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In this paper, we present experimental results and reveal that strong perturbations are
not necessary for elastic instability to occur in straight-channel, inertialess, viscoelastic
flows at high elasticity. We show that a non-normal-mode bifurcation is followed by
chaotic fluctuations, self-organized as streamwise streaks, and elastic waves due to weak
disturbances generated by a small cavity at the center of the top channel wall. The chaotic
flow persists in the transition, elastic turbulence, and drag reduction regimes, in agreement
with previous observations for the case of strong perturbations at the inlet. Furthermore,
the observed elastic waves propagate in the spanwise direction, which allows us to confirm
the elastic waves’ linear dispersion relation directly. In addition, the spanwise propagating
elastic wave’s velocity depends on Weissenberg number with the same scaling that was
previously observed for streamwise propagating waves, although their velocity magnitude
is significantly smaller than what was previously observed for the streamwise ones.
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I. INTRODUCTION

Dissolving tiny amounts of long, flexible, and linear polymer molecules in viscous Newtonian
solvents strongly affects the dynamics of both laminar and turbulent flows due to polymer stretching
by flow [1]. As a result, even in low-velocity shear flows, such as the one discussed in this paper,
significant elastic stress can be generated due to large velocity gradients and high polymer longest
relaxation times. Indeed, elastically driven instabilities [2,3] and a chaotic flow state called elastic
turbulence (ET) [4] are observed in shear flows at low Reynolds number Re ≡ ULρ/η � 1 and high
Weissenberg number Wi ≡ λU/L � 1, corresponding to high fluid elasticity El ≡ Wi/Re � 1 [5].
Here, U , L, ρ, and η are the characteristic velocity and length scales, the fluid’s density and viscosity,
respectively, and λ is the longest polymer relaxation time. Wi is a control parameter that defines the
degree of polymer stretching by the flow [5].

In inertialess flows (Re � 1) with curvilinear streamlines, the elastic stress that develops in
polymeric fluids destabilizes the flow, causing ET and effective mixing [4,6]. These flows are
linearly unstable, so the most unstable normal mode grows exponentially and then saturates at
sufficiently large amplitude due to nonlinear interactions [3,7,8]. In such shear flow geometries,
the elastic instability is driven by elastic stress along the curved streamlines, which initiates a
force in the curvature direction, causing the instability [3,7,9]. However, in parallel-shear flows
with zero curvature, such as the Poiseuille and plane Couette flows, this mechanism is ineffective.
Accordingly, except for the recently discovered case of ultradiluted solutions (β > 0.99, where β

is the solvent to solution viscosity ratio) [10], zero-curvature parallel-shear flows were shown to be
linearly stable [11–13].
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The linear stability of parallel-shear flows does not imply they are globally stable. Two well-
known and recently investigated examples are the pipe and the plane Couette flows of Newtonian
fluids, which become unstable at finite Re even though they are linearly stable for all Re [14–17]. To
explain the observation of such instabilities in a broad class of parallel-shear Newtonian flows, a new
concept, called the non-normal-mode instability, was introduced as an alternative to the traditionally
accepted least-stable normal eigenmode bifurcation [18,19]. The new approach is based on the fact
that the Orr-Sommerfeld equation, which describes the linear instability of parallel-shear flows [8],
is a non-self-adjoint operator [19]. Notably, while flows with normal-mode instability are sensitive
to even infinitesimally small perturbations, the non-normal instability requires a finite-sized per-
turbation to develop. Then, in addition to the stable normal modes, unstable nonorthogonal modes
emerge and grow algebraically up to a sufficiently large amplitude due to finite-size perturbations.
A theory for nonmodal instability in viscoelastic plane Poiseuille and plane Couette flows for
the El � 1 regime was introduced in Refs. [20–22]. Spanwise-modulated coherent structures,
consistent with the predictions of nonmodal theory, were observed in both Newtonian [23,24] and
viscoelastic [25,26] channel flows.

Several works have experimentally shown the elastic instability that occurs in inertialess straight-
shear flows. In particular, Ref. [27] first reported strong velocity fluctuations in a pipe flow, where
a strong jet was used to perturb the fluid at the pipe’s inlet. Furthermore, experiments in a square
microchannel [28–30] demonstrated that strong prearranged perturbations by a set of obstacles at
the inlet of a channel flow lead to strong flow fluctuations above the instability threshold value
Wic. A recent experiment from our laboratory studied the elastic instability and characterized
the flow in a quasi-two-dimensional channel flow [25,26]. In this experiment too, the flow was
strongly perturbed by placing an array of obstacles at the inlet covering the full channel width.
Three flow regimes were observed in this experiment above the instability onset: transition, ET,
and the high elasticity drag reduction regime (DR, see Ref. [31]), where the bifurcation was
found to be continuous and nonhysteretic. Moreover, as determined by examining three different
features, it was observed that the instability was a non-normal-mode bifurcation. First, the Wi
dependence of the normalized friction factor Cf /Clam

f and of the root-mean-squared (rms) velocity
and pressure fluctuations urms and Prms have slope exponents that are significantly different from
the normal-mode bifurcation indicative value of 0.5. Second, just above the instability onset,
there was a continuous velocity power spectrum with an algebraic decay at higher frequencies,
in addition to high-energy peaks in the spanwise velocity spectrum at lower frequencies [25]. Thus,
an infinite number of modes are excited above the instability threshold, contrary to the single most
unstable mode in the case of the normal-mode instability [8]. Third, the Wi dependence of the
spectral peak at low frequency implies the existence of elastic waves on top of a chaotic flow in
the transition, ET, and DR regimes. These features confirm that the instability is the non-normal
mode bifurcation excited by finite-size perturbations. Furthermore, in all three regimes the flow
exhibits weakly unstable coherent structures (CSs) in the form of streamwise rolls and streaks,
organized into a cycling self-sustained process (SSP) [26,32]. The CSs selected by the flow depend
on the structure of perturbations and can vary for different initial perturbations, as established in
the Newtonian flow case [18,19]. This sensitivity to initial conditions is a characteristic property of
the non-normal-mode bifurcation. Therewith, only in ET the streaks are destroyed by a secondary
instability that strongly resembles the temporal dynamics of the inertial Kelvin-Helmholtz insta-
bility, even though the instability mechanism is purely elastic [25]. The sequence of CSs repeats
itself periodically with the frequency of elastic waves, which pump energy into the cycle and
CSs. This characteristic feature of ET distinguishes it from inertial turbulence in parallel shear
flows.

The non-normal-mode instability of viscoelastic straight-channel flows emphasizes the impor-
tance of the details of the finite-size flow perturbations. In particular, it raises the question of how
sensitive this type of flow is to the initial perturbation’s strength and morphology. Therefore, in this
paper, we intend to elucidate the following questions: (i) Are the strong prearranged perturbations
at the inlet necessary to get elastic instability in straight-channel flows of viscoelastic fluids? If
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not, then (ii) will the flow exhibit the same characteristics of the non-normal-mode bifurcation
as in Refs. [25,26]? (iii) In this case, will the flow structure be similar to that of the strongly
perturbed flow, namely, three flow regimes with similar CSs? (iv) Will elastic waves be observed
in this flow as well? And (v) will there be a correlation between the behavior of elastic wave
intensity and flow characteristics as a function of Wi in three flow regimes? To answer the above
questions, we conducted an experiment on a viscoelastic fluid straight-channel flow disturbed by
a weak perturbation. In particular, unlike previous studies [25–30], the inlet to our channel was
carefully smoothed and tapered, and without any obstacles blocking the flow. We find that this
detail is crucial since wall roughness and imperfections at the inlet may cause an earlier elastic
instability, similar, e.g., to Newtonian pipe flow in which the stronger the perturbations, the lower
the instability onset [33]. Instead, the only flow perturbations are generated by a small cavity at
the channel’s top wall, close to the middle of the channel length. The disturbance to the channel
flow was thus initiated by velocity fluctuations caused by an elastic instability and ET inside the
cavity, driven by a streamwise channel flow at the boundary. In particular, the flow inside the cavity
has curved streamlines and is therefore subjected to a normal bifurcation and exhibits ET at higher
Wi. Such flow geometry was investigated earlier in Ref. [34], where an experimental study of the
transition in a lid-driven square cavity flow with curved streamlines was presented [3,9]. Notably,
the cavity flow in this study was driven by a moving solid boundary. However, later on, the same
elastic instability was investigated in a wide square cavity connected to a channel [35]. Thus, the
perturbations and flow instability downstream from the cavity were triggered by the flow inside the
cavity above the elastic instability, similar to the instabilities observed in [34,35], and further on,
in ET.

Similar to the strongly perturbed channel flow [26], in this paper, we study the flow structure
and properties at several locations downstream from the cavity, since upstream from it, the flow is
found to be laminar. The key message of the paper is that a weak, finite-size perturbation, due to the
presence of a cavity in a straight-channel shear flow, is sufficient to cause an elastic instability along
with the transition, ET, and DR regimes, where streamwise velocity streaks are observed in all of
them. Another striking observation is spanwise elastic waves with the same power-law dependence
on Wi, but with a much lower velocity than the streamwise propagating elastic waves shown in
Refs. [26,36].

II. EXPERIMENTAL TECHNIQUES AND METHODS

Experimental setup. The experiment was conducted in a transparent acrylic channel, as shown
in Fig. 1. The length, height, and width of the channel are L = 750 mm, H = 0.5 mm, and
W = 3.5 mm, respectively. The channel inlet was carefully smoothed and tapered over a distance
of roughly 200H to eliminate any unwanted flow disturbances. In addition, we drilled a small
cavity, which initially served as a port for pressure measurements. Our observations revealed that
downstream of its location the cavity triggered velocity perturbations larger than those from the
inlet. Therefore, separate measurements of flow characteristics, excluding pressure fluctuations,
were conducted first with the rather deep cavity of D = 0.5 mm diameter and about h = 5 mm in
depth, blocked from the pressure sensor tube. Then, pressure fluctuation measurements were made
separately, with the end of the cavity connected to the pressure sensor. The fluid in the channel was
driven by nitrogen gas, pressurized up to 60 psi.

Preparation and characterization of polymer solution. As a working fluid, we used an aqueous
polymer solution comprised of 44% sucrose, 22% D-sorbitol, 1% sodium chloride (Sigma Aldrich),
and c = 230 ppm polyacrylamide (PAAm, Mw = 18 × 106Da from Polysciences inc.) with c/c∗ �
1, where c∗ is the overlap polymer concentration [37]. The solution density, solvent viscosity, and
the total viscosity were ρ = 1320 Kg m−3, ηs = 0.093 Pa s, and η = ηp + ηs = 0.135 ± 0.01 Pa s,
with the solvent to solution viscosity ratio of β ≈ 0.69; notably, we verified that the solution
viscosity was constant at the shear rates used in the experiment using a rheometer with the concentric
cylinder geometry (AR1000N, TA Instruments; see Fig. S5 in the Supplemental Material [39] ). In
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FIG. 1. Schematics of the channel flow apparatus and the PIV system used in the experiments. A cross-
section view at the center of the channel, a distance 1

2 L from the inlet, shows the cavity of diameter d = H .
The channel dimensions are length (L) × width (W ) × height (H ) = 750×3.5×0.5 mm3. The horizontal x-z
mid-plane is located at y = 0.

addition, the longest polymer relaxation time for this solution was measured in Ref. [37] to be
λ = 12.1 s using the stress relaxation method.

Flow rate and pressure fluctuation measurements. During each experiment, we used a PC-
interfaced balance (BPS-1000-C2-V2, MRC) to measure the time-averaged mass discharge rate
�m/�t . Thus, we calculated the average velocity in the channel U = �m

�t /(ρ H W ). Experiments
were conducted at low Reynolds numbers Re = ρUH

η
< 0.43 and the Weissenberg number was

in the range Wi = U
H λ ∈ (100, 2100). This confirms that our measurements were performed at a

high elasticity number El = Wi
Re = ηλ

ρH2 = 4950. We also measured pressure fluctuations using a
high-resolution pressure sensor of accuracy 0.1% of a full scale (Honeywell, HSC Series).

Imaging system and high-resolution PIV. We conducted measurements of the velocity field at
various distances S downstream from the cavity, using the particle image velocimetry (PIV) method.
For that, we illuminated small tracer particles (3.2 μm fluorescent tracers) with a thin laser sheet
(thickness of ∼30 μm) over the central plane y = 0 in the channel. We then captured pairs of
images of the particles using a high-speed camera (Photron FASTCAM Mini UX100) with time
separations in the range of 8–0.25 ms, depending on the flow rate. The image pairs were recorded
at repetition rates of 10–50 Hz depending on the particular aim of the measurement, where the
timing was achieved through an external function generator. The OPENPIV software [38] was used to
calculate 2D velocity field components ux(t, x, z), uz(t, x, z). We typically recorded data for periods
of ∼O(10) minutes or ∼O(50λ) for each Wi to obtain sufficient statistics.

III. RESULTS

Elastic instability, elastic turbulence, and drag reduction. Once the onset of the elastic instability
is crossed, Wi > Wic, and particularly in the ET flow regime inside the cavity, the velocity
fluctuations perturb the channel flow, and their effects on a streamwise channel flow velocity are
measured via PIV downstream the cavity. In Fig. 2(a), we show the mean velocity profile in the
horizontal mid-plane of the channel flow at a distance S = 40H downstream of the cavity. With
increasing Wi, a low mean velocity region, a velocity deficit, in the mean velocity profile at the
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FIG. 2. (a) Mean velocity, and (b) root-mean square of the streamwise velocity, plotted as a function of the
spanwise coordinate and for several Wi numbers. Data were taken at a distance S = 40H downstream from the
cavity.

center of the channel (z = 0) emerges. The velocity deficit, first detected at the critical value for the
instability Wi ≈ Wic = 120 (Wic, is presented in Fig. 3). The velocity deficit grows and becomes
increasingly more pronounced as Wi increases in the range of Wic � Wi � 600; for Wi � 600,
the velocity deficit saturates. As a result of the velocity deficit, and even though the cavity does
not directly obstruct the flow, the mean velocity profile somewhat resembles that of a flow past an
obstacle.
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FIG. 3. The normalized rms of streamwise velocity fluctuations at the center of the channel, z = 0 and
S = 71H , plotted as a function of Wi. The main panel shows the data in linear scale, and the inset shows
the data in log-log scale and against the reduced order parameter ( Wi

Wic
− 1). The experimental noise level was

subtracted from the data series by a linear fit of the data before the transition. The fit of urms ∝ (Wi − Wic )a for
Wi > Wic is shown as black lines in both panels with values of Wic = 120 ± 15 and a = 0.85 ± 0.15.
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FIG. 4. (a) Streamwise of pressure fluctuations, normalized by experimental noise measured at the cavity
location. A fit of the data (black line) gives δPrms ∝ (Wi − Wic )α with α = 1.5 ± 0.2. The inset shows the
same data in log-log scales as a function of the reduced order parameter ( Wi

Wic
− 1) to better present the scaling.

(b) Power spectra of the pressure fluctuations for Wi = 32, 264, 760, and 1478, shown in log-log scales along
with straight lines which represent scaling exponents of −1.9, −2.6, −3.7, and −3.2, respectively. The curves
were translated vertically for better visualization.

In Fig. 2(b), we show profiles of the streamwise velocity fluctuations normalized by U , urms/U ,
for several values of Wi. For the two lowest values of Wi = 100 and 271, we observe weak fluc-
tuations down to urms ≈ 0.01U . However, for higher Wi, the velocity fluctuations are significantly
stronger and increase at the highest Wi values up to 8% at the center of the channel. The profile of
urms/U versus z/W resembles a Gaussian curve with a total width of roughly 0.4W [see Fig. 2(b)].

To better characterize the elastic instability of the channel flow, we present (urms − urms,lam )/U
at the center of the channel (z = 0) vs Wi in Fig. 3, taken at S = 71H downstream the cav-
ity, where urms,lam is the streamwise velocity fluctuations recorded due to experimental noise.
The fit of an increase of (urms − urms,lam )/U versus Wi above an instability threshold, gives
(urms − urms,lam )/U ∼ (Wi − Wic)a with Wic = 120 ± 15 and a = 0.85 ± 0.15. The same data are
shown in the inset against the reduced order parameter, and show that the scaling range reaches
down to [ Wi

Wic
− 1 ∼ O(0.1)]. Thus, a is significantly different from 0.5 (the value expected for the

normal-mode bifurcation [8]), so our data are not consistent with a normal-mode bifurcation to the
experimentally attainable level. Furthermore, the elastic transition is continuous without hysteresis.

Another way to detect and characterize the elastic instability is through the Wi dependence
of the rms of pressure fluctuations, as shown in Fig. 4(a). Notably, the sharp increase of the
pressure fluctuations above the instability threshold is significant, reaching up to 40 times the
experimental noise level and up to roughly 35% of the wall shear stress in the channel [≈0.35 τw ≡
0.35 Ptot H W/2L(H + W ), where Ptot/L is the pressure gradient over the full channel length]. Also,
no pressure fluctuations above the experimental noise limit were observed for the Newtonian fluid
without additional polymers as well as the polymer solution below the elastic instability (see Fig. S1
in Supplemental Material [39]). This confirms that the instability is a pure elastic effect that is caused
by elastic stress that results from polymer stretching. As shown in Fig. 4(a), the normalized pressure
fluctuations δPrms = Prms/Prms,lam − 1 grow with the Weissenberg number as ∼(Wi − Wic)α , where
using least-square fitting with the same instability threshold obtained above Wic = 120 ± 15, we
obtain the exponent α = 1.5 ± 0.2. The values of the exponents a and α differ significantly, and
they are both significantly higher than 0.5 down to ( Wi

Wic−1 ) ∼ O(0.1). Also, and as observed above,
the elastic transition is continuous and without hysteresis.

The streamwise velocity frequency power spectra, obtained from velocity time series taken at
the channel center line (z = 0) and S = 40H , are shown in Fig. 5 for Wi = 637, 938, and 2048.
These Wi values represent the three flow regimes above Wic, namely, transition, ET, and DR earlier
observed in Ref. [26]. The power spectra shown in Fig. 5 are continuous, and they are characterized
by an algebraic decay at higher frequencies, |F[u]|2 ∝ f m, along with the presence of peaks
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FIG. 5. The spectra of streamwise velocity fluctuations at the center of the channel, z = 0, are shown for
three values of Wi at S = 40H . The top row shows the spectra in linear-logarithm scales, while the bottom
row shows the same data in log-log scales. Data fits to the scaling range of the spectra are shown as black
lines, where the uncertainty of the exponents is estimated as ±0.1 based on the standard deviation of the
least-squares-fitting algorithm.

at lower frequencies, typically f � λ−1, which are particularly pronounced in linear-logarithm
coordinates [Figs. 5(a), 5(c), and 5(e)]. The typical decay exponents of the spectra m are shown
in Figs. 5(b), 5(d), and 5(f). In addition, Fig. S6(b) of the Supplemental Material [39] shows the
streamwise velocity spectra closer to the transition, at Wi = 147, which was also continuous and
with a power-law decay. Similarly, we also calculated the power spectrum of pressure fluctuations,
defined as |F[p]|2, using pressure time series, as demonstrated in Fig. 4(b) for Wi = 32, 264, 760,
and 1478 [the case of Wi = 138 is shown in Fig. S6(a) of the Supplemental Material [39]]. Here too,
at high frequencies the spectra exhibit a power-law decay F ∼ f n with the exponent n. The values
of n for the cases shown in Fig. 4(b) that we obtained from the fit are n = −1.9 ± 0.2 at Wi < Wic,
n = −2.6 ± 0.2 in the transition regime, −3.7 ± 0.2 in ET, and −3.2 ± 0.2 in DR, respectively.
Notably, the algebraic decay of the pressure spectrum below the instability is attributed in part to
experimental 1/ f , “pink” noise in the electrical circuits of the pressure sensor, and in part to the
instability inside the cavity itself, as we discuss below in the discussion section.

The values of the decay exponents for both the pressure and velocity power spectra n and m are
presented as a function of Wi in Fig. 6. Despite the scatter in the results that is associated with
experimental noise, a trend can be clearly detected in both cases. For the pressure power spectra
shown in Fig. 6(a), one can identify three regions of n variations with Wi: before the instability
at Wi < Wic, n ≈ −2.2 ± 0.3; above that, |n| grows with Wi in the range Wic < Wi � 400, corre-
sponding to the transition regime; further, |n| grows and reaches up to 3.9 ± 0.2 at Wi = 613, at the
ET regime; then, for Wi � 900 and up to the highest Wi value measured, |n| decreases with Wi down
to |n| ≈ 3.2 ± 0.2 at Wi = 1478, indicating the DR regime [5,26,31]. Moreover, the trend observed
for the pressure spectra decay slopes n versus Wi is similar to the trend for the velocity spectra
decay slopes m versus Wi, though the range of change in the slope tendency is unexpectedly shifted
towards the higher Wi values [Figs. 6(a) and 6(b)]. Indeed, for Wi � Wic the decay exponents are
low (|m| < 2). Above Wic, |m| grows in the range Wic � Wi � 650, reaching up to |m| = 2 ± 0.2;
at 650 � Wi � 1000 the exponent |m| reaches up to |m| = 2.8 ± 0.2 at Wi = 938, indicating ET;
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FIG. 6. The decay exponent of the spectra of (a) the pressure and (b) the velocity fluctuations, taken at
S = 20H and 40H , are shown for various values of Wi. The shaded area, drawn by hand fitting smoothing
splines, represents the general trend of the data.

lastly, for Wi � 1000 the exponent |m| reduces down to |m| = 2.2 ± 0.2 at the highest measured
Weissenberg value of Wi = 2049, indicating the DR regime. Thus, using the decay exponents of
the pressure and velocity power spectra n and m, we can divide our data into three regimes above a
laminar flow at Wi > Wic: the transition, ET, and DR regimes, all of which are characterized by a
chaotic flow.

Coherent structures in three flow regimes. One of our key observations in the straight-channel
viscoelastic flow with weak perturbations is streamwise streaks that occur in the three flow regimes
at Wi > Wic. Figure 7 presents a series of 12 instantaneous streamwise velocity fluctuation maps
in the x-z central plane and S = 40H , where the mean velocity profile u(z) was subtracted from the
fully measured streamwise velocity. The sequence of images is shown with a time step of 0.3 s and
for a full duration of 3.3 s at Wi = 938 in ET; notably, the time 3.3 s approximately corresponds
to the period of elastic waves at this Wi ( f = 0.3 Hz) as shown below in Fig. 7. The images
demonstrate the occurrence of counterpropagating streaks: spanwise modulated streamwise velocity
fluctuations. Probably, due to low values of elastic wave intensities expected to synchronize a cycle,
as found in the channel flow with strong perturbations, and despite sufficiently large streamwise
velocity fluctuations, it is impossible to quantitatively verify a cycle period in the streak temporal
dynamics, the approach used in Ref. [25]. Indeed, at S = 40H , urms/U increases from about 4.5%
at Wi = 637 in the transition regime, to about 5.5% at Wi = 938 in ET, increases further to about
6.5% at Wi = 1287, and it reaches a maximum about 8% at Wi = 2046 in DR, comparable with the
values observed in Ref. [25], whereas at 40H < S � 210H and in the same range of Wi the values
one finds for urms/U are less than 2.5% and streaks are not detected (see Fig. 8). As shown in Fig. 7,
the streaks are unsteady, and they appear and disappear seemingly at random. In this sequence, a
high-velocity streak (red) emerges and then deteriorates at the channel center in the x-z plane. The
random alteration of streaks is further demonstrated in the Supplemental Material [39] through an
animation at Wi = 938 in ET (see movie S1), and through three other series of images at Wi = 637
in the transition (Fig. S2), at Wi = 1287 in DR (Fig. S3), and at Wi = 2046 in DR (Fig. S4) as
well.

Velocity gradient fluctuations and downstream attenuation of velocity fluctuations. The local
Weissenberg number is defined as Wiloc ≡ λ(∂ui/∂x j )rms, using the streamwise velocity gradient
fluctuations. As discussed theoretically [40] and then demonstrated experimentally [41,42], in a ran-
dom flow Wiloc defines the degree of polymer stretching and, in particular, the coil-stretch transition
taking place at Wicst

loc = 1 [40,42]. Only above Wicst
loc, ET shows up [5], where polymers are stretched

by a chaotic flow almost up to full length [41–43], particularly at low polymer concentration cp

(see the inset of Fig. 3 in Ref. [41] for cp = 6.29 μg/ml, where relative stretching xp/L > 0.9
at Wiloc ∼ 30). In Fig. 9, we plot Wiloc as a function of Wi at S = 80H . The figure presents
Wiloc calculated for four available components of the velocity gradient tensor in the x-z central
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FIG. 7. A series of images that demonstrate the time-dependent streaky structure of the flow at Wi = 938
taken in ET at S = 40H . Specifically, each instantaneous image shows the streamwise velocity fluctuations
above its subtracted time-averaged profile as a contour plot, and small arrows show the direction of the velocity
fluctuations field.

plane. The figure demonstrates that the most significant of them is the spanwise gradient of the
streamwise velocity fluctuations (∂u/∂z)rms. In particular, based on the (∂u/∂z)rms component, at
Wi � Wic, Wiloc increases monotonically with Wi, reaching the value of Wiloc ≈ 40 for the highest
available Weissenberg number at that point, Wi ≈ 800. Notably, this differs from a channel flow
with strong streamwise perturbations at the inlet, where (∂u/∂z)rms and (∂u/∂x)rms have about the
same values [26].

The channel flow in the experiment can be divided into three regions based on the streamwise
position downstream from the cavity at S > 0, whereas upstream of it, at S < 0, the flow is laminar.
Our velocity measurements via PIV reveal that the intensity of streamwise velocity fluctuations
urms/U eventually decay downstream from the cavity with S. This is shown in Fig. 8 via measure-
ments at the channel center line z = 0 and plotted versus Wi for various S values. The figure shows
that the most intense fluctuations occur close to the cavity, i.e., at S = 20H , and right after that
the fluctuations’ intensity reduces, as seen in the figure for S = 32H . For S = 40H and Wi �600,
an increase is seen in the fluctuations’ rms with S, which is then followed by a reduction with S
for distances S � 80H , where the fluctuations’ intensity decreases down to about 2% (the increase
and decrease of fluctuations’ intensity are also shown in Fig. S7 of the Supplemental Material).
The initial decay of the intensity of the fluctuations with S, followed by an increase due to the
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FIG. 8. The root-mean square of velocity fluctuations urms/U at the center line of the channel z = 0 shown
at various streamwise locations downstream from the cavity as a function of Wi.

flow’s instability and then a decrease down to about 2%, was first observed in Ref. [26] for the
case of strong perturbations at the inlet, and the same trend appears here as well. In the first
region, at 0 < S � 80H , we observe above the instability onset chaotic fluctuations with a steep
decay of the velocity spectrum at high frequencies and low-frequency peaks (i.e., Fig. 5). Then,
further downstream, at 80H < S � 200H , the high-frequency fluctuations in the velocity power
spectra become much weaker, while elastic waves are still observed as sharp spectral peaks at low
frequencies in the streamwise velocity power spectra. Lastly, at S � 200H , the fluctuations and the
low-frequency peaks decay further and become too weak to be resolved.

Spanwise propagating elastic waves. As we discussed above, rather wide noisy peaks of elastic
waves at low frequencies in the streamwise velocity power spectra are observed at downstream
locations from the cavity in the range 40H < S < 80H , similar to those found in [26]. However,
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FIG. 9. The local Weissenberg number Wiloc is calculated using four components of the velocity gradient
tensor in the x-z central plane and plotted as a function of Wi at S = 80H .
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FIG. 10. Main panel: height of the spectral peaks observed for the elastic waves, plotted versus Wi in
log-log scales. Inset: streamwise velocity power spectra at S = 170H and z = ± 1

6 H for five Wi values in
linear-logarithm scale. The spectra and frequencies are normalized by the noise level and λ, respectively.

farther downstream from the cavity, at S = 170H , we reveal distinct sharp spectral peaks in the
streamwise velocity spectra at a wide range of Wi values, from above the instability onset and up
to roughly Wi ≈ 1000. The spectral peaks at S = 170H are shown in logarithm-linear scales in the
inset in Fig. 10 for five Wi values. The peak’s frequency grows with Wi. Furthermore, the normalized
peak’s intensity as a function of Wi, which is presented in log-log scales in Fig. 10, grows
rapidly from zero at Wic for 170 � Wi � 360; then its growth slows down at 360 � Wi � 600, it
saturates at 600 < Wi � 900 and drops down to zero by Wi ≈ 1100. Moreover, for Wi > 900, the
peaks become broader and less coherent (not shown). This intensity behavior of the elastic waves
agrees well with our earlier observations in the flows between two obstacles and past an obstacle
hindering a channel flow and, particularly, in a straight-channel flow with strong perturbations
at the inlet [26,36,44]. In those flow geometries, the dependence of the wave intensity on Wi
correlates with the dependence of the friction factor on Wi that exhibits the transition, ET, and DR
regimes [26,44]. In the current experiment, the three regions of the Wi dependence of elastic wave
intensity also correlate with the dependence of the decay exponents of the pressure and velocity
power spectra shown in Fig. 6, corresponding to those flow regimes.

To examine the spatial structure of the velocity field, we plot the streamwise velocity fluctuations,
band-pass filtered around the spectral peak frequency, as space-time plots in Fig. 11(a). The structure
is also shown more explicitly by phase averaging the velocity fluctuation signals in Fig. 11(b) for
Wi = 407. Figure 11(b) reveals the wavy structure of the velocity fluctuations propagating in the
spanwise direction that is very well described by the expression

u′
x(t, z) = A exp 2π i( f t + l−1|z|) . (1)

Here A, f , and l are the amplitude, frequency, and wavelength, respectively. Thus, the structure in
Fig. 11 corresponds to transverse spanwise propagating waves. Furthermore, the angle between the
wave crests and the horizontal direction in Fig. 11(a) corresponds to the wave velocity v. Thus, from
changes of the angle with Wi, seen in Fig. 11(a), we obtain the dependence of the wave velocity on
Wi. Notably, one of the most distinctive features of the elastic waves reported here turns out to be the
direction of elastic waves propagation: while here the propagation is in the spanwise direction, in all
other flow geometries discussed in Refs. [26,36,44] the propagation is in the streamwise direction.
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(a)

FIG. 11. (a) Space-time plots at −0.4 < z
W < 0.4 of the streamwise velocity fluctuations u′

x (z, t ) exhibiting
elastic wave structures for three values of Wi. The time series are filtered via a band-pass Butterworth filter
centered around the spectral peaks to remove background noise. (b) Streamwise velocity, phase averaged at the
elastic wave frequency for Wi = 407.

In Figs. 12(a)–12(c), we plot the three main wave characteristics f , l , and v, as functions
of Wi. The data reveal that l does not depend on Wi in the range explored in the experiments,
although it randomly fluctuates in the range l ∈ [0.5, 0.8] mm ≈ [0.14W, 0.22W ]. It seems that l
is determined by the channel width and, in particular, l is about 1

3 of the half-channel width. On
the other hand, as seen in the inset in Fig. 10, f grows significantly with Wi; its dependence on Wi
can be fitted by the power law f ∼ (Wi − Wic)γ with γ = 0.73 ± 0.05, as shown in Fig. 12(b).
Furthermore, in Fig. 12(d), we plot v versus f · l that verifies the dispersion relation v = f · l
within experimental uncertainty. This confirms the existence of the linear dispersion for the elastic
waves, as predicted in [45,46]. Lastly, v, obtained from the angle between the wave crests and the
horizontal direction for different Wi, is fitted with the same power law as obtained for the frequency
dependence v = A(Wi − Wic)γ with the coefficient A � 3 × 10−3 mm/s, shown in Fig. 12(a).
It is noticeable that A is about three orders of magnitude smaller than the values found in all
other flow geometries, where the streamwise elastic waves are observed, whereas γ is roughly the
same [26,36].
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FIG. 12. (a)–(c) Show the wave velocity, frequency, and wavelength dependence on Wi, respectively.
Dashed lines are the best fits. (d) Shows the wave velocity versus f · l that confirms the linear dispersion
relation shown as a dashed line.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we address several questions posed in the Introduction regarding the nature of
the elastically driven instability in the straight-channel viscoelastic flow at Re � 1 and Wi � 1. In
particular, we tackle the main problem related to the recent observations of the elastic instability and
chaotic flow in pipe and square channel shear flows strongly perturbed at the inlet [27,28]. Above
the instability onset, in a planar channel viscoelastic flow with strong prearranged perturbations at
the inlet, the transition, ET, and DR regimes, and elastic waves were discovered in Ref. [26]. Our
results reported in this paper clearly demonstrate that even very weak perturbations, initiated by a
small cavity located at the top wall and in the middle of the channel, are capable to excite the elastic
instability along with all three chaotic flow regimes at higher Wi. The elastic instability threshold
at Wic = 120 ± 15 is determined from the Wi dependence of the normalized rms streamwise
velocity fluctuations (urms − urms,lam )/U (Fig. 3) and the normalized rms pressure fluctuations
δPrms = Prms/Prms,lam − 1 [Fig. 4(a)]. Above the instability onset, both (urms − urms,lam )/U and δPrms

grow with Wi algebraically with exponents of a = 0.85 and α = 1.5, respectively. The exponent
values significantly differ from 0.5, the value expected for the linear normal-mode bifurcation [8].
Moreover, at Wi > Wic, a randomly fluctuating, chaotic flow is found [see Figs. 4(b) and 5(a)
and 5(b)]. These observations indicate that the elastic instability is the same non-normal-mode
bifurcation that was already observed and characterized in the case of strong perturbations at the
inlet [26]. Thus, our finding confirms the early predictions of the linear stability of viscoelastic
parallel shear flows at Re � 1 and Wi � 1. It also answers our first and the most important question
posed in the Introduction and confirms that weak but finite-size perturbations can lead to elastic
instability and even further to ET and DR at higher Wi.

In addition to this, even before the instability, we reveal continuous spectra for the pressure
fluctuations (Fig. 4 at Wi < Wic) with the power-law decay at high frequencies, despite the laminar
flow expected. This observation probably occurs due to a 1/ f instrumental noise in the pressure
measurements. The reason for finite-size perturbations generated by the cavity leading to the elastic
instability at Wi > Wic is, probably, the huge difference in the critical values of the elastic instability
inside the cavity Wicrit (due to the linear elastic instability inside the cavity [9,34]) and Wic in a
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straight-channel viscoelastic flow downstream the cavity. Indeed, using Eq. (4) of Ref. [9], one
gets that for a cavity of D = 0.5 mm and height of h = 5 mm Wicrit = (α + β ) = 4.2, where
 = h/D = 10, and α = 0.14, β = 2.8, Mcrit = 1 are the constants taken from [9]. Thus, Wicrit of
the elastic instability inside the cavity is up to two orders of magnitude less than the Wic = 120
measured here in the channel.

As discussed in the Introduction, in the strongly perturbed channel flow, three flow regimes
were identified at Wi > Wic over a wide range of Wi in Refs. [25,26]. In the case of a weakly
perturbed channel flow of viscoelastic fluid, the flow regimes at Wi > Wic are identified similarly
to the strongly perturbed one [26], using the Wi dependence of the following observable: the decay
exponents of the pressure and velocity spectra in Figs. 6(a) and 6(b), and the intensity of the elastic
waves shown in Fig. 10. From the dependence of the decay exponents’ values on Wi, three flow
regimes at Wi > Wic are identified. The exponent absolute values increase up to |n| ≈ 3 ± 0.3 at
Wi ≈ 400 for the pressure spectrum, and up to |m| ≈ 2 ± 0.2 at Wi ≈ 650 for the velocity spectrum.
This range of Wic < Wi � 650 is defined as the transition regime. Then, both decay exponents grow
further: for the pressure it reaches up to |n| = 3.9 ± 0.2 at Wi ≈ 650 for the velocity up to |m| =
2.8 ± 0.2 at Wi = 960 that define the ET regime for pressure and velocity spectra, respectively.
Further, in the DR regime, both exponents decrease: for the pressure spectrum down to |n| = 3.3 ±
0.2 at Wi = 1478 and for the velocity spectrum down to |m| = 2.2 ± 0.2 at Wi ≈ 2049. In addition
to that, three flow regimes can be identified in the Wi dependence of the elastic wave intensity as
well. At Wic < Wi � 650 in the transition regime, the elastic wave intensity increases; for higher
Weissenberg number values it reaches a narrow plateau which is identified as ET at 650 � Wi �
900, and at Wi > 900, the elastic wave intensity decays in the DR regime.

Despite the weak perturbations, the channel flow also exhibits CS in the form of counterpropa-
gating streaks in the frame moving with the averaged velocity profile u(z). The streaks are detected
in the channel flow only up to S = 40H in the three chaotic flow regimes: transition at Wi = 637
(Fig. S2), ET at Wi = 938 (movie S1), and DR at Wi = 1278 and 2046 in (Figs. S3 and S4) [39]. It
turns out that up to S = 40H the velocity fluctuations urms/U (Figs. 2 and 3) are sufficiently strong
to become self-organized into CS. Indeed, at S = 40H , urms/U reaches up to ≈4.5% at Wi = 637
in the transition regime, ≈6.5% at Wi = 1280, and ≈8% at Wi = 2046 in DR (Fig. 2). These
fluctuation levels are comparable with those detected in a channel flow strongly perturbed at the
inlet, where CSs are observed and studied at Wi = 1050 in a wide range of l/h. At 40h � l � 140h,
urms/U reaches 8%–10% and decreases down to ≈4% in the range 150h < l � 220h, where the CSs
disappear [26]. Thus, the value of the velocity fluctuations defined the appearance and existence of
CSs. However, the streak temporal dynamics is not synchronized into a cycle by the elastic waves,
as in a channel flow strongly perturbed at the inlet, where the CS cycling period precisely coincides
with that of the elastic waves [26]. This can be explained by their significantly lower intensity, which
is not an ample energy source to organize CS, and their role in the streak existence is minimal.
Moreover, since the flow structure with streaks changes continuously, it is hard to verify the period
of the transformations, though the streaks are clearly identified. Notably, the appearance of CSs,
discussed in the transient growth theory of Refs. [20,21,47], agrees with the nonmodal instability
interpretation and appearance of CSs, presented in this paper.

Unlike the previous observations of elastic waves in other flow configurations [26,36,44], the
elastic waves in our experiment are propagating in the spanwise direction. We can explain this
observation by the values of the rms fluctuations of the different components of the velocity
gradient tensor, which defines the degree of polymer stretching, and so the elastic stress tensor
components (Fig. 9). Indeed, at Wi � Wic, the local Weissenberg number Wiloc ≡ λ(∂ui/∂x j )rms

gradually increases with Wi for all tensor components, but the largest value is obtained for the
(∂u/∂z)rms component, being Wiloc ≈ 40 at Wi ≈ 800. Thus, the elastic stress is the highest for
the gradient in the spanwise direction of the streamwise velocity. The observation of the spanwise
propagating elastic wave suggests that its propagation direction is defined by the largest rms
velocity gradient (∂u/∂z)rms � (∂u/∂x)rms and not by the mean streamwise velocity of a channel
shear flow. In contrast, in the straight-channel flow with strong perturbations at the inlet, the
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components (∂u/∂x)rms and (∂u/∂z)rms are of about the same value, and the elastic waves propagate
in the streamwise direction, probably due to additional small polymer stretching in the shear-flow
direction [26].

The strong and chaotic fluctuations of the flow decay up to ∼ 40H downstream of the cavity,
whereas weak but coherent spanwise elastic waves could be identified up to S = 170H due to two
factors. First, the rms of velocity fluctuations decays and becomes significantly smaller than the
elastic wave intensity at this location. Second, due to the very small frequency of the elastic waves,
their attenuation is extremely small and many orders of magnitude lower than in the case of channel
flow strongly perturbed at the inlet [26]. At S = 170H , we measure the dependence of the wave’s
frequency, wavelength, and velocity on Wi independently, and thus we confirm the theoretical
predictions on their linear dispersion relation [45,46]. Furthermore, the dependence of these elastic
waves’ parameters on Wi is similar to that found previously in other flow geometries [26,36].
Nevertheless, in spite of the same value of the scaling exponent γ in v = A(Wi − Wic)γ , the
coefficient we find here, A � 3 × 10−3 mm/s, is almost three orders of magnitude smaller than the
value A � 0.5 mm/s obtained in the previous measurements of the streamwise propagating elastic
waves [26,36]. To explain the lower velocity values in the weakly perturbed channel flow, we recall
that the velocity of elastic waves depends on the magnitude of the elastic stress in the flow [45,46].
Since for the spanwise propagating elastic wave the velocity is defined by the spanwise elastic stress
component, the low velocity means that the low elastic stress that is confirmed by about 25 times
difference between the maximum value of Wiloc ≈ 40 in weakly perturbed flow (Fig. 9) versus
Wiloc ≈ 1020 in the strongly perturbed channel flow [26]. Nevertheless, it is not obvious why A
should be so different from its value for the streamwise propagating waves.

For distances S > 200H we did not detect fluctuations with a higher intensity than the noise
level in our experiment and, therefore, we cannot confirm that the fluctuations persist beyond this
distance. Nevertheless, the fluctuations’ strength (urms/U ) in our setup decays with S due to viscous
dissipation and transfer of elastic wave energy to vorticity fluctuations [25]. In addition to that,
for S > 40H we observe that the level of fluctuations’ strength is rather low, even for Wi > Wic,
namely, above the transition and despite our observation of elastic waves. For example, at S =
170H , urms/U was about 1.5% for Wi values above the transition and where the elastic waves were
observed (Fig. 11). Therefore, due to these considerations, we cannot confirm whether for S > 200H
the flow is laminar or in one of the chaotic flow’s regimes; for this reason, whether the instability is
transient or not remains to be determined.

To summarize, let us return to the questions posed in the Introduction. (i) We find that the strong
perturbations are not necessary to get elastic instabilities in straight-channel flows of viscoelastic
fluids at Re � 1 and Wi � 1. (ii) The growth of velocity and pressure fluctuations in Figs. 3
and 4, as well as the continuous spectra above the instability onset in Fig. 5, indicate that the
transition occurs due to a nonmodal bifurcation. (iii) The trends we observe for the velocity and
pressure spectra decay exponents in Fig. 6, as well as for the elastic wave intensity dependence
on Wi in Fig. 10, suggest the existence of three flow regimes, similarly to those characterized in
Refs. [25,26]. Furthermore, we find CS, namely streaks, which are detected in three flow regimes
at S = 40H . At larger S, the rms velocity fluctuations become too small to be self-organized into
CS. (iv) We have observed elastic waves in three flow regimes, and confirmed in Fig. 12 their linear
dispersion-relation. (v) We observe a correlation between the elastic wave intensity and the pressure
and velocity spectra decay exponents; this could hint on a common mechanism underlying the two
phenomena and agrees with the suggestion of Refs. [25,26] regarding the elastic wave’s energizing
role in the self-sustained process. Thus, it appears that the nature of the non-normal-mode instability,
the existence of the three flow regimes, and the existence of elastic waves do not depend on the
perturbation strength, although the details of the flow, such as the intensity of the flow fluctuations,
the propagation direction of elastic waves, and extremely low values of their velocity are sensitive to
the perturbations. The observed similarity in flows with weak and strong perturbations may hint on
universality in the development of three flow regimes in elastically driven viscoelastic channel flow,
independent of amplitudes of finite perturbations. There is also a limited similarity in the appearance
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CSs in Newtonian turbulent channel flows, though the mechanisms of CSs generation are drastically
different [23,24]. This important issue requires further study in other flow geometries.
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