
Applications of Mathematics

M. A. Diniz-Ehrhardt; Zdeněk Dostál; M. A. Gomes-Ruggiero; J. M. Martínez;
Sandra Augusta Santos
Nonmonotone strategy for minimization of quadratics with simple constraints

Applications of Mathematics, Vol. 46 (2001), No. 5, 321–338

Persistent URL: http://dml.cz/dmlcz/134471

Terms of use:
© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134471
http://dml.cz

46 (2001) APPLICATIONS OF MATHEMATICS No. 5, 321–338

NONMONOTONE STRATEGY FOR MINIMIZATION OF

QUADRATICS WITH SIMPLE CONSTRAINTS*

M. A. Diniz-Ehrhardt, Campinas, Z. Dostál, Ostrava,

M. A. Gomes-Ruggiero, J. M. Martínez and S. A. Santos, Campinas

(Received December 8, 1998, in revised version July 30, 1999)

Abstract. An algorithm for quadratic minimization with simple bounds is introduced,
combining, as many well-known methods do, active set strategies and projection steps.
The novelty is that here the criterion for acceptance of a projected trial point is weaker
than the usual ones, which are based on monotone decrease of the objective function. It
is proved that convergence follows as in the monotone case. Numerical experiments with
bound-constrained quadratic problems from CUTE collection show that the modified method
is in practice slightly more efficient than its monotone counterpart and has a performance
superior to the well-known code LANCELOT for this class of problems.

Keywords: quadratic programming, conjugate gradients, active set methods

MSC 2000 : 65K10, 65F15, 90C20, 90C52

1. Introduction

The problem of minimizing a quadratic function f subject to bounds on the vari-
ables has many practical applications. Many times, physical and engineering prob-

lems can be modelled as box-constrained quadratic minimization problems with a
large number of variables (see, for example, [13], [14], [15], [25], [26]). On the other

hand, quadratic problems with bounds appear as subproblems in the context of meth-
ods for minimizing arbitrary functions with nonlinear constraints. See, for example,

[6], [7], [20], [29]. For these reasons, a lot of algorithms have been developed with

*This work was supported by Grant No. 201/97/0421 of the Grant Agency of the Czech
Republic, FAPESP grants 90-3724-6, 95-6498-8 and 97-12676-4, FINEP, CNPq and
FAEP-UNICAMP.

321

the aim of solving this problem efficiently. See [2], [5], [8], [11], [12], [16], [18], [19],

[24], [27], [28], [31] and references therein. Some of these algorithms [2], [8], [12], [18],
[19], [28] combine active set strategies with projections on the feasible set which, in
this case, are very simple to compute. See [1].

In all known active-projection algorithms, given the current feasible iterate xk, a
trial point z is computed and, if z is nonfeasible, a corrected trial point z′ is defined

as the projection of z to the feasible box. Usually, for accepting the projected trial
point it is required that f(z′) < f(xk). Otherwise, the direction z − xk is reduced

and a new projection is computed.
The main contribution of this paper is in showing that the acceptance criterion

above can be relaxed, both from the theoretical and the practical point of view. In
theory, we show that under a relaxed form of the acceptance criterion we obtain the

same results as those that hold under monotonicity. In practice, we observe that the
relaxed criterion offers a more effective way of solving the problems.

In Section 2 of this paper we describe the nonmonotone algorithm and prove
its convergence. Convergence proofs are similar to those given for the monotone

method in [2]. In Section 3 we describe the implementation and present numerical
experiments. Finally, conclusions are given in Section 4.

2. The nonmonotone algorithm

The problem considered in this work is

(1) minimize f(x) subject to x ∈ Ω,

where Ω = {x ∈ �
n | l � x � u, l < u} is compact, f(x) = 1

2x
T Hx + bT x, H is a

real symmetric matrix of order n and l, u ∈ �n . We denote

γ = min{ui − li, i = 1, . . . , n}

and
g(x) ≡ −∇f(x) ≡ −(Hx+ b)

for all x ∈ �
n . Let L > 0 be such that ‖H‖ � L, where ‖·‖ denotes the 2-norm of

vectors or matrices. Therefore, for all x, z ∈ �
n , we have that

(2) f(z)− f(x)−∇f(x)T (z − x) =
1
2
(z − x)T H(z − x) � L

2
‖z − x‖2.

Given I ⊂ {1, 2, . . . , 2n} such that i and n+ i do not belong to I simultaneously,
we define the open face FI ⊂ Ω as

FI = {x ∈ Ω | xi = li if i ∈ I, xi = ui if n+ i ∈ I, li < xi < ui otherwise}.

322

As in [2], [18], [20], we denote by F I the closure of each open face and by [FI] the

smallest linear manifold that contains FI . For each x ∈ Ω let us define the (negative)
projected gradient gP (x) ∈ �

n as

(3) gP (x)i =





0 if xi = li and
∂f

∂xi
(x) > 0,

0 if xi = ui and
∂f

∂xi
(x) < 0,

− ∂f

∂xi
(x) otherwise.

The stationary points of (1) are defined by

(4) gP (x) = 0.

As is well known, local minimizers of (1) are stationary points. For each x ∈ FI let

us define the internal gradient gI(x) ∈ �
n as

(5) gI(x)i =

{
0 if xi = li or xi = ui,

− ∂f

∂xi
(x) otherwise.

We also define, for x ∈ FI ,

(6) gC(x)i =





0 if li < xi < ui,

0 if xi = li and
∂f

∂xi
(x) > 0,

0 if xi = ui and
∂f

∂xi
(x) < 0,

− ∂f

∂xi
(x) otherwise.

The vector gC(x) was introduced in [17], and named chopped gradient. Observe that

for all x ∈ FI we have

gP (x) = gI(x) + gC(x)

and that gI(x) ⊥ gC(x).

Algorithm 2.1, given below, describes the method analyzed in this paper. As
in [2], [12], [18], [20], when it is recommendable to abandon some constraints, the

algorithm leaves the closure of a face F I following the direction gC(xk). A fraction
of the decrease obtained at this iteration is kept in memory in order to be used later.

In fact, when, at a later iteration, we need to add constraints to the active set, the
objective function only needs to decrease in relation to the last leaving-face iteration.

323

This will allow us to use projections to the feasible set to define the iterations where

constraints must be added in a more agressive way than permitted by monotone
criteria.

Algorithm 2.1.
Let η ∈ (0, 1) and σ ∈ (0, 1] be given independently of k, let x0 ∈ Ω be an arbitrary
initial point and let c0 � f(x0). The algorithm defines a sequence {xk} in Ω and
stops when ‖gP (xk)‖ = 0. Let us assume that xk ∈ Ω is such that ‖gP (xk)‖ �= 0.
Let I = I(xk) be such that xk ∈ FI and let the function Φ(x) be defined as

(7) Φ(x) = argmin{f(y) | y = x+ λgC(x) and y ∈ Ω}.

The following steps define the procedure for obtaining xk+1.
Step 1: If

(8) ‖gC(xk)‖ > η‖gP (xk)‖,

then set xk+1 = Φ(xk) and define

(9) ck+1 = f(xk)− σ
[
f(xk)− f(xk+1)

]
.

Else go to Step 2.
Step 2: Compute a point zk ∈ [FI] such that f(zk) < f(xk). If zk ∈ FI then set

xk+1 = zk and ck+1 = ck. Else go to Step 3.
Step 3: Find xk+1 ∈ F I − FI such that f(xk+1) � ck. Define ck+1 = ck.

Projections are not mentioned explicitly in Algorithm 2.1. However, they are
implicit at Step 3, when we seek xk+1 on the boundary of FI . The goal is that the

number of active constraints at xk+1 should be, in this case, much greater than the
number of active constraints at xk. For this reason, the decreasing criterion is, in

general, weaker than that used at iterations of a different type.
When the algorithm explores a face FI at Step 2, a particular unconstrained

quadratic algorithm must be used. In the Algorithmic assumption below, we state

the condition that must be fulfilled by such an algorithm in order to fit in with
convergence requirements. Later, we show that three reasonable choices for this

algorithm satisfy the Algorithmic assumption.

Algorithmic assumption. For all k ∈ �, if xk ∈ FI , then there exists j > k

such that xj /∈ FI or the algorithm finishes at some xj ∈ FI such that gI(xj) = 0

and thus gP (xj) = 0.

Let us show that this algorithmic assumption is reasonable, in the sense that it is
satisfied when one computes zk using well-known procedures.

324

The first procedure that we wish to consider is based on classical conjugate gra-

dients [23]. Assume that k = 0 or xk−1 /∈ FI , whereas xk ∈ FI . The minimization
of f on [FI] is an unconstrained quadratic minimization problem that can be solved
using conjugate gradient iterations with xk as the initial point. Successive conjugate

gradient iterates are denoted by xk+1, xk+2, . . . as far as they belong to FI and the
condition (8) does not hold. The sequence of conjugate gradient iterations is going

to be interrupted when one of the following conditions takes place:
(a) An iterate does not belong to FI .

(b) The conjugate gradient method finds a direction along which the quadratic
tends to −∞.

In the case (a) we call zj the first conjugate gradient iterate that does not belong
to FI . Since zj − xj is a descent direction for the quadratic f , it turns out that

xj + λ+break(z
j − xj) ∈ F I − FI and f(xj + λ+break(z

j − xj)) < f(xj) � cj , where

λ+break = max{λ � 0 | [xj , xj + λ(zj − xj)] ⊂ F I}.

Therefore, the choice of xk+1 at Step 3 is possible.
Assume now that (b) holds, xj is the last conjugate gradient iterate that belongs

to FI , and d is the direction along which f tends to −∞. If f tends to −∞ along d

we define

λ+break = max{λ � 0 | [xj , xj + λd] ⊂ F I}

and observe, as in the case (a), that xj + λ+breakd ∈ F I − FI and f(xj + λ+breakd) <

f(xj) � cj . So, the choice of Step 3 is possible.
If f also tends to −∞ along −d, we also define

λ−break = min{λ � 0 | [xj , xj + λd] ⊂ F I}.

So, either f(xj + λ+breakd) < f(xj) � cj or f(xj + λ−breakd) < f(xj) � cj . In both
cases, the choice of Step 3 is possible.

It has been proved in [20] that, if neither (a) nor (b) take place, then, after a finite
number of steps, the conjugate gradient iterate has null gradient. Therefore, either

there exists j � k such that xj satisfies (8) or gP (xj) = 0.
The second procedure we wish to analyze for the computation of zk is based on

the Cholesky factorization of the submatrix of H that is formed by the rows and
columns corresponding to the free variables on FI . If the Cholesky factorization can

be completed, it can be used to compute the minimizer zk of the quadratic f on [FI].
If zk ∈ FI then either gP (zk) = 0 or the condition (8) must be satisfied. If zk /∈ FI

we proceed as in the conjugate gradient case. So, we only need to analyze the case in
which the matrix is not positive definite, so that the Cholesky factorization cannot be

325

completed. In this case, if the current point is not a minimizer, standard inexpensive

procedures [21] allow one to compute a direction d such that f tends to −∞ and we
can find, as above, a point on the boundary such that the objective function value
is smaller than f(xk).

Finally, a preconditioned conjugate gradient (PCG) procedure could be used at
Step 2 of Algorithm 2.1. See [22]. In this case, the analysis is similar to that of

the ordinary conjugate gradient algorithm except that zk should be defined as the
result of the application of more than one PCG iterations, since this algorithm is

not necessarily monotone for the original quadratic. Nevertheless, the rest of the
standard analysis is valid.

Below, we show that Algorithm 2.1 is well defined, that is to say, that all iterations

can be completed. As other results of this section, the proof is similar to a proof
given in [2] for a monotone algorithm with a different algorithmic assumption.

Theorem 1. Algorithm 2.1 is well defined.

�����. If the condition (8) at Step 1 is satisfied, then gC(xk) �= 0, so Φ(xk) is
well defined. If the condition (8) does not hold, we execute Step 2. Since gI(xk) �= 0,
the existence of zk ∈ [FI] such that f(zk) < f(xk) is guaranteed.

Now, if zk /∈ F I , since ϕ(λ) ≡ f(xk + λ(zk − xk)) is a one-dimensional quadratic,
we have

f(xk + λ+break(z
k − xk)) < f(xk),

or

f(xk + λ−break(z
k − xk)) < f(xk),

where

λ+break = max{λ � 0 | [xk, xk + λ(zk − xk)] ⊂ F I}

and

λ−break = min{λ � 0 | [xk, xk + λ(zk − xk)] ⊂ F I}.

Therefore, the choice of xk+1 ∈ F I − FI satisfying f(xk+1) < f(xk), in Step 3, is
possible. �

The following lemma quantifies the amount of decrease of the objective function

when a leaving-face iteration is computed at Step 1 of Algorithm 2.1. In monotone
algorithms, all the iterates xj such that j � k + 1 satisfy f(xj) < f(xk). Our

326

new algorithm is greedy in the sense that changing the current face is considered a

desirable feature, when these changes do not damage convergence. For this reason,
in the nonmonotone algorithm the decrease of f at new iterations is only a fraction σ

of the decrease at the latest leaving-face iteration.

Lemma 1. If xk+1 is obtained at Step 1 of Algorithm 2.1 then

f(xk)− f(xk+1) � min
{

η γ

2
‖gP (xk)‖, η2

2L
‖gP (xk)‖2

}
.

�����. The proof of this lemma was given in [2]. Let us sketch it here for the

sake of completeness. Since xk+1 is obtained at Step 1, hence gC(xk) �= 0. Hence,
xk + λgC(xk) ∈ Ω for all λ ∈ [0, λ̃], where λ̃ = γ/‖gC(xk)‖. Let us consider the
quadratic function given by

µ(λ) = f(xk + λgC(xk)) = f(xk) + λ∇f(xk)T gC(xk) +
1
2
λ2gC(xk)T HgC(xk).

If gC(xk)T HgC(xk) > 0 then the unique minimizer of µ(λ) is given by

λ∗ =
‖gC(xk)‖2

gC(xk)T HgC(xk)
.

There exist three possibilities:

(i) gC(xk)T HgC(xk) > 0 and xk + λ∗gC(xk) /∈ Ω ;
(ii) gC(xk)T HgC(xk) > 0 and xk + λ∗gC(xk) ∈ Ω;
(iii) gC(xk)T HgC(xk) � 0.
In the first case, we obtain

f(xk)− f(xk+1) >
γ

2
‖gC(xk)‖ >

η γ

2
‖gP (xk).

If (ii) holds, we have

f(xk)− f(xk+1) >
1
2L

‖gC(xk)‖2 >
η2

2L
‖gP (xk)‖2.

Finally, when (iii) holds, then

f(xk)− f(xk+1) > γ‖gC(xk)‖ > η γ‖gP (xk)‖.

The desired result follows from these inequalities. �

327

The following is a global convergence result. It says that, given an arbitrary

tolerance ε > 0 the algorithm necessarily finds an iterate such that the norm of the
projected gradient gP is smaller than ε after a finite number of iterations. By the
compactness of the feasible region, this implies that there exists a cluster point where

the projected gradient vanishes.

Theorem 2. Let the sequence {xk} be generated by Algorithm 2.1. Then either
the algorithm terminates at a point xk such that gP (xk) = 0 or the sequence is

infinite and the condition (8) is satisfied infinitely many times. In the latter case,
calling K1 ⊂ � the set of indices k such that (8) holds, we have lim

k∈K1
‖gP (xk)‖ = 0.

Moreover, any limit point of the subsequence {xk}k∈K1 is stationary.

�����. If the condition (8) is satisfied only a finite number of times, it follows
that there exists k ∈ � such that xj ∈ F I for all j � k. But the face to which xj+1

belongs is necessarily contained in the face to which xj belongs, therefore, there

exist k′ and FJ such that xj ∈ FJ for all j � k′. Therefore, by the Algorithmic
assumption, there exists j � k′ such that gI(xj) = 0. Since condition (8) does not

hold at xj it follows that gP (xj) = 0.

Assume that the algorithm does not terminate and so the condition (8) is sat-

isfied whenever k ∈ K1, where K1 is an infinite subset of �. Let us prove that
lim

k∈K1
gP (xk) = 0. If this is not true, there exists ε > 0 and an infinite set of indices

K2 ⊂ K1 such that

(10) ‖gP (xk)‖ > ε for all k ∈ K2.

By Lemma 1 and the conditions of Steps 2 and 3, we have that lim
k→∞

ck = −∞ and
hence, lim

k→∞
f(xk) = −∞. This is impossible, since f is continuous and Ω is compact.

Therefore, (10) cannot be true. Therefore, lim
k∈K1

gP (xk) = 0. Let K2 be an infinite

subset of K1 such that lim
k∈K2

xk = x∗. Since gP (x) is lower-semicontinuous it follows

that gP (x∗) = 0, as we wanted to prove. �

A stationary point x∗ of (1) is said to be degenerate if there exists i ∈ {1, . . . , n}
such that x∗i = li or x∗i = ui, whereas

∂f
∂xi
(x∗) = 0. Below we show that, in the

absence of degenerate points, convergence of Algorithm 2.1 takes place in a finite

number of iterations.

Theorem 3. If all stationary points of a sequence {xk} generated by Algo-
rithm 2.1 are non-degenerate, then there exists k ∈ � such that gP (xk) = 0.

328

�����. By Theorem 2, we only need to prove that the inequality (8) cannot

hold infinitely many times. Suppose, by contradiction, that the test (8) is satisfied
for all k ∈ K1, K1 being an infinite subset of �. Since the number of open faces is
finite, there exists a face FJ and an infinite set K3 ⊂ K1 such that xk ∈ FJ and

xk+1 /∈ F J for all k ∈ K3. Therefore, for all k ∈ K3, xk+1 is obtained by Step 1
of Algorithm 2.1. This implies that one of the constraints that define FJ must be

relaxed in an infinite subset K4 ⊂ K3. We may suppose, without loss of generality,
that this constraint is xi = li. So, for k ∈ K4, we have i ∈ I(xk) and i /∈ I(xk+1).

This implies that, for all k ∈ K4,

− ∂f

∂xi
(xk) > 0.

But, by Theorem 2, lim
k∈K4

gP (xk) = 0. So,

lim
k∈K4

max

{
0,− ∂f

∂xi
(xk)

}
= 0.

Therefore,

(11) lim
k∈K4

∂f

∂xi
(xk) = 0.

Let x∗ be a limit point of {xk}k∈K4 . By Theorem 2, x
∗ is a stationary point and,

since xk
i = li for all k ∈ K4, we see that x∗i = li. Finally, by (11),

∂f
∂xi
(x∗) = 0. This

implies that x∗ is a degenerate stationary point, contradicting the hypothesis of the

theorem. �

It is worth noticing that for a strictly convex quadratic f and sufficiently large η

the finite termination property holds even for a degenerate solution [12].

3. Numerical experiments

For implementing the idea introduced in this paper, we modified the quadratic pro-
gramming code described in [2], [18], [20], which had been extensively tested both in

academic and practical problems [10]. Step 2 of Algorithm 2.1 was implemented using
the conjugate gradient method. When a conjugate gradient iterate z not belonging to

FI is found, we compute the maximum steplength λbreak such that xk+λbreak(z−xk)
does not violate the constraints. Clearly, f(xk+λbreak(z−xk)) < f(xk) � ck, but we

do not use this point as next iterate because the number of active constraints would
be generally increased only by one. Instead, we multiply the steplength by a factor

329

(5 in our experiments) and project the corresponding point yν + 5νλbreak(z − xk)

to Ω for ν = 0, 1, 2, . . . obtaining the projected feasible point yν+1, where y0 = xk.
This extrapolation process is interrupted when yν+1 = yν or when f(yν+1) > ck.
Then, we choose xk+1 = yν . We proceed in a similar way when the conjugate gradi-

ent method finds a direction of nonpositive curvature. We tested Algorithm 2.1 with
σ = 0.1 (nonmonotone version) against the monotone method described in [2], where

the extrapolation process described above is interrupted whenever f(yν+1) � f(yν).
In all the experiments we used η = 0.9 and c0 = f(x0). We declared convergence if

‖gP (xk)‖ � 10−5.
In addition to our basic algorithm with σ = 0.1 and its monotone counterpart,

we ran the well-known code LANCELOT with the same set of problems, namely all
the bound-constrained quadratic problems of the CUTE collection with the largest

admissible dimension (greater than or equal to 1000) without modification of the
internal variables of the “double large” installation [3], and the following choices:

• exact-second-derivatives-used
• cg-method-used (CG) or
pentadiagonal-preconditioned-cg-method-used (PCG)

• exact-Cauchy-point-required (EX) or
inexact-Cauchy-point-required (IN)

• infinity-norm-trust-region-used
• gradient-tolerance 10−5

• maximum-number-of-iterations 1000
The tests were developed in Fortran77 double precision and run on a SUN Ultra1

Creator. The results are given in Tab. 1, where the following notation is used: N

denotes the dimension of each problem; the value IT gives the number of inner
iterations (performed by the plain or preconditioned conjugate gradient method)

and T is the CPU time in seconds spent by each test. The notation CGEX, CGIN,
PCGEX, PCGIN was defined in the choices stated above. Tab. 2 contains the results

for the monotone and nonmonotone algorithms, the total number of iterations (IT),
the number of matrix-vector products performed by each one of them (PROD), and

the CPU time in seconds (T) being reported. We remark that the number of matrix-
vector products performed by LANCELOT is not included in Tab. 1 because it is not

reported by the code.

Tabs. 3 and 4 summarize the geometric means of the comparative numerical results
reported in Tabs. 1 and 2, with similar notation. This average was chosen to acco-

modate the very different and problem dependent order of magnitude of the results.
The numbers show that for the tests using LANCELOT, the combination preconditioned

330

conjugate gradient and exact Cauchy point performed best. The nonmonotone al-

gorithm is slightly superior to the monotone one and has a better performance than
LANCELOT. Considering the average time spent per iteration, that is T/IT, we obtain
0.065, 0.051, 0.088 and 0.074 seconds for the options CGEX, CGIN, PCGEX, PCGIN

of LANCELOT and 0.078, 0.077 for the monotone algorithm and the nonmonotone al-
gorithm, respectively. Therefore, as expected, the preconditioned version is more

expensive than the plain conjugate gradient, and computing inexact Cauchy points
is slightly cheaper than working with the exact ones. The average time per iteration

of the quadratic solver is practically the same for the monotone and nonmonotone
versions, and comparable with the preconditioned/inexact option of LANCELOT.

PROBLEM (N) CGEX CGIN PCGEX PCGIN
IT T IT T IT T IT T

BIGGSB1
(1000) 66509 117.50 66510 112.40 500 5.40 501 5.40

BQPGAUSS
(2003) 9511 117.10 9083 113.20 2928 46.40 2771 44.10

CHENHARK
(1000) 14 0.03 17 0.04 3 0.03 4 0.04

CVXBQP1
(10000) 1 1.20 6411 95.90 1 1.20 6411 156.50

JNLBRNG1
(15625) 2556 256.60 2369 241.20 1810 205.10 1847 209.90

JNLBRNG2
(15625) 2673 257.10 2700 260.90 912 101.30 857 98.10

JNLBRNGA
(15625) 2135 202.70 2134 202.20 1327 144.50 1359 145.70

JNLBRNGB
(15625) 4439 390.80 4617 402.90 329 36.90 364 41.20

NCVXBQP1
(10000) 0 1.20 10000 190.30 0 1.20 10003 329.30

NCVXBQP2
(10000) 435 3.70 10183 196.60 407 4.30 10024 334.40

NCVXBQP3
(10000) 366 3.60 10056 195.70 359 4.10 9987 331.70

NOBNDTOR
(14884) 1539 167.50 1539 167.70 790 108.20 790 107.00

OBSTCLAE
(15625) 7608 834.00 7614 858.90 7409 1090.90 7410 1097.20

OBSTCLAL
(15625) 805 73.60 805 70.50 481 51.70 481 52.00

OBSTCLBL
(15625) 3259 328.10 2578 260.80 2761 349.90 2117 271.30

OBSTCLBM
(15625) 1483 167.80 601 62.10 1377 201.30 506 66.50

OBSTCLBU
(15625) 1102 113.50 1110 112.90 806 101.40 821 101.90

ODNAMUR
(11130) 51556 1224.10 49092 1190.9 30006 1377.70 31458 1410.30

PENTDI
(1000) 0 0.02 0 0.02 0 0.02 0 0.02

Table 1. Comparative results of LANCELOT.

331

PROBLEM (N) CGEX CGIN PCGEX PCGIN
IT T IT T IT T IT T

TORSION1
(14884) 1347 125.90 1347 124.90 794 90.00 794 89.00

TORSION2
(14884) 5053 563.30 4994 558.50 4339 646.10 4652 692.40

TORSION3
(14884) 390 31.40 390 30.40 242 23.50 242 23.40

TORSION4
(14884) 5954 651.10 9042 887.20 5640 795.80 8745 1115.40

TORSION5
(14884) 114 8.70 114 8.30 73 7.00 73 7.40

TORSION6
(14884) 7355 746.90 10477 913.70 4892 521.80 6442 700.60

TORSIONA
(14884) 1339 134.80 1339 133.90 796 97.00 796 97.00

TORSIONB
(14884) 5000 593.80 5084 603.10 4025 621.40 4249 693.90

TORSIONC
(14884) 390 34.70 390 33.40 242 25.50 242 25.50

TORSIOND
(14884) 9430 986.50 9396 995.70 9134 1224.80 9194 1265.60

TORSIONE
(14884) 114 9.80 114 9.30 73 7.80 73 7.80

TORSIONF
(14884) 5343 484.10 11201 1064.20 4980 577.30 10171 1185.90

Table 1 (cont.). Comparative results of LANCELOT.

PROBLEM (N) MONOTONE ALGORITHM NONMONOTONE ALGORITHM
IT PROD T IT PROD T

BIGGSB1
(1000) 3610 3631 6.20 3518 3530 5.96

BQPGAUSS
(2003) 6363 6537 84.62 5836 6043 76.99

CHENHARK
(1000) 17 25 0.05 14 20 0.05

CVXBQP1
(10000) 1 14 0.47 1 14 0.47

JNLBRNG1
(15625) 1131 1715 185.07 658 1010 101.99

JNLBRNG2
(15625) 935 1053 109.69 938 1065 106.20

JNLBRNGA
(15625) 483 558 54.61 485 560 53.84

JNLBRNGB
(15625) 3554 3669 348.70 2870 3008 281.39

NCVXBQP1
(10000) 1 8 0.34 1 8 0.33

NCVXBQP2
(10000) 45 81 1.87 52 100 2.22

NCVXBQP3
(10000) 59 99 2.26 53 123 2.67

NOBNDTOR
(14884) 431 478 51.45 449 512 56.21

Table 2. Comparative results of quadratic solvers.

332

PROBLEM (N) MONOTONE ALGORITHM NONMONOTONE ALGORITHM
IT PROD T IT PROD T

OBSTCLAE
(15625) 386 589 63.79 340 505 47.36

OBSTCLAL
(15625) 251 317 27.31 280 360 29.92

OBSTCLBL
(15625) 375 826 89.85 377 837 88.03

OBSTCLBM
(15625) 199 314 36.79 206 349 38.96

OBSTCLBU
(15625) 313 475 50.40 372 615 63.20

ODNAMUR
(14884) 37778 40247 1540.64 35222 41559 1574.50

PENTDI
(1000) 1 2 0.02 1 2 0.02

TORSION1
(14884) 363 395 37.32 381 403 37.33

TORSION2
(14884) 435 612 63.72 391 438 41.24

TORSION3
(14884) 164 168 13.16 164 168 13.11

TORSION4
(14884) 165 181 14.81 165 181 14.80

TORSION5
(14884) 76 78 5.59 78 81 5.84

TORSION6
(14884) 79 93 7.29 79 94 7.31

TORSIONA
(14884) 349 385 38.82 385 427 42.15

TORSIONB
(14884) 443 607 67.38 405 442 44.27

TORSIONC
(14884) 183 193 16.37 176 199 16.58

TORSIOND
(14884) 178 193 16.95 178 193 16.63

TORSIONE
(14884) 79 87 6.75 84 92 7.12

TORSIONF
(14884) 79 97 8.35 83 104 8.90

Table 2 (cont.). Comparative results of quadratic solvers.

CGEX CGIN PCGEX PCGIN

IT T IT T IT T IT T

906.05 59.02 2022.80 103.69 501.71 43.95 1130.40 83.38

Table 3. Geometric means of the comparative results of LANCELOT.

MONOTONE ALGORITHM NONMONOTONE ALGORITHM

IT PROD T IT PROD T

191.50 279.43 14.92 186.61 275.07 14.38

Table 4. Geometric means of the comparative results of quadratic solvers.

333

To illustrate an individual analysis of the performance of each problem, in Fig. 1

we plot the ratios between the results of the nonmonotone and of the monotone
algorithm as far as iterations are concerned. The numbers in the horizontal axes
correspond to the order of appearance of the problems in Tab. 2. Although the large

majority of the results is concentrated in the range [0.9, 1.1], namely 77% of the
problems, there are more problems for which the ratios are below 0.9 (13%) than

above 1.1 (10%), indicating a slight advantage towards nonmonotonicity. Problems
CHENHARK (number 3), JNLBRNG1 (number 5) and JNLBRNGB (number 8) are more

favorable to the nonmonotone strategy, whereas the opposite happens to problems
NCVXBQP2 (number 10), OBSTCLAL (number 14) and OBSTCLBU (number 17), for which

the monotone algorithm performs better.

In Figs. 2 and 3 we visualize the comparative results between the nonmonotone
algorithm and the combination that performed best for LANCELOT according to

Tab. 3, namely, using the preconditioned conjugate gradient and computing the
exact Cauchy point (PCGEX). We plot the logarithms, with the base 10, of the ratios
between the results of the nonmonotone algorithm and LANCELOT, analyzing, in

Fig. 2, the number of iterations performed, and, in Fig. 3, the CPU time spent.
Using the notation

	IT =
iterations of nonmonotone algorithm
PCG iterations of LANCELOT

and

	TE =
CPU time spent by nonmonotone algorithm

CPU time spent by LANCELOT
,

Figs. 2 and 3 can be summarized as follows:

Range 1
70 � 	IT < 0.8 0.8 � 	IT < 1.25 1.25 � 	IT � 9

Problems 64% 23% 13%

Table 5. Statistical results of Fig. 2.

Range 1
80 � 	TE < 0.8 0.8 � 	TE < 1.25 1.25 � 	TE � 8

Problems 71% 19% 10%

Table 6. Statistical results of Fig. 3.

From Tab. 5 and 6 we observe that, although the nonmonotone algorithm can
perform worse than LANCELOT (for problem JNLBRNGB, number 8, the nonmonotone

algorithm is around ten times more costly than LANCELOT, both in terms of iterations
and CPU time), a worst performance of LANCELOT can reach more than fifty times the

334

amount of work spent by the nonmonotone algorithm. This is the case of problems

TORSION4 (number 23), TORSION6 (number 25), TORSIOND (number 29) and TORSIONF
(number 31).

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 1. Ratios between the number of iterations of nonmonotone and monotone algo-
rithms for solving CUTE bound-constrained quadratic problems.

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

Figure 2. Logarithms, with the base 10, of the ratios between the number of iterations per-
formed by the nonmonotone algorithm and by LANCELOT for solving CUTE bound-
constrained quadratic problems.

335

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

Figure 3. Logarithms, with the base 10, of the ratios between the CPU time spent by
the nonmonotone algorithm and by LANCELOT for solving CUTE bound-constrained
quadratic problems.

4. Conclusions

Algorithms for bound constrained quadratic minimization that combine active set
strategies with projections to the feasible set are among the most effective for solv-
ing practical problems. Projection steps are crucial, since thanks to them many

constraints can be added to the working set per iteration, thus decreasing drastically
the number of iterations used to solve large-scale problems. The theoretical and

practical results of this paper show that it is worthwhile to relax the monotone de-
crease criterion for the objective function in order to improve practical performance.

In other words, the nonmonotone algorithm was shown to be a valid approach. Al-
though the numerical results relative to bound-constrained quadratic problems from

CUTE do not point very significantly either towards the monotone or to the non-
monotone strategies, we observe that the latter is more relaxed and try, by being

more agressive, to change more drastically the active set from one iteration to the
other, hopefully decreasing the total amount of work done, despite this may not be

the case for some problems. However, when compared with LANCELOT, using the best
combination of choices for the class of solved problems, the nonmonotone algorithm,

with plain conjugate gradients, showed a similar or superior performance for more
than 85% of the tests as far as number of iterations and CPU time are concerned.

Future research will include a study on preconditioning our family of algorithms for
bound-constrained quadratic minimization.

336

Acknowledgments. The authors are indebted to A.R. Conn, N. I.M. Gould and
Ph. L. Toint for making the software LANCELOT available for academic research.

References

[1] D.P. Bertsekas: Projected Newton methods for optimization problems with simple con-
straints. SIAM J. Control Optim. 20 (1982), 141–148.

[2] R.H. Bielschowsky, A. Friedlander, F. A.M. Gomes, J.M. Martínez and M. Raydan: An
adaptive algorithm for bound constrained quadratic minimization. Investigación Oper.
7 (1997), 67–102.

[3] I. Bongartz, A.R. Conn, N. I.M. Gould and Ph. L. Toint: CUTE: Constrained and
Unconstrained Testing Environment. ACM Trans. Math. Software 21 (1995), 123–160.

[4] P. Ciarlet: The Finite Element Method for Elliptic Problems. North Holland, Amster-
dam, 1978.

[5] T.F. Coleman, L.A. Hulbert: A direct active set algorithm for large sparse quadratic
programs with simple bounds. Math. Programming 45 (1989), 373–406.

[6] A.R. Conn, N. I.M. Gould and Ph. L. Toint: Global convergence of a class of trust
region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25 (1988),
433-460; see also SIAM J. Numer. Anal. 26 (1989), 764–767.

[7] A.R. Conn, N. I.M. Gould and Ph. L. Toint: A globally convergent augmented La-
grangian algorithm for optimization with general constraints and simple bounds. SIAM
J. Numer. Anal. 28 (1988), 545–572.

[8] R. Dembo, U. Tulowitzki: On the minimization of quadratic functions subject to box
constraints. Working Paper B-71, School of Organization and Management, Yale Uni-
versity, New Haven (1983).

[9] J.E. Dennis, L. N. Vicente: Trust-region interior-point algorithms for minimization
problems with simple bounds. In: Applied Mathematics and Parallel Computing
(Festschrift for Klaus Ritter) (H. Fischer, B. Riedmüller and S. Schäffer, eds.). Phys-
ica-Verlag, Springer-Verlag, 1996, pp. 97–107.

[10] M.A. Diniz-Ehrhardt, M.A. Gomes-Ruggiero and S.A. Santos: Comparing the numer-
ical performance of two trust-region algorithms for large-scale bound-constrained mini-
mization. Investigación Oper. 7 (1997), 23–54.

[11] M.A. Diniz-Ehrhardt, M.A. Gomes-Ruggiero and S.A. Santos: Numerical analysis
of leaving-face parameters in bound-constrained quadratic minimization. Relatório de
Pesquisa RP52/98. IMECC, UNICAMP, Campinas, Brazil, 1998.

[12] Z. Dostál: Box constrained quadratic programming with proportioning and projections.
SIAM J. Optim. 7 (1997), 871–887.

[13] Z. Dostál, A. Friedlander and S. A. Santos: Solution of contact problems of elasticity
by FETI domain decomposition. Contemp. Math. 218 (1998), 82–93.

[14] Z. Dostál, F.A.M. Gomes Neto and S. A. Santos: Solution of contact problems by FETI
domain decomposition with natural coarse space projection. Comput. Methods Appl.
Mech. Engrg. 190 (2000), 1611–1627.

[15] Z. Dostál, V. Vondrák: Duality based solution of contact problems with Coulomb fric-
tion. Arch. Mech. 49 (1997), 453–460.

[16] L. Fernandes, A. Fischer, J. J. Júdice, C. Requejo and C. Soares: A block active set
algorithm for large-scale quadratic programming with box constraints. Ann. Oper. Res.
81 (1998), 75–95.

[17] A. Friedlander, J.M. Martínez: On the numerical solution of bound constrained opti-
mization problems. RAIRO Rech. Opér. 23 (1989), 319–341.

337

[18] A. Friedlander, J.M. Martínez: On the maximization of a concave quadratic function
with box constraints. SIAM J. Optim. 4 (1994), 177–192.

[19] A. Friedlander, J.M. Martínez and M. Raydan: A new method for large-scale box
constrained quadratic minimization problems. Optimization Methods and Software 5
(1995), 57–74.

[20] A. Friedlander, J.M. Martínez and S.A. Santos: A new trust region algorithm for bound
constrained minimization. Appl. Math. Optim. 30 (1994), 235–266.

[21] P.E. Gill, W. Murray and M.H. Wright: Practical Optimization. Academic Press, Lon-
don and New York, 1981.

[22] G.H. Golub, Ch. F. Van Loan: Matrix Computations. The Johns Hopkins University
Press, Baltimore and London, 1989.

[23] M.R. Hestenes, E. Stiefel: Methods of conjugate gradients for solving linear systems.
J. Res. NBS B 49 (1952), 409–436.

[24] J. J. Júdice, F. M. Pires: Direct methods for convex quadratic programming subject
to box constraints. Investigação Operacional 9 (1989), 23–56.

[25] Y. Lin, C.W. Cryer: An alternating direction implicit algorithm for the solution of
linear complementarity problems arising from free boundary problems. Appl. Math.
Optim. 13 (1985), 1–17.

[26] P. Lötstedt: Numerical simulation of time-dependent contact and friction problems in
rigid body mechanics. SIAM J. Sci. Comput. 5 (1984), 370–393.

[27] P. Lötstedt: Solving the minimal least squares problem subject to bounds on the vari-
ables. BIT 24 (1984), 206–224.

[28] J. J. Moré, G. Toraldo: On the solution of large quadratic programming problems with
bound constraints. SIAM J. Optim. 1 (1991), 93–113.

[29] R.H. Nickel, J.W. Tolle: A sparse sequential programming algorithm. J. Optim. Theory
Appl. 60 (1989), 453–473.

[30] M. Raydan: On the Barzilai and Borwein choice of steplength for the gradient method.
IMA J. Numer. Anal. 13 (1993), 321–326.

[31] E.K. Yang, J.W. Tolle: A class of methods for solving large, convex quadratic programs
subject to box constraints. Tech. Rep. UNC/ORSA/TR-86-3, Dept. of Oper. Research
and Systems Analysis, Univ. of North Carolina, Chapel Hill, NC. (1986).

Author’s address: M.A. Diniz-Ehrhardt, M.A. Gomes-Ruggiero, J.M. Martínez,
S. A. Santos, Institute of Mathematics, Statistics and Scientific Computation (IMECC),
State University of Campinas (UNICAMP), CP 6065, 13083-970 Campinas SP, Brazil,
e-mail: martinez@ime.unicamp.br; Z. Dostál on visit to IMECC-UNICAMP, permanent
address Department of Applied Mathematics, VŠB—Technical University of Ostrava,
17. listopadu 15, 708 33 Ostrava, Czech Republic, e-mail: zdenek.dostal@vsb.cz.

338

