with p=p+p. Then for each A€ p+2p, there
exist a, d€ N with {a,a+d,a+2d}C A.

Proof. By Lemma 1.2, 2.p=p-2=(p+p)-2=p-2+p-2=2p+12p.
Also observe that, given r € BN and B C N, B € r + 2p if and only if
{neN;B-2nerlep.

Let Acp+2p. et B={n: A-2nep} and C={n: A—-2necp+2p}.
Since A€p+2p, BeEp andsince A€ep+2p=p+2p+2p, Cep. Pick
neBNC. Let D={d: A-2n-d ep} and £ ={d: A-2n-2d € p}.
Since A-2nep=p+p, Dep. Since A-2nep+2p, Ecp. Pick
deDNE. Then A-2nep, A—2n—-dep,and 4-2n-2d € p. Pick
be(A-2nn(A-2n—-d)N{(A-2n—-2d) andlet a=b+2n. O

Note that, in the above proof, since (4—2n)N(A4—-2n—-d)N(A—-2n-2d) e
p =p +p, we can choose infinite G with FS(G) C (4 -2n)Nn(4—-2n—-d)n
(A=2n-2d). (Here FS(G)={>_H: HC G and H is finite and H # &} .)
That is, the beginning of the arithmetic progression may be chosen as any one
of 2n+ FS(G).

By virtue of Theorem 2.10, one can approximately solve the equation r =
r+p=r+2p in SN\ N, with p an idempotent. (That is, given any finite
partition .¥ of N one can find ¢ € N \ N and an idempotent p with
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g~qg+p=~qg+2p (mod F).) To see this, let p be an idempotent. Given % ,
pick A €% with 4 € p+2p. Pick n as in the proof of Theorem 2.10 and let
g = p+2n . Without much difficulty one can show that Aegn(g+p)N(g+2p).
(In general, if there exist ¢, p such that 4 € ﬂl _o (¢ +ip) then A contains a
length » arithmetic progression.)

If we could exactly solve the equation g+ p = g+ 2p, a proof similar to that
of Theorem 2.10 shows that every member of ¢ + p + 3p contains a 4 term
arithmetic progression. We show now that this is impossible. (The question of
which equations are solvable in SN also has some independent interest.)

We remark that Theorem 2.10 sheds some light on the question of where
triples “live.” We have no such, even partial, characterization related to quadru-

ples.

2.11 Theorem. Let g, pc BN. Then gq+p#qg+2p.

Proof. For each n € N, pick a, € {0,1,2,...,3" — 1} such that {x €
N:Xx =a, (mod 3")} € ¢ and let g,:{0,1,2,...,n-1} = {0, 1, 2} such
that a, = Z;ol g,(k)- 3k, (Thus g, gives the ternary representation of a, .)

Note that if m < n, then since {x € N: x = a, (mod 3")}n{x€N:xzam
(mod 3™)} # @, we have g,|, =g, . Let g =, g,. Givenany x € N
pick /i —{0, 1,2} sothat x =Y h (k)-3* (sothat h, | =g,).

Given x € N if h_ = g (which can happen at most once) let l(x) = 00.
Otherwise, let /(x) = min{t € w: h (1) # g(¢)}. For i € {0,1,2} let 4, =
{x € N:l(x) < oo and & (I(x)) = i} and let 4; = {x € N:I(x) = oo}.
Suppose that ¢ +p = g+ 2p and pick i€ {0, 1, 2, 3} such that 4,€g+p.
Then {xe N: 4,—x€q}€p and {xe€ N: 4,-2x €q} €p sopick x € N
with 4, —x € ¢ and 4, — 2x € g. Pick m such that x < 3" and pick
ye{yeN:y=a, (mod3")}NA,—xNA,~2n. Let 1 =min{k € w: h (k) #
0} and note that ¢t < m and t = min{k € w: h, (k) # 0}. Now for some
bew, y=b-3" +Zk —o &(k)- 3* . Thus Iy+x)=1l(y+2x)=t.But,as a
simple consideration of cases on g(f) and 4 (¢) shows, hyﬂ(t) # hy+2x(t), a
contradiction. 0O

We also observe that Theorem 2.11 provides a negative answer to a question
of Ellis (in unpublished lecture notes). It is a fact [11, Proposition 2.6] that
given a compact metric space X and continuous 7: X — X, there exist x
and sequence (n,)>, so that x = lim,  __ T™(x) = lim,_ T (x). The
question is whether a similar result must hold in any compact Hausdorff space.
Since any infinite closed subset of SN contains a copy of SN [14, 6£6] no
sequence in SN converges unless it is constant. Accordingly, we replace the
notion of lim, | T"(x) with the notion of p-lim, T"(x) (Definition 2.2).

2.12 Corollary. Define T: BN — BN by T(p) =p+1. Let p, g € BN.
Then p-lim,_, T"(q) # p-lim,, T"(q) .

Proof. We show here that p-lim, T"(q) = q + 2p (which is not g +p by
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Theorem 2.11). Indeed, let A€ g+2p. Let B={x &€ N: A— x € q} so that
B € 2p and hence B/2 € p. Then B/2 C {n: T*"(q) € 4} so {n: T*"(q) €
A} € p as required.

Similarly g +p = p-lim,_ T"(g). O

3. A SHORT PROOF OF VAN DER WAERDEN’S THEOREM—
AN INTRODUCTION TO CENTRAL SETS

The rest of the results of this paper are based on a simple construction of
Furstenberg and Katznelson. Even though a strong version of van der Waerden’s
Theorem is one of the consequences of the general construction, we present
a proof here to introduce the technique without some of the complications
involved in the more general results. (Also, we believe this is the simplest proof
of van der Waerden’s Theorem to date.)

The motivation for the term “central” comes from the definition and results
of {11, Chapter 8]. For a discussion of the relationship between these notions
see §6 .

3.1 Definition. (a) Let 7 be a compact left-topological semigroup. A point
p € T is a minimal idempotent if and only if p is an idempotent and there is
a minimal right ideal R with p € R.

(b) Let (S, +) be a discrete semigroup. A set 4 C .S is central in § if
and only if there is a minimal idempotent p of S with 4 €p.

Although we will not use this fact, it is worth noting that the union of all
minimal right ideals of a compact left topological semigroup is a two-sided
ideal which is the smallest two sided ideal. (See [26] or [5}.) This ideal is
customarily calied the minimal ideal. Thus p is a minimal idempotent if and
only if it is an idempotent in the minimal ideal.

It is well known that the relation defined by ¢ <p ifandonlyif g=g+p =
p + g is a partial order on the idempotents of 7. (See [5].) It is also well
known that an idempotent is in the minimal ideal if and only if it is minimal
with respect to this order. Since this latter fact is important to us, and has an
easy proof, we shall prove it.

3.2 Lemma. Let (T, +) be a compact lefi-topological semigroup.

(a) Let p be any idempotent of T . There is a minimal idempotent q of T
with g <p.

(b) Let p and q be idempotents of T with p minimal and q < p. Then
q=D.

Proof. (a) Since p + T is a right ideal of T it contains a minimal right ideal
R which has an idempotent ¢. (Then R=1t+7.) Let g = t+ p and note that
geR.Since RCp+T,pick reT suchthat t=p+r. Then g=p+r+p.
Now g+q=p+r+p+p+r+p=p+r+p+r+p=t+t+p=1it+p=q s0 ¢
is an idempotent. Also g+p =t+p+p=t+p=q and p+g=p+p+r+p=
p+r+p=qso g<p.
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(b) (Of course, had we defined “minimal” in terms of < this statement
would be a complete triviality.) Pick a minimal right ideal R such that p € R.
Since g=p+qg, geRso g+TCRsog+T=R. Pick re€T such that
p=qg+r. Then g=qg+p=qgq+g+r=g+r=p. O

The proof of the following lemma is completely routine and we omit it.

3.3 Lemma. Let T, and T, be compact left topological semigroups. Then
T, x T, with the product topology and coordinatewise operations is a compact
left topological semigroup. Further if x € T), y € T,, p.: 1T, — T, and
Py T, — T, are continuous, then Pyt T) % T,-T,xT,is contlnuous.

We are now ready to outline the general procedure which we will follow in
this and the next section. We start with a fixed / € N and a discrete semi-
group S andlet T =( ﬂS)[ (which is by Lemma 3.3 a compact left topological
semigroup). One then defines subsets E* and I" of (S)' and lets E = cl E”
and I =cl,; [ *. One then shows that E is a (necessarily compact) subsemi-
group of 7', I is an ideal of E, and whenever p is a minimal idempotent
of S, then (p,p,...,p) € E. Using Lemma 3.2 one shows that necessar-
ily (p,p,...,p)€I. These essential steps (but in the context of enveloping
semigroups) are all contained in the paper of Furstenberg and Katznelson [12].

We now display the definitions of E* and I® which are relevant for van der
Waerden’s Theorem (with the understanding that the definitions will become
“inoperative” at the end of the section).

3.4 Definition. Let /€ N.

(a) T (BN)[ with addition as the operation.

(b)E ={(a,a+d,a+2d,...,a+({-1)d):ae N and d € w}.
(c) I {a,a+d,a+2d,...,a+(l—1)d):a,deN}.

(d) E=cl E" and I =cl.I".

3.5 Lemma. E isa compact left topological semigroup and 1 is a (two-sided)
ideal of E .

Proof. The topological conclusions are inherited from 7. We let Z =(p,,D;>
.,p) and ¢ = (q,,4,,...,9) bein E and show that p + ¢ € E. We

show further that if either E or E 1s in 7, then 5 +qel.
To this end let V|, x V, x --- x V, be a basic neighborhood of P +4q . Pick,

by left continuity a neighborhood U, x U, x--- x U, of ¢ such that Z+(U1 X
Uyx---xU)CV xV,x--xV,. Pick ae€ N and dew (with d >0 if
g €1I) such that (a,a+d,...,a+ (I —1)d) e U xU,x--xU and let
X=(a,a+d,...,a+(-1)d). Then p+x €V, x ¥, x---x V, and, by
Lemma 3.2, P~ is continuous so pick a neighborhood W, x W, x---x W, of P
with IleW2x~--xVK+}gleV2><~--><V,. Pick b € N and e € w (with
e>0if pel) suchthat (b,b+e,....b+(I—1)e)e W, x W,x - x W,.
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Let vy = (b,b+e,....,b+(—1)e). Then y+x € ¥V, x V; x - x V},
Vy+x=(a+b,(a+b)+(d+e),...,(a+b)+(-1)(d+e)), and if either

pelorgel,thend+e>0. O
3.6 Lemma. If pe SN and3=(p,p,...,p),then pEE.

Proof. Let U, x U, x---x U, be a neighborhood of E Then U nU,Nn---NnU,
is a neighborhood of p sopick a € NnU,nU,N---NU,. Then (a,a,...,a)€
(UxUyx--xU)NE". O

3.7 Theorem. Let p be a minimal idempotent in BN andlet p = (p,p, ...,
p). Then pel.

Proof. We have by Lemma 3.6 that p € E so P is an idempotent in E.

Ple by Lemma 3.2(a) a m1n1ma1 1dempotent q of E with q < p Write
q =(4,,49,>.--,9;). Then q = q+p —p+q so for each le{l 2, 1},
g, = 4;+p = p+gq; so that by Lemma 3.2(b), g, = p. Thus qd=0p so that D is
a minimal idempotent of E . Pick a minimal right ideal R of E with _ﬁ €R.
Since [ is a left ideal of £, INR # &. (Indeed, pick x eI and ; € R.
Then y + x € INR.) Since I is a right ideal of E, and @ # INR C R,
INR=R. But then Z € I as required. O

3.8 Corollary. Let A be a central set.in N. Then A contains an | term
arithmetic progression. In particular some element of any finite partition of N
contains an | term arithmetic progression.

Proof. Pick a minimal idempotent p in SN with 4 € p. Let 17 =p,p,...,
p). Then p € and AxAx---x A is a neighborhood of p so pick a, d € N
with (a,a+d,a+2d,...,a+({-1)d)eAxA4 x---xA. O

4. CENTRAL SETS IN SEMIGROUPS

Using the methods from §3 we produce here a version of [11, Proposition
9.21] which is applicable to a wide class of semigroups. For convenience, we
give this class a name.

4.1 Definition. A pre-natural semigroup is a triple (S, +, ¢) where (S, +) is
a commutative semigroup and ¢ is a homomorphism from (S, +) to (N, +).

Examples of pre-natural semigroups include (N, +,1), (N \ {1}, -, ¢)
(where ¢@(x) is the length of the prime factorization of x), and the non-
constant polynomials over any integral domain under multiplication (where
@(P) = degree of P). Also, if (S,, +, ¢,) and (S,, +, ¢,) are pre-natural
sois (S, xS,, +, ¢) (where ¢(x,y)=¢,(x)+¢,(»)). Finally observe that if
(S,,+, ¢,) is a pre-natural semigroup, (S,, +) is a commutative semigroup,
and ¢, is a homomorphism from S, to S, then (S,, +, ¢, 0 ¢,) 1s a pre-
natural semigroup. Consequently, the Gaussian integers with norm greater than
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1 from a pre-natural semigroup under multiplication, since || || is a homomor-
phism to (N \ {1}, ).

Note that, since 0 ¢ N, a pre-natural semigroup cannot have an identity,
not even an idempotent.

We have already defined FS(B) for B C N and the same definition applies
to any commutative semigroup. Given a sequence (xn)‘;i , in a commutative
semigroup (S, +) we define analogously FS((x,)>>,) = D wer X,  F is a
finite nonempty subset of N}. (So, if (x,)o- is one-to-one, FS((x,)>" ) =
FS({x,: ne N}).)

4.2 Definition. A sequence <xn>:il in a pre-natural semigroup (S, +, @) is
thin provided whenever m, r € N with m < r and ¢ € w, if 2l < o(x,,)
then 2t+ll¢(xr).

4.3 Lemma. Let (x,)>°, bea sequence in a pre-natural semigroup (S, +, ).

(a) There exists a sequence (F, ) of pairwise disjoint finite nonempty
subsets of N such that for all m, maxF, <minF,  and (3, xn)f::l is
thin. "

(b) If <Xn>:i1 is thin and F is a finite nonempty subset of N and

2’|¢(Em€F X,,), then for each me€ F, 2'|(p(xm).

Proof. (a) We construct the sequence (F,)>  inductively. Let F, = {1}.

Given (FI.);';1 ,let t €  be the largest such that 2 < (2, F, x,) . Choose by
the pigeon hole principle a € {0, 1,2, ..., 2”]} and a subset F, , C {ne
N:n>maxF, } such that |F, | = 2! and for each n € F,..,» 9ox,)=a
(mod 2'*'). Then 9(Z,er,  X,) =0 (mod 2"*YY as required.

(b) For this one simply observes that if » < m and ¢(x,) and ¢(x,) are
written in binary, their supports are disjoint and hence no carrying occurs when
they are added.

We need to modify the style of the construction of §3 somewhat by restricting
ourselves to a semigroup of £S.

4.4  Definition. Given a pre-natural semigroup (S, +, ¢) and €N, X, =
{(xeS:2"p(x)}.

Observe that, as a consequence of the existence of thin sequences (Lemma
4.3(a)) each X, # 9.

The following lemma is well known, although we have not found an explicit
statement in the literature.

4.5 Lemma. Let (S, +) be a commutative discrete semigroup and let p €
BS with p+p = p. Given any A € p there is a sequence (xn);“;l with
FS((x,)2 ) C A.

Proof. Galvin’s original argument presented in [18, Theorem 3.3] applies. O
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4.6 Lemma. Let (S, +, ¢) _be a pre-natural semigroup and let n be an arbi-
trary member of N. Then X, is a (compact) subsemigroup of BS. Further
each idempotent of BS isin X, .

Proof. Let p, ¢q 67,1. Tosee that X, € p+q,weshow X, C{xe€S: X, —x¢
p}. To this end, let x € X, . We claim X, C X, —x. Let y € X, . Then
p(y+x) =01 +9(x), 2"lp(¥), and 2"|p(x) so 2"|p(y + x) as required.
Nowlet pe S with p+p=p.
Suppose X, ¢ p. Then S\ X, € p so pick a sequence (x,).~ | with
FS((x,)o_,) €S\ X,. As in the proof of Lemma 4.3, pick F C N such that

20 ,cp Xp) - Then ¥ o x, € FS((x,)o_)NX,, acontradiction. O

As in §3 we make a local definition of E*, I", E, and I, to remain in
effect through Theorem 4.11. (Also, as in §3, the notation does not express the
dependence on /, the choice of (S, +, @), and the choice of (y,.,n>:il 2

4.7 Definition. Let / € N, let (S, +, ¢) be a pre-natural semigroup, and for

each i€ {1,2,...,/},let (y; )77 beasequence in S such that (v, )7
is thin.

(a) T =(BS)"".

(b) I" = {(a, a+ X ep Vi pr @+ XperpVanr o @+ Lpep ¥y ) F isa
finite nonempty subset of N and a€ S}.

(¢) E*=I"u{(a,a,...,a):acS}.

@) I=N2, e (X' nr).
(€ E=NX,c (X nE"),
Unlike the situation in §3, it is no longer obvious that [ # .
4.8 Lemma. [ # Q.

oo

Proof. Since T is compact and [ = ﬂn=1dr(Xr[,H N 17), it suffices to let

n € N and show X.*'nI" # @. (Note that each X,,, C X,.) Pick
a € X, . It is enough to produce finite nonempty F C N such that for each

ie{l,2,.... 1}, 2"9(X,er Vi ) - For then 2"[p(a+ 3, cr; ,,) sO that
I+1 *
(a’a+§:m€Fyl,m’ anméFyZ,m’ et a+2m€lfyl,m)€(/Yn)+ ni .
We show this can be done by induction on /. If /=1, since (y]’m)f:] is

thin, F = {n + 1} will do the job. Assume / > 1 and, applying the induction
hypotheses 2M times, produce pairwise disjoint <F,>,2: such that for each
re{l,2,...,2""} andeach i€ {1,2, ..., 1-1}, 2"19(E s ¥i ) - Choose
by the pigeonhole principle, G C {1, 2, ..., 2*"} with |G| = 2" and for 1,
SEG, (Zoer Yi,m) =0(Xmer Vi ) (mod 2") . Let F=U,gF,. O

4.9 Lemma. E is a compact left topological semigroup and 1 is an ideal of
E.

Proof. Let E:(po,pl,... , ;) and ?f:(qo,ql,...,q,) be in E. We show
that E +Zf € E and, if E or ?f 1s in I, then E +3 € I. For notational
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convenience we agree that a+ 3 . x, =a forany a € S and any sequence
(xn>;“;1 in S.

Let s € N. We show Zf—i—f]'eclT(XSH1 NE") and, if E or ¢ isin I then
p+4dec (XTI, Let ¥, x ¥, x---x ¥, be a basic neighborhood of
P + q . Pick by left continuity a neighborhood Uy x Uy x---xU of g such
that 3+(U0><le~--><U/)g VoxV, x---xV,. Pick a €S and a finite subset
F of N (with F#@ if q €1) suchthat (a,a+Y,p ¥ ,» A+ pcp Vs s

At cp V) €U xUpx X U,)OX;+1 . Let X = (a, a+3,cr Vi
a+Zner2~n, e a+Ener,,n). Let m =max F (or m =1 if F =¢) and
let ¢ be the largest integer with 2' < gp(yl‘m) andlet r = t+1. By continuity of
p;,pickaneighborhood Wox W, x- - xW, of p with (Wolex--~><W,)+32 -
Vo x Vy x -+ xV,. Since pe CIT(Xr[Jrl NE™), pick b € S and a finite subset
G of N (with G# I if pel) suchthat (b, b+ c¥, s D+ ,c6Vans
v b+ eV ,) € Wy x Wy x - x W, and such that b € X, and for

each i€ {1,.2,....0}, b+, 6V, €X,. Let y = (b, b+ 3,6V ,»
b4 Y ecVans -oon b+ eV ). Then ¥+ X € (Fyx ¥y x xV)nXx.
It suffices to show F NG =. For then, letting H=F UG, }+}:(b+a,
bta+ ey b+a+Zn6Hy2y”, b+a+zneﬂyl’n) and if either

F#2 or G£D,then H£D .
To this end, we may assume F # @ and G # @. Now 2'|p(b) and
YIpb+3 691 n) 30 210(X, 6, ) - Let k =minG. Then, since (v, )77,

is a thin sequence 2’l¢(y1’k) by Lemma 4.3(b). Since 2 > 9(y, ) we have
maxF=m<k=minG. 0O

4.10 Lemma. Let pc BS with p+p=p andlet p =(p,p,...,p). Then
peE. If p is minimal in BS, then 1_561.

Proof. Let n€ N and let Uy x U, x --- x U, be a neighborhood of E Then

U,NnU,N---NnU, is a neighborhood of p while, by Lemma 4.6 p € Yn . Let

ac UynUn---nUNX,. Then (a,a, ..., a)e(UyxU x --x U,)O(X:,+IOE*).
The proof the second assertion is identical to the proof of Lemma 3.7. 0O

The following theorem, the major result of this section, corresponds to Propo-
sition 8.21 of [11] (except in one detail—see Theorem 4.12).

4.11 Theorem. Let [ € N, let (S, +, ¢) be a pre-natural semigroup, and for
each i € {1,2,...,1}, let (yi."):il be a sequence in S. Let A be a cen-
tral set in S. There exist a sequence (a )", in S and a sequence (H, ).,
of pairwise disjoint finite nonempty subsets of N such that, whenever F is

a finite nonempty subset of N one has (3, .pa,, D per(@, + Xy Vi m)>
I+1
Z:neF(an + ZmeHn y2.m> ot ZneF(an + ZmeHﬂ yl.m)) €4 )
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Proof. It suffices to prove the theorem under the additional assumption that
v ,n>:i1 is a thin sequence. (For then, choose a sequence by Lemma 4.3(a)
(F,)52, such that (3° .y, ,).°, is thin and let for each i and n, Vig =

Yomer, Vi.m- Given (a,);2, and (H,)n, working for (y; )2, welet H, =

UzeHn’ F,. Then a, + ZmeHﬂ Vin=a, + ZteH,; ZmGF, Viom =@y + zzeH,j y;,t )
Accordingly we do assume that (y, ,n>:il is a thin sequence.

Let T,I",E", I ,and E be as in Definition 4.7. Pick a minimal idempotent
pepS with 4€ep andlet p=(p,p,...,p). By Lemma 4.10, p € 1.

Let 4, = A. Since 4, € p, we have (ZI)Prl is a neighborhood of E =
p+p. Pick by left continuity a neighborhood U, of p with ;)>+U1 - (Zl)l+1 .
Pick B, € p with (B,)""' C U, and B, C 4,. Then (B))™"' nI" # @ so pick
x € (B Y *'AI* and pick a, € S and finite nonempty H, C N such that
x1 = (a,,a + ZmeH‘ Viims «oos A F ZmeH Y. m). Let ¢, be the largest

integer such that 2" < pla, + ZmeHl Yi.m) - Since D+ x € (A )1+1 and p;l

is continuous, pick a neighborhood V| of P with v, + xl - (AI)M. Pick
A,€p with 4,C X, ,,nB, and (4,)"' C V.

I+l

U

; L AL St A
we proceed in an identical fashion. That is, we have

At step n of the induction, having chosen 4,, B, |, x
H, | and ¢

Vn—l ’ n
(:47")/“ is a neighborhood of E = E + Z so we pick a neighborhood U, of ;
with p + U, C (4,)""'. We pick B, € p with (B,)"' C U, and B, C 4,.
We pick x, € (Fﬂ)“rl NI" and choose g, € S and finite nonempty H, C N
with X, = (a,, a, + YomeH Vions o+or Gut Dmen Vi m)- Welet t, be the

largest integer with 2 < pla, +,.c u Vi _m)- By the continuity of p; we

n—1>

n

pick a neighborhood ¥, of p with ¥V, +x, C ()" and we pick A, €D

with 4,,, C X, ,, N8B, and (4 m)f“ V.
Observe that max H, _, <minH, . Indeed, let Kk = maxH, | and let ¢ =
t,_,- Now
- I+1 I+1
XnE(Bn) g(/YH-])

Thus 2'*'|p(a,) and 2’+1|(p(an+zmeHnyl’m) 50 2’*‘|¢(zme,ﬂyl,m). Thus,
by Lemma 4.3(b) for each m € H, 2[+1|(p(yl _m) - Since

1
2T s pda, Y v el )
meH

n—1

we have k < min H, as required.
We finish the proof by showing that (a,)7., and (H, ), satisfy the conclu-
sion of the theorem. For this we show by 1nducnon on |F|, thatif r =minF,

then ¥, ,x, € (4) . If [F|=1,then ¥, ¥ _Tx’,e(B,)’“g(A,)’*‘.
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Assume |F| > 1,let r =minF,let G = F\{r}, and let s = minG. Then
ZneG}n € (AS)I+1 by our inductive hypothesis. Since A4, € 4., € --- C

1 —_ —_
- {+1 : - [+
A, ,wehave 37 -x €(4,.,)" CV,. Since V,+ x, C(4,)" we have
ZnEG X, +Xx,€ (Ar)

I+1
Proposition 8.21 of [11] is stronger than the case of Theorem 4.11 with S = N
since the sequences are allowed to come from Z. We indicate now how to
obtain this result by our methods (and for our version of “central” sets).

4.12 Theorem. Let | € N and for each i € {1,2,...,1} let (y; ) bea
sequence in Z . Let A be a central set in N. There exist a sequence (a,) -
in N and a sequence <Hn>:O=1 of pairwise disjoint finite nonempty subsets of
N such that, whenever F is a finite nonempty subset of N one has (>_ _.a

neF “n’
I+1
ZrzéF(an + Z:meH"yl,m)’ e ZneF(an + ZmeH,l yl,m)) €4 :

as required. 0O

Proof. We can presume that whenever 2" < |y, , |, then 2"*'|y,  and that

all terms of (y, ), have the same sign. (That is essentially that (y, ’m)le is

“thin.”) We now define 7T = (BN)/+1 , I" ={(a, A+ ,crVions At ek Vo no

., a+ ZneF y,’n): ae N, F is a finite nonempty subset of N , and for each
ie{l,2,....,0}, a+ ¥, v, , €N}, E*=I"U{(a,a,...,a):a € N},
=02, c (N2 AT and E = (N2, e (N2 N E™). To see, for
example, that I" N N2" # &, one gets, as in Lemma 4.8, F C N such that for
each ie{l,2,...,1}, 2"|Zm€Fyl.’m. One then picks a such that 2"|a and
foreach 7, a+ 3, Viim > 0. No major adjustments are required for the
rest of the proof. O

It would be nicer if, for example, (N, -) were a pre-natural semigroup (or if
the set of all nonzero polynomials over an integral domain were a pre-natural
semigroup under multiplication). We conclude this section with two corollaries
to Theorem 4.11 which do allow us to work with such semigroups which are
almost pre-natural.

4.13 Corollary. Letr (S, +) be a commutative semigroup and assume that there
exist J C S and ¢o:J — N so that (J,+, ¢) is a pre-natural semigroup
and J is an ideal of S. Let | € N and for each i € {1,2,...,1} let
(; ») be a sequence in J. Let A be a central set in S. There exist a se-
quence (an):‘;l in J and a sequence (Hn)zil of pairwise disjoint finite nonempty
subsets of N such that, whenever F is a finite nonempty subset of N

one has (ZneFan’ z:nEF(an+Zm€Hnyl,m)’ ZrleF(an_’_E:mEHHyZ,m)’ e
I+1
ZnGF(an + ZmeH” yl,m)) €4 * :

Proof. By Theorem 4.11, it is enough to show that 4N J is central in J. To
this end pick a minimal right ideal R of 8S and p € R with p+p =p such
that 4 € p. Define 7: J — BJ by 1(q) = {BNJ: B € q}. It is routine to
verify that 7 is an isomorphism and a homeomorphism. It thus suffices to show
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that R is a minimal right ideal of J. (For then t[R] is a minimal ideal of
BJ, t(p) is an idempotent in 7[R], and ANJ € 1(p).)

We claim that J is an ideal of 8S. To see this, let ¢ € S and re J.
Then S={xeS:J-x€r} soJer+q while JC{xeS:J-x€gq} so
Jeg+r.

Since J is an ideal and R is a right ideal, JN R # & and hence JN R is
a right ideal of J . Pick a minimal right ideal R* of J with R* C JNR. By
[4, 11.1.8] R" is a right ideal of 8S and hence R" =R so RCJ and R isa
minimal right ideal of J as required. 0O

Our last corollary applies to any pre-natural semigroup with an identity
adjoined—most conspicuously to (N, -). It allows exactly the same conclusion
as Theorem 4.11 with only the additional assumption that our hypothesized
sequences are one-to-one.

4.14 Corollary. Let (S, +) be a commutative semigroup and assume that there
exist J CS and ¢o:J — N sothat (J,+, @) is a pre-natural semigroup, J is
an ideal of S, and |S\J| < w. Let [ € N and foreach i€ {1,2,...,1}, let
(yi,n);“;l be a one-to-one sequence in S. Let A be a central set in S. There
exist a sequence (a,)>-, in J and a sequence (H )" of pairwise disjoint finite
nonempty subsets of N such that, whenever F is a finite nonempty subset of N

one has (ZneF a,, ZneF(an + EmGHH 3y ,m) ’ ZneF(an + ZmeH" yz,m) o
{+1

EnéF(an+Zm€H" yl,m)> €A .
Proof. There is some k € N such that for each i e {1,2,...,1/}, (y,.’n):ik
is a sequence in J so Corollary 4.13 applies. O

5. PROPERTIES OF CENTRAL SETS

We derive here some consequences of Theorem 4.11. We first observe that
an analogue of van der Waerden’s Theorem holds in any pre-natural semigroup
S. Defining for x € S and n € N, nx asusual tobe x +x + -+ + x
(n times) one has that any central set 4 C S has, for each / € N, some

a, d €S with {a,a+d,...,a+[d} C A. (We remind the reader that
trivially any finite partition of S contains at least one central set.) Indeed let
(xn):il be any sequence in S and for ie {1, 2,...,/}, let Vin = ix, . Pick

(a,)v., and (H,)> as guaranteed by Theorem 4.11. Let any finite nonempty
subset F of N be given,let a=3 _,a, and d=3% .5 _, x . Then
{a,a+d,...,a+1d} C A. In the case of (N\{l}, ), this yieldg arbitrarily
long geometric progressions with common ratio chosen from any pre-designated
FP({x,)> ) lying in any central set.

Givenany me N, (w"\{0}, +, ¢), where ¢(a,,a,,...,a,)=3 1 a,,
is a pre-natural semigroup. Using this fact we obtain an m-dimensional version
of van der Waerden’s Theorem due to Grunwald (in [25]). For example, with
m=2let [ =8 and for each n € N let X, = (n,0), Xy, = (2n,0),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONMETRIZABLE TOPOLOGICAL DYNAMICS 309

X3, = (0, n)x4’n = (0, 2n), X5 = (n,n), Xg p = (n,2n), Xy, = (2n, n),
and Xg p = (2n, 2n). Then applying Theorem 4.11 we get that each central set

in o \ {(0, 0}} contains a lattice as drawn:

(a,b+2d) (a+d,b+2d) (a+2d,b+2d)
(a,b+d) f{(a+d,b+d) (a+2d,b+d)
(a, b) (a+d, b) (a+2d,b)

Likewise using / = 15, one gets 4 x4 lattices and so on. (Of course Theorem
4.11 applied here says more. It yields a system of lattices and all of their sums.)
We now turn our attention to deriving a version of Deuber’s (m, p, ¢)-sets
Theorem ([6], or see [15, §3.3}). The (m, p, c)-sets are of interest because,
given an r x s matrix 4 with integer coefficients the following statements are

equivalent:
(1) Whenever ¥ is a finite partition of N there exist B €. and xeB

such that Ax = 0. (That is, the system 4x = O is partition regular.)
(2) There exist m, p, c € N such that, given any (m, p, c)-set B there
exists x € B® with Ax =0.

Our proof was suggested in the last paragraph of [11, Chapter 8].

The definition of (m, p, c¢)-set which we give below differs from that in {6
and 15] (and for that matter from [1]) in two respects. A trivial difference, for
our notational convenience, is to require the coefficient ¢ last rather than first.
The other difference is that we restrict the coefficients to {1, 2, ..., p} rather
than to {-p, —-p, +1,...,p— 1, p}. We shall point out after the definition
why this difference is not substantive. The reason for using the different restric-
tions is that we want to consider the possibility of extending the (m, p, c)-set
Theorem to arbitrary pre-natural semigroups, in which case ~1x and —2x may
not make sense. (It will turn out not to be possible to adapt our proof, but we
want this impossibility to be for substantive reasons.)

5.1 Definition. Let m,p,c € N andlet x € N™, then S(m.p,c, x) =
{cxl}u{Zleiixchka:ke{l, 2,...,m—1} and foreach i, 4, € {1, 2,
., D}}.

We show that any central set in (N, +) contains for each m, p, ¢ some
S(m,p,c, }). If S'"(m,p,c, }) is defined as above except that each 4, €
{-p,-p+1,...,p—1,p} the corresponding result follows from the fol-
lowing simple fact: Given m,p,c and X, let p* = (c+ 1)(1 + p)””' and
for i€ {1,2,....,m} let y, =% (1+p) 'x,. Ther S'(m,p,c,¥)C
S(m, p*, ¢, x). Thus given a central set A, one finds x with S(m, p*, ¢, X)
C A and concludes S'(m, p, ¢, };) CA.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



310 VITALY BERGELSON AND NEIL HINDMAN

5.2 Theorem. Let A be acentral setin (N, +) andlet m,p,ce€ N. Foreach

i €{l,2,..., m}, there exists a sequence (x, n>:il such that for any finite
nonempty subset F of N, S(m,p,c, ;F) C A, where }F = (X perXi o
ZnGFXZ,n [ EneFxm,n) :

Proof. Pick a minimal idempotent ¢ with 4 € ¢ . Note that, as in the proof of
Lemma 4.6, Nn € g for each n. We prove the theorem by induction on m.
For m =1, since g+q = q and ANNc € q, pick by Lemma 4.5, some sequence
<y1,n>ii. with FS((yl’n):il) CANNc. Foreach n let x; , =y, ,/c. Then

given F, S(1,p, c, }F) ={cXcr X o) ={herV ) E4.
Nowlet m, p, c € N begiven. We assume the theorem is valid for (m, p, ¢)
and show it holds for (m+1, p, c). Foreach i {1, 2, ..., m} pick (xi,n)°°

n=1
such that S(m,p,c, }’F) C A for each finite nonempty F C N. We apply
Theorem 4.11 with / = p™ . Foreach A: {1,2,...,m}—{1,2,...,p},and
each n € N, define Vig = Z;’il lixl.,n. Since 4 N Nc is a central set, pick
a sequence (a,),, in N and a sequence (H, )., of pairwise disjoint finite
nonempty subsets of N such that whenever F is a finite nonempty subset of N

one has ) _.a,€ AN Nc and, foreach 4:{1,2,...,m}—{1,2,...,p},
Yonerl@y+2 ey Vi) €EANNc. Foreach i€{1,2,..., m} andeach ne N
let z;, , =3,y X, andlet z, ,  =a,/c.

Let F be a finite nonempty subset of N. We claim S(m+1,p, c, ?F) CA.
Let G=J, .- H . Now

neF “'n
C'Zzl,nzc'zle,,
ner neF 1€H,
=c-ZxU€S(m,p,c,3?G)§A.
1€G
Likewise if kK € {1,2,..., m— 1} and foreach i € {l,2,...,k}, 4, €

k k
{1,2,....pyothen 350 12030 cp 2; € D ner Zhwt n = 2aict i 2oie Xi T
€2 Xpn, €SM,p, ¢, ;G) C A. Finally let
A {1,2,...,}7’1}—»{1’2’.”,‘0}

and consider d = Y27 | 4,30, p 2 H4C D, cp 2y - Then ¢35 oz, =
SneF CZmat n = Doner Gy AlSO X0 A Y cp 2 = N A Y ep 2ien, it
= ¥ 2oneF ZIEH” AXi = Ler ZteHﬂ PO AXi = ek ZteH” YVii-
Thus d =3 cpl@, + ey v, ) €A O

We note that Theorem 5.2 does not generalize to arbitrary pre-natural semi-
groups. Our definition of S(m,p,c, }) makes sense in any semigroup.
However as a consequence of Theorem 5.3, {{xzz x € N and x > 1},
N\ {xz: X € N}} is a partition of N\ {1} whose only multiplicatively central
setis N\ {x2: X € N} which trivially cannot contain the multiplicative version
of any S(m,p,2, x).
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5.3 Theorem. The set {xZ: x €N and x > 1} is not central in (N\ {1}, -).

Proof. Let A = {x2: x € N and x > 1} and suppose that A4 is central in
(N\ {1}, -). Pick a minimal right ideal R of S(N\{l}) and pick g € R such
that g-g =g and A € q. Let S = N\{l}. Then ¢g- S CR- S CR
so ¢g-BS =R. Since A€qg=q-q, {x€S:4/x € g} € g and is hence
nonempty. Thus, by Lemma 1.1, there is some finite F C S such that for
all y € S, (UXGFA/x)/y €q. Pick ne N with FC {2,3,4,...,n} and
pick a prime p > n. Now (U,.r4/x)/p € q and (UXGFA/)C)/p2 € g so
pick z € ((UXGFA/x)/p)ﬂ((UXGFA/x)/pZ). Then for some x and y in F
zpx € A and zpzy € A. Then x and p have no factors of p. Thus, since

zpx € A, z has an odd number of factors of p while since zpzy € A, z has
an even number of factors of p, a contradiction. O

One of the major combinatorial advantages of working with SN is the ex-
istence of two interacting operations. We see here that this interaction applies
also to central sets.

5.4 Theorem. Let M =cl{p: p is a minimal idempotent in (BN, +)}. Then
M is a right ideal of (BN, -).

Proof. Let ge M ,let re fN,and let 4 € q-r. We need to show there is
some minimal idempotent of (BN, +) in A. Now {x e N: A/x€q} €r so
pick x € N with 4/x € ¢q. Since ¢ € M, pick a minimal idempotent p of
(BN, +) with 4/xep. Then A €p-x. Alsoby Lemma 1.2, p-x+p-x=p-x.

To complete the proof we need to show that p-x is minimal, that is that p-x
is in some minimal right ideal of (N, +). Since p-x = p-x+p-x €p-x+fN,
it suffices to show p-x + SN is a minimal right ideal.

Now p is in some minimal right ideal R and p+ SN C R+ SN C R so
p+ BN =R. To see that p-x + SN is a minimal right ideal we use Lemma
1.1. Let B C N and assume thére is some n € N with B—n € p-x. We need
to produce a finite ' C N such that foreach ye N, (.., B—z)-y€p-x.

Pick n € N with B—nep-x and pick i € {0, 1,..., x ~ 1} such that
n+icNx.Then (B+i)—(n+i)=B-nep-xso (B+i)/x—(n+i)/x€Dp.
(Recall that (B+i)/x={yeN:yxe€B+i}={z/x:z€(B+i)NNx}.)

Let C = (B+i)/x. Since C — (n+1i)/x € p, pick by Lemma 1.1, finite
F C N such that forall y e N, (U..,C~z)—y€p. Pick Kk € N with
Fc{1,2,...,k} andlet G=1{1,2,...,(k+1)-x}. We claim that for
each y e N, (U..;B—2)—y €p-x. Tothisend, let y € N and pick
a € N such that (¢ — 1)x <y <ax. Then (U,.,C—-2z2)—a € p and
(UierC—2)—a=U.cpC—(a+z) sopick t € F with C—(a+1)€p.
Then Cx —(a+t)x € p-x. Now Cx —(a+t)x C B+ —ax —1x so
B+i—-ax—txep-x. Pick se{l,2,...,x} such that ax =y + 5. Then
Bti-ax—tx=(B—(tx—i+5))-y C(U..¢B-2)-y s0o (U..(B—2)-y€
p-Xx asrequired. O
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5.5 Corollary. Let .F be a finite partition of N. There is some A € F
which is central in (N, +) and in (N, ). In particular, there is one cell of &
satisfying both the multiplicative and additive versions of Theorem 4.11.

Proof. Let M =cl{p: p is a minimal idempotent in (N, +)}. By Theorem
5.4 M is a right ideal in (8N, -) so, by Zorn’s Lemma pick a minimal right
ideal R C M . By {8, Corollary 2.10], pick an idempotent ¢ = g-g in R. Pick
Ae€e.% with 4€q. Since ¢ is a minimal idempotent in (BN, -)A4 is central
in (N,:). Since 4 € g and g € M, there is some minimal idempotent p in
(BN, +) with Ae€p. Thus 4 iscentralin (N, +). O

In [1] we established the existence of a “combinatorially large”ultrafilter in
BN, deducing that some cell of any finite partition of N satisfies a long list
of combinatorial statements. We show here, in Theorem 5.6, that we may
choose a combinatorially large ultrafilter such that each member of ¢ is central
in (N,+) and in (N, ). We thus add both the additive and multiplicative
versions of Theorem 4.11 to our list of combinatorial conclusions about one
cell of a partition.

It would take us too far afield to include all of the definitions from [1]. The
reader who wants to follow the proof of Theorem 5.6 will need to have a copy
of [1] available.

5.6 Theorem. There is a combinatorially large ultrafilter q such that q is a
minimal idempotent in (BN, -) and each member of q is central in (N, +).

Proof. Let M be as in Theorem 5.4 and let MPC, LFS, A, A, A, and U
be as defined in [1]. We need to show there is some ¢, a minimal idempotent
in (BN, ) with ge MPCNLFSNA NA, NM.

Now A is a right ideal of (SN, +) [20, Theorem 10.8] so pick a minimal
right ideal R C A and pick an idempotent r € R. By Theorem 5.2 and the
remarks preceding Theorem 5.2, r € U. By [1, Lemma 2.4] r € MPC . Since
reRand r+r=r, reM. Thus re MNMPC. Since M is a right ideal of
(BN, ) (by Theorem 5.4) and MPC is a right ideal of (#N, -) (by[l, Lemma
2.4]), we have M NMPC is arightideal of (N,:) so r-re MNMPC. By
[1, Lemma 2.13] r-r€ LFS so MNMPCNLFS # @ so, by [1, Lemma 2.14]
MnNMPCNLFS is aright ideal of (N, -). Pick a minimal right ideal J of
(BN, ) with JC MNMPCNLFS and pick g € J such that g-g=¢q. We
claim ¢ is as required. Immediately ¢ is a minimal idempotent in (N, -)
and ge MNMPCNLFS. Toshow g€ Ay nA, it suffices to show M C A,
and J CA . By[l, Lemmas 2.6 and 2.8] A and A, are ideals of (N, +)
and (BN, ) respectively while J is a minimal right ideal of (SN, ) and M
is contained in the closure of the minimal ideal of (SN, +). O

We conclude this section by showing in Corollary 5.9 that central sets are
common in N ; in fact sets which are central both multiplicatively and addi-
tively are common.
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5.7 Lemma. Each right ideal in (BN, ) contains 2° idempotents, where ¢ is
the cardinality of the continuum.

Proof. It is well known (see for example [22, Corollary 2.6]) that each right
ideal in (Bw, +) has 2° idempotents.

Let R be a right ideal in (N, -). We may presume R is a minimal right
ideal (since R contains a minimal right ideal). Define ¢: N — w by ¢(x) is
the length of the prime factorization of x. Then ¢ is a homomorphism from
(N, ) onto (w, +). By a theorem of Milnes [24] (or see [22]), the continuous
extension q)ﬂ: BN — fw is a homomorphism from (#N, ) onto (fw, +).
Consequently P = (pﬂ [R] is a right ideal of (Bw, +) and hence contains 2°
idempotents. It thus suffices to show that if ¢ € P and ¢ + ¢ = ¢, then
(¢’3 )_1[{q}] N R contains an idempotent. Since g € (pﬂ [R], this intersection
is nonempty and is thus a compact left topological semigroup which therefore
contains an idempotent as required. O

5.8 Theorem. There are 2° combinatorially large ultrafilters which are mini-
mal idempotents in (BN, -) and every member of which is central in (N, +).

Proof. In the proof of Theorem 5.6, we obtain a right ideal J of (N, ) such
that every idempotent of J satisfies the conclusions of this theorem. By Lemma
5.7, there are 2° such idempotents. O

Our proof of Corollary 5.9 uses a standard topological argument.

5.9 Corollary. There is a partition of N into infinitely many cells, each one of
which is central in (N, +) and is a member of a combinatorially large ultrafilter
which is a minimal idempotent in (BN, -).

Proof. By Theorem 5.8, pick a sequence <qn>:il of distinct combinatorially
large ultrafilters which are minimal idempotents in (N, :) and each member
of which is central in (N, +). Pick B| €4, and B, | €¢q, with B, (NB, | =
@. Pick o(1) € {0, 1} sothat C, ={k € N:q, ¢ Bl,a(l)} is infinite. Let
p, =4, or p, =g, depending on whether g(1)=0 or a(1)=1.

Inductively, given infinite C, | ={k€N:q, ¢ U:':_Il B, .} pick distinct
s,te C,_| and pick Bm0 € q, and Bn’l € g, with Bn’oﬁBn’l = &. Pick
g(n)€{0, 1} suchthat C, ={keC,_,:q, ¢ Bnﬁ(n)} is infinite. Note that
C,={keN:g ¢ U_ B, ;- Let p,=q, if o(n)=0 andlet p, = g, if
on)y=1.

Foreach n>1,let 4, =B, .\ U B, ;. andlet 4 = N\U;, 4, .
Observe that B, o & A, . Then each 4, € p, hence is as required. O

6. THE NOTIONS OF “CENTRAL”

We were motivated to call members of minimal idempotents “central” when
we found out we could prove Theorem 4.11 which is, as we have seen a gen-
eralization of [11, Proposition 8.21], a result about “central” sets in N. We
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establish here that the similar results obtained are not a coincidence. In fact,
for a countable semigroup S, the notions coincide.' (One of the two implica-
tions involved is due to B. Weiss.)

We are grateful to Dennis Davenport who pointed out that we need not
restrict ourself to commutative semigroups.

We first recall some definitions (following [11] in generalizing the notion to
arbitrary semigroups).

6.1 Definition. A dynamical system is a pair (X, (7,),.¢) where (X, d) isa
compact metric space, (S, +) is a semigroup, each 7 is a continuous function
from X to X,and for 5s,1€ S, T.oT,=T,

t+s °
6.2 Definition. Let (X, (7)) ¢

(a) Points x and y in X are proximal if and only if there is a sequence
{s(k))zZ, in S such that lim,_,  d(T,,(x), Ty;,(»)) =0.

(b) A subset D of S is syndetic if and only if there is a finite subset G of
S such that for each s € S there exists z€ G with s+z¢€D.

(c) A point y in X is uniformly recurrent if and only if for each neigh-
borhood U of y, {s€ §: T, (y) € U} is syndetic.

In [11], the definition of “central” applied only to subsets of N. However,

a verbatim application is meaningful in any semigroup. We denote this notion
here by “*-central.”

) be a dynamical system.

6.3 Definition. Let (S, +) be a semigroup. A set 4 C S is *-central if and
only if there exist X and (7) ¢ such that (X, (7)) ) isa dynamical system
and there exist x, y € X and a neighborhood U of y such that x and y are
proximal, y is uniformly recurrent, and 4 = {s € S: T,(x) € U}.

In showing that *-central sets are central, the main tool is the notion of en-
veloping semigroup developed by Ellis [7 and 9]. Given a dynamical system
(X, (Ty),cs) one takes the set *X of all functions from X to X under com-
position with the product topology and lets £ = c{7,: s € S}. Then E isa
compact right topological semigroup. That is, for each f € E, the function
Py defined by p f(g) = go f is continuous. Further, if f is continuous (in
particular if f =7, for some s € S) then /lf is continuous. (See for example
[11, p. 159].)

Our first lemma is essentially [8, Lemma 5.15] except that we are not working
with a group.

6.4 Lemma. Let (X, (7)) ) bea dynamical system, let E be its enveloping

semigroup, and let x and y be proximal in X . There is a minimal left ideal
L of E such that f(x)= f(y) whenever <€ L.

Proof. Let L = {f € E: f(x) = f(y)}. It suffices to show that L # &. For
then L istrivially a left ideal and hence, by an easy application of Zorn’s lemma

"This result was anticipated by S. Glasner who showed essentially the same thing for abelian
groups in Proposition 4.6 of Canad. J. Math. 32 (1980), 993-1007.
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(using the fact that E is right topological} L contains a minimal left ideal.

Pick a sequence (s(k));., € S such that lim, ,__d(T, w0X)s Tn() =0
and let f be a cluster point of (7, );2, in E. Suppose that f(x) # f(y)
and let e =d(f(x), f(»))/3. Pick m such that forall k > m

AT, (%), Ty () <.

Let V—n_l[N(f( ), &)lnx, ' [N(f(»), €)]. Then V is a neighborhood of f

*X so pick k > m such that T sk € V. Then d(T ;) (x), Ty (¥) < e,
d(TS(k)( ), f(x)) < &, and d(T, (y), f) < € so we obtam a contradic-
tion. O

6.5 Lemma. Let (X, (T)) ) beadynamical system and let E be its envelop-
ing semigroup. Let L be a left ideal of E and let D be a syndetic subset of S .
Then LNcl{T,:se D} #J.

Proof. Since D is syndetic, pick a finite subset G of S such that for each
s € S there exists z € G with s+ z e D. Pick f e L. We claim there is some
z€ G with T o fec{T,:s€ D}. Since L is a left ideal this will suffice.
Suppose instead that for each z € G there is a basic neighborhood of 7,0 f
missing {7,:s € D}. Pick for each z € G a finite subset F, of X and
an &, > 0 such that {7,:s € D} N, 7, [N(T,(f(x)),¢,)] = . Now
each T, is continuous so, since X is compact, is uniformly continuous so
pick 6, > 0 such that d(7,(x), T,(y)) < &, whenever d(x, y) < J,. Let
F=U,F, andlet 6 =min{d.: z€ G}. Let W =) 7 [N(f( ), 9)].
Since W is a neighborhood of f and f€ L and L C E =cl{T,:s€ S}, pick
s€ S8 with T, e W. Pick z€ G with s+z € D. Now T, € W so given
xeF,, dT,(x), f(x)) <dé <, and hence d(T(T,(x)), T,(f(x))) <e,.
Thus T € Nyer Mo [N(T,(f(x)), ¢,)] while s+ z € D. Thus we have a

S+z
contradiction. 0O

6.6 Lemma. Ler (X, (T,) ) beadynamical system and let E be its envelop-
ing semigroup. Let y be uniformly recurrent in X and let L be a left ideal of
E. There exists fe€ L with fof=f and f(y)=

Proof. We may presume L is compact since, if f€ L, Eo f = P;AEIC L
and is compact. Thus it suffices to show there exists f € L with f(y) = y.
Forthen {feL: f(y)=y}=LnN n {y}] is a compact subsemigroup which
then contains an 1dempotent

Suppose instead each f € L has f(y) # y and let ¢, = d(f(y), y)/2 and
let V, = ny_l[N(f(y), ¢,)]. Then {V,: f € L} is an open cover of L so
pick finite F € L with L € U, V,. Let ¢ = min{ef: f € F} and let
D={seS:T(y)e N(y,e)}. Since y is uniformly recurrent, D is syndetic.
Pick by Lemma 6.5, ¢ € LNcl{T:5s € D}. Pick f € F such that g € V,
and, since Vf is a neighborhood of g, pick s € D with T € Vf. Then
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d(f(y), T,(y)) < €, and, since s € D, d(T,(y),y) <& < &,. But then
dif(y),y) < 2e,, a contradiction. O

6.7 Lemma. Let (X, (T,) ) beadynamical system and let E be its envelop-
ing semigroup. Define ¢:S — E by ¢(s) = T, and let wﬂ be the continuous
extension of ¢ to BS. If [ is an idempotent in a minimal left ideal of E , then
there is a minimal idempotent p € BS with (pﬁ(p) =f.

Proof. Note that (pﬂ [8S] is compact so that (oﬂ [8S] = E. We now establish
that (/)ﬂ is an antihomomorphism. To this end, let p, g € S and suppose that
(oﬁ(p +q) # (pﬁ(q) o (pﬂ(p). Pick U and V disjoint open neighborhoods of
q)ﬂ(p-i—q) and (p'g(q)O(pﬁ(p) respectively. Pick 4 € p+¢g such that q)B[Z] -y
andlet B={seS: 4A-sep},sothat Beg.

Pick W a neighborhood of (pﬂ(q) with pwﬂ(p)[W] C V. Pick C € g with

¢ﬂ[?]§ W.Pick se BNC. Since s€ C, T, e W so TSo(pﬂ(p)E V. Since
47 18 continuous, pick a neighborhood M of (pB (p) with A, [M]C V. Pick

D ep with ¢’ [D]C M. Since S€ B, A—sep sopick te A—snD. Since
teD, T,e M so T,oT, € V. Since t+s€ 4, T,., € U and we have a
contradiction.

Now pick a minimal left ideal L of E with f e L. Then (¢*)"'[L] is a
right tdeal of S5 so pick a minimal right ideal R of S with R C (gpﬂ)_l[L].
Then (oﬂ[R] is a left ideal of £, q)ﬂ[R] C L,and L is minimal so (pﬁ[R] = L.
Consequently ((pﬂ )_1[{ SN R is a (nonempty) compact subsemigroup of S5
so pick an idempotent p € ((pﬂ)_l[{f}] AR. O

6.8 Theorem. Let (X, (T,) ) be a dynamical system, let x and y be prox-
imal in X with v uniformly recurrent. There is a minimal idempotent p € S
such that, whenever U is a neighborhood of y, {s € S: T,(x) e U} € p. In
particular, each *-central set in S is central in §.

Proof. Let E be the enveloping semigroup of (X, (T}) ;) and define ¢: § —
E by ¢(s) = T,. Pick by Lemma 6.4 a minimal left ideal L of E such that
f(x)= f(y) whenever f € L. Pick by Lemma 6.6 an idempotent f € L with
f(y)=y. Pick by Lemma 6.7 a minimal idempotent p € §S with (pﬂ(p) =f.

Let U be a neighborhood of y and let 4 = {s € §: T (x) € U}. Now
wﬂ(p)(x) = f(x)= f(y) =y and y € U so n;l[U] is a neighborhood of
¢B(p). Pick B € p such that qpﬂ[F] - n;l[U]. We claim that B C 4 so that
Aep.LletseB.Then T,en, [Ul so s€d. O

The notion of “central” is closed under supersets while it is not obvious
that the corresponding statement holds for “*-central”. Accordingly we asked
(with S as the natural numbers under addition): “Given a central set 4 in S
must there be a *-central set B with B C 47" This question was answered in
the affirmative by B. Weiss. We are grateful to him for permission to present
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his elegant proof (in Theorem 6.11). The proof uses the notion of “p-lim”
(Definition 2.2).

6.9 Lemma. Let (X, (T,),.) be a dynamical system. Let R be a minimal
right ideal of BS andlet pe R. If y € X and p-lim T (y) =y, then y is
uniformly recurrent.

Proof. Let &€ > 0 be given and let 4 = {s € S: d(T,(y), y) < &}. We need
to show that 4 is syndetic. Let B = {s € S: d(T,(y),y) < &/2}. Since
p-limses T.(y)=y,wehave Bep.

Let C={teS:B-tep}. Weclaim that C is syndetic. Since p + S C
R+ S CR wehave p+ BS =R. Thus p+ g =p for some g € SN . Since
Bep, Ceq so C#J. Pick by Lemma 1.1 a finite F C S such that for all
vyeS, (UypB-—x)—yep. Then, given y € S, U B-(y+x)€p so
there is some x € F with B—(y+ x) € p (so that y + x € C as required).

We now claim that C C A4, so that A4 is syndetic. To thisend let ¢t € C.
Since T, is continuous and X is compact, 7, is uniformly continuous. Pick
6 > 0 such that d(T,(x), T,(z)) <é&/2 whenever x, z € X with d(x, z)<J.
Let D={s€S:d(T,(y),y)<d}. Since p-lim T (y)=y,wehave DEp.

SES T
Pick se DN(B ~1). Since se€ D, d(T,(y),y) < so

d(T(T,(y)). T,(y)) <&/2.

Since s+r€ B, d(T,,,(y),y) <é&/2. Since T,oT =T,

s+ d(T,(v),y)<e as
required. O

t

6.10 Lemma. Let X be a Hausdorff space, let S be a semigroup, let p, q €
BS and let (x) ¢ be an indexed family in X . Assume that for each t €
S, g-lim exists and that p-lim,_o(g-lim ¢ x ) exists. Then (q + p)-

1 s€s Xsart . SES s+t
lim {g-im

res Xr = p-hmteS

Proof. For each t € § let y, = g-lim _¢x ,, and let z = p-lim,  y,. To
see that z = (¢ + p)-lim, s x,, let U be an open neighborhood of z and let
A={reS:x eU}. Weshowthat A€qg+p. Let B={reS:y, € U}.
Then B € p. We claim that B C {t € S: 4—t € gq}. Let t € B and let
C={seS:x_,€U}.Since y €U, Cegq. To complete the proof we show
CCA—t.LetseC.Then x_,, €U so s+te A asrequired. O

S+t

SES x5+t) '

6.11 Theorem (Weiss). Let S be a countable semigroup and let A be central
in S. Then A is *central in S.

Proof. Let S* = SU{0}, where 0 is a new two-sided identity adjointed to S'.
Let X be the set of functions from S to {0, 1} with the product topology.
Enumerate S™ faithfully as {a,:ne N} andfor x # y in X define d(x, y) =
1/t where t = min{n: x(a,) # y(a,)}. Then d is a metric on X and the
metric topology and the product topology agree.

Foreach s €S, define T,: X — X by T (x)(t) = x(s+1). Then each T is

continuous. (Let s € .S and consider a subbasic open set 71,',_1[{(1}] where 1 € S”
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and a € {0, 1}. Then 7, '[z; '[{a}]] = n.,\[{a}].) Also, given r,s € S and
teS" and x € X we have (T, o T)(x)(t) = T(T(x))(t) = T(x)(r +1) =
x(s+r+1)=T, (x)(t). Thus (X, (T}),.s) is a dynamical system.

Let x = x,, the characteristic function of 4. Pick a minimal right ideal R
of BS and an idempotent p € R with 4 € p. Let y = p-lim, ¢ 7T (x). As
1s easy to verify, given ¢t € S and (z), ¢ In X, plim ¢ T(z) =
T,(p-lim ¢z ). Since p = p +p we have, using Lemma 6.10,

y=(p+p)limT, (x)
res

BN

= p-lim (p llmT( Lx )))

tesS
= i T -
= p-lim (p }g}( ))
=p-ltlensiT,(y)-

Thus by Lemma 6.9, y is uniformly recurrent. Since p-lim
p-lim S T.(y), we easily get that x and y are proximal.

Let =n, [{y )}l = {z € X:z(0) = y(0)}. We show that 4 = {s €
S: Ts(x € U} so that A4 is *-central. Since y = p-lim ¢ 7T((x), we have
that {s € §: T,(x) € U} € p so we may pick 1 € 4 with T,(x) € U. Then
y0)=x(t)=1,since t€ 4. Thus U = {z € X: z(0) = 1}. But then, given
ses,

SES Ts(x) =

T(x)eU&T(x)(0)=1
e x(sy=1
< se€ A a]

6.12 Corollary. Let S be a countable semigroup and let A C S. Then A is
central in S if and only if A is *central in S.

As we remarked earlier, it is not obvious that the notion of *-central is closed
under supersets. It is, however, true, at least for countable semigroups.

6.13 Corollary. Let S be a countable semigroup andlet ACBCS. If A is
*.central, then B is *central.

Proof. A is *-central so by Theorem 6.8, A4 1is central. Pick a minimal idem-
potent p in BS with 4 € p. Then B € p so B is central so by Theorem 6.11,
B is *-central. O

We also see that (for countable semigroups) in the definition of *-central, it
suffices to work with one concrete dynamical system.

6.14 Corollary. Let S be a countable semigroup and let X and (T,) ., be as
in the proof of Theorem 6.11. Let A C S. Then A is *central lfand only if
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there exist x,y € X with y uniformly recurrent and x proximal to y, and a
neighborhood U of Y suchthat A= {s€ S: T(x)eU}.

Proof. The sufficiency is trivial so assume A is *-central. By Theorem 6.8 A
is central so the proof of Theorem 6.11 applies. 0O

The semigroup S must be countable in order for the space X produced in
the proof of Theorem 6.11 to be metric. In light of Theorem 6.8, the following
question is thus natural.

6.15 (Question. Let S be an uncountable semigroup. Must every central set in
S contain a *-central set?

Note that the correspondences established in Theorems 6.8 and 6.11 are of
a different nature. Central sets are produced by minimal idempotents while
*.central sets are produced by pairs (x, v). In Theorem 6.8 it was shown that
given a pair (x, y) there is a minimal idempotent p such that all *-central sets
produced by (x, y) are central produced by p. On the other hand, in Theorem
6.11, the pair (x, y) depends both on the central set and the idempotent. We
conclude by showing that this distinction is necessary.

6.16 Theorem. Let R be a minimal right ideal of (BN, +) and let p € R
with p+p = p. There do not exist a dynamical system (X, T) and x,ye X
such that

(1) y is uniformly recurrent.

(2) x and y are proximal, and

(3) foreach A € p there exists a neighborhood U of y with {ne€ N: T"(x)
elU}C4A.

Proof. Suppose we have such (X, T), x, and y. Foreach me N let B, =
{n € N:d(T"(x),y) < 1/m}. Then each B, is infinite. (In the context of
the current paper one can see this by observing that‘Bm is *-central, hence
central.) For each m pick a, € B, \ ({q;,: k <m}U{b,:k <m}) and b, €
B \({a,: k <m}u{b,:k <m}). Then {a,,: me N}n{b,: me N} =0T so,
without loss of generality {a,,: me€ N} ¢ p. Let A= N\{a,:me N}. Pick
U, a neighborhood of y, with 4 D {n € N: T"(x) € U}. Pick m € N with
{zeX:d(z,y)< 1/m}CU. Then d(T*(x),y) < 1/m so T*(x) e U so
a, € A, a contradiction. O
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