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Abstract

The approach to database query evaluation
developed by Levesque and Reiter treats
databases as first order theories, and queries
as formulas of the language which includes, in
addition to the language of the database, an
epistemic modal operator. In this epistemic
query language, one can express questions not
only about the external world described by the
database, but also about the database itself—
about what the database knows. On the other
hand, epistemic formulas are used in knowl-
edge representation for the purpose of express-
ing defaults. Autoepistemic logic is the best
known epistemic nonmonotonic formalism; the
logic of grounded knowledge, proposed recently
by Lin and Shoham, is another such system.
This paper brings these two directions of re-
search together. We describe a new version of
the Lin/Shoham logic, similar in spirit to the
Levesque/Reiter theory of epistemic queries.
Using this formalism, we can give meaning to
epistemic queries in the context of nonmono-
tonic databases, including logic programs with
negation as failure.

1 Introduction

The approach to database query evaluation developed
by Levesque [1984] and Reiter [1990] treats databases
as first order theories, and queries as formulas of the
language which includes, in addition to the language
of the database, an epistemic modal operator. In this
epistemic query language, one can express questions
not only about the external world described by the
database, but also about the database itself—about
what the database knows. For instance, one can ask
not only whether John teaches any classes this semester,
but also whether there is a known class that John
teaches. The first question will be expressed by a for-
mula like 3xTeaches(John, x); the second, by the epis-
temic formula 3xK Teaches( John, x). The difference be-
tween these queries becomes essential when the database

'This research was supported in part by NSF grant IRI-
89-04611 and by DARPA under Contract N00039-84-C-02n.

contains incomplete (for instance, disjunctive) informa-
tion. Reiter [1988] argues that epistemic formulas are
appropriate also for expressing integrity constraints.

On the other hand, epistemic formulas are used in
knowledge representation for the purpose of expressing
defaults. Autoepistemic logic ([Moore, 1985], [Levesque,
1990]) is the best k nown epistemic nonmonotonic for-
malism. One of the reasons why autoepistemic logic is
important is that general logic programs can be naturally
viewed as autoepistemic theories [Gelfond, 1987]. This
is no longer the case, however, for "extended" logic pro-
grams, which are capable of handling incomplete infor-
mation [Gelfond and Lifschitz, 1990]. In order to express
extended rules by formulas, one has to use other epis-
temic nonmonotonic formalisms. The logic of "grounded
knowledge," proposed by Lin and Shoham [1990], is one
of the possibilities.’

This paper brings these two directions of research to-
gether. We describe a new version of the Lin/Shoham
system, similar in spirit to the Levesque/Reiter theory of
epistemic queries. Our formulation is simpler than that
of [Lin and Shoham, 1990], and, unlike the latter, it is
not restricted to the propositional case. Using this for-
malism, we can give meaning to epistemic queries in the
context of logic programming; we can ask what a logic
program knows. Because our system contains also (some
forms of) default logic [Reiter, 1980] and circumscrip-
tion [McCarthy, 1986], we can give meaning to epistemic
queries in the context of a default theory or a circum-
scriptive theory as well.

The system of Lin and Shoham, unlike most other
epistemic nonmonotonic formalisms, uses (wo epis-
temic operators. One of them represents "minimal
knowledge"?; the other is closely related to the concepts
of "justification" in default logic and of "negation as fail-
ure" in logic programming. The main technical idea of
this paper is to identify the former with the epistemic

operator K used by Levesque and Reiter.

"Other modifications of autoepistemic logic that can
be used for this purpose were developed in [Marek and
Truszczyriski, 1989], [Siegel, 1990] and [Truszczyriski, 1991].

“The idea of minimal knowledge (or "maximal ignorance")
was formalized, in various ways, by several authors, including
Konolige [1982], Halpern and Moses [1984], Shoham [1986]
and Lin [1988].
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We concentrate here entirely on the semantical issues,
and leave aside, for the time being, the computational
problems of query evaluation in this framework.?

2 Propositional MKNF: Formulas and
Interpretations

The formulas of the propositional logic of minimal knowl-
edge with negation as failure (MKNF) are built from
propositional symbols {atoms) using the standard propo-
sittonal connectives and two modal operators: K and
not.4 A theory is a set of formulas (axioms).

If a formula or a theory doesn’t contain the negation
as failure operator not, we call it positive. If it contains
neither K nor not, it is objective.

An interpretation is a set of atoms. The set of all
interpretations will be denoted by Z. Our first goal is to
define when a set S C 7 18 a model of a theory 7. As
a preliminary step, let us consider the case of positive
theories.

3 Positive Theories

For an interpretation / and a set of interpretations S,
we define when a positive formula F is true in (I, S), as
follows. (For simplicity, we assume that all propositional
connectives are expressed in terms of the primitives —
and A.)

1. If F is an atom, F is true in (I,S5) iff F € I.

2. =F is true in (], 5) iff F is not true in (1, 5).

3. FAG is true in (7, 8) iff F and G are both true in
(I, S).

4. KF is true in (I, S5) iff, for every J € S, F is true
in (J,5).

A mode! of a positive theory T 1s any maximalset S C T
such that, for every I € S, the axioms of 7" are true in
(1, 85).

The maximahty condition expresses the 1dea of “mmi-
mal knowledge”: The larger the set of “possible worlds”
18, the fewer facts are known.

in the special case when T is objective, the require-
ment that all axioms of T be true in (I, S) means simply
that I is a model of T in the sense of classical proposi-
tional logic. Consequently, the set Mod(T) of the “clas-
sical models” of T is the only model of T in the sense of
MEKNF.

As another example, consider the case when T is
{KF}, where F is an objective formula. The models
of T are the maximal sets 5 C Z such that every inter-
pretation from 5 is a classical model of F'. It is clear
that Mod(F') is the only such set. More generally, if F is
an objective formula and 7; a set of objective formulas,
then 7o U {KF} has a unique model; it is the same as
the model of Ty U {F'}, that is, Med(Tp L {F}).

T ={KF, VKF;}, where Fy, F’ are objective, then
the models of T are the maximal sets S C I that satisfy

*An algorithm for the evaluation of epistemic queries in
the monotonic case is proposed in {Reiter, 1990].

*The “assumption operator” A from [Lin and Shoham,
1990]) corresponds, in our notation, to the combination —not.
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the condition: Every interpretation from & is a classical
model of F; or every interpretation from S is a classical
model of F4: symbolically:

S C Mod(F}) or § C Mod(Fa).

If neither F; nor F3 is a logical consequence of the other,
then neither of the sets Mod{F,), Mod(F;) contains the
other, and T has two models: Mod(F,) and Mod(F3).

4 Propositiona] MKNF: Models

How can we extend the definition of a model to the gen-

eral case, when the axioms contain nof?

In the presence of both K and not, truth will be de-
fined relative to a triple (I, S*, S™), where 5% and S"
are sets of interpretations; S* serves as the set of possi-
ble worlds for the purpose of defining the meaning of K,
and 5™ plays the same role for the operator nof. Then
a mode]l will be defined as any set S™ that satisfies a
certain fixpoint condition.

For an interpretation I and two sets of interpretations

S*%, 5", we define when a formula is F true in (I, 5%, ™),
as follows,

1. If F is an atom, F is true in (I, 5% ,5") iff F € [.

2. —F is true in ([, Sk S™) iff F is not true in
(I, S*,s™).

3. FAGistrue in (I,5%,5") iff F and G are both
true in (7, 5%, 5™).

4. KF is8 true in (I, $*,5™) iff, for every J € S*, F is
true in (J, S%, 57).

5. not F is true in (1, 5%, 5") iff, for some J € 5", F
is pot true in (J, 5%, §™).

The truth condition for not F' expresses that £ is not
known to be true provided that S™ i1s the set of worlds
that are considered “possible.”

This definition is a generalization of the definition of
truth for positive formulas given in the previous sectjon,
in the sense that a positive formula is true in (I, $*, 5™)
iff it 1s true in (I, §%).

For any theory 7 and any set S C 7, by I'(T, 5) we
denote the set of all maximal sets S’ C I which satisfy
the condition:

For every I € 5/, the axioms of T are true in (I, 5", 5).
(1)
If $e€TI'(7,5), then we say that S is a model of T,

Ii 18 easy to see that, for positive theories, this is equiv-
alent to the definition given earlier. Indeed, if T is pos-
itive, then ['(7, S) does not depend on S, and is simply
the set of all models of T in the sense defined in the
previous section.

As an example of a theory whose axioms are not pos-
itive, consider the theory T whose only axiom is

not F' O G, (2)

where F' and G are objective. The condition (1) says in
this case:

For every I € §/, (2) is true in (I, 5, §).

This 18 equivalent to:



If, for some J € 5, F 18 false in J,
then, for every J € §', G 18 true 1n I,

OT
If S ¢ Mod(F) then §' C Mod(G).

Consequently I'(T,5) is {Z} if S C Mod(F), and
{Mod((G)} otherwise. We conclude that the models of
(2) can be characterized as follows:

1. If F is a tautology, then 7 is the only model of (2).

2. If F is a not a tautology but is a logical consequence
of &, then (2) has no models. For instance, not F O F
has no models.

3. If ' is a not a logical consequence of (7, then the
only model of (2) 18 Mod(G). For instance, not p D gq,
where p and ¢ are distinct atoms, has one model, Mod(q).

5 Relation to Logic Programming

In this section we show that logic programs of some kinds
can be viewed as theories in the sense of MKNF. We
will consider three classes of programs, moving gradu-
ally towards greater generahity. In the semantics of logic
programming, it is customary to view a rule with vari-
ables a8 shorthand for the set of its ground instances; for
this reason, we can restrict our attention to propositional
Programs.
A positive logic program is a set of rules of the form

Ag — Ay, .. A, (3)

where m > (, and each A; is an atom. According to van
Emden and Kowalski [1976], the semantics of a positive
program II is defined by the smallest set of atoms which
18 closed under its rules (that is to say, which includes
Ap whenever it includes 4,, ..., Ay, for every rule (3)
from II). This set of atoms 18 known as the “minimal

model” of Il, and we will denote it by MM(II).

In order to relate the semantics of positive programs
to MKNF, let us agree to identify a rule (3) with the

formula
KA A...AKA, D KA.

For any interpretation J, let w(J) be the set of all inter-
pretations I such that J C I.

Theorem 1, Part A. Every positive program Il has
one model, w( MM(II)).

For instance, let the rules of Il be
P—@q, T +— 5 8§ &— ., {4)

Then MM(Il) is {r,s}. Viewed as a theory in the sense
of MKNF, Il is the set of 3 axioms:

Kg O Kp, Ks D Kr, Ks;
its model w({MM(I1)) is
{{r,s}. {p.7. 8}, {g, " 6}, {P. 0,7, 8}}. (5)
A general logic program is a set of rules of the form
Ag— Ay, .. L not A, (6)

where n > m > 0, and each A; is an atom. Several
approaches to defining 8 semantics for general logic pro-
grams have been proposed. One of thern is based on the

.1Am,ﬂﬂf Am-f—l! - -

notion of a “stable model” [Gelfond and Lifschitz, 1988].
A stable model of II is an interpretation satisfying some
fixpoint condition. We will denote the set of such inter-
pretations by SM(II). 1t is clear from the definition of a
stable model that, in the special case when II is positive,

SM(IT) = {MM(ID)}.
A rule (6) will be identified with the formula

KAlﬂ...AKAmAﬂﬂfAm+1/\,”ﬁnﬂiﬂn:)K.Au.

Theorem 1, Part B. The set of models of a general
program Il Is

{w(M) . M e SM(I)}.
For instance, the program with the rules
pDe—notq;, g+~ notlr
has one stable model, {g}. These rules can be written as
notg O Kp, not r O Kg.
The only model of these axioms is

{{Q}: {P;Q}: {Q: r]'* {P, q, r}}

Finally, we will consider the class of (extended) dis-
junctive databases 1n the sense of [Gelfond and Lifschitz,
1991), in which classical negation and a form of disjunc-
tion are allowed. A disjunctive database is a set of rules
of the form

Lll---ILf"—Lf+11- .,ﬂUiLn,
(7)
where n > m > | > 0, and each L; is a literal (an atom
possibly preceded by =). The semantics of disjunctive
databases defines when a set of literals is an “answer set”
of a given database. We will denote the set of answer sets
of a disjunctive database I1 by AS(II}. If I is a general
logic program, then AS(IT) = SM(II).
A rule (7} will be identified with the formula

>KLiv...VKIL,.

In order to extend Theorem 1 to disjunctive databases,
we need to generalize the definition of the operator w. So
far, w(M) is defined when M is an interpretation, that s,
a set of atoms. Now M 1s allowed to be a set of literals.
For any set of literals M, M™ is the set of atoms that
belong to M, and M~ the set of atoms whose negations
belong to M; w(M) stands for the set of interpreiations
I'suchthat MY CJand M~ NI =0

Theorem 1, Part C. The set of mnodels of a disjunctive
database 1l is

{w(M) : M € AS(IT)}.

For instance, the disjunciive database whose only rule
18

..,Lm,‘ﬂﬂt Lm..i.l,..

p|-g — notr (9)
has two answer sets: {p} and {—~g}. This rule is the same
as the formula

notr D KpV K—g;

the models of this axiom are

{{r}. {p.q}. {p.7) {P.q.7}}
{0, {p}. {r}.{p,r}}.

and
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6 Propositional MKNF: The
Consequence Relation

We say that a positive formula F is a theorem of a theory
T, or a consequence of its axioms (symbolically, T | F),
if, for every model S of T and every interpretation I € 5,
F is true in (I,S). Thus theoremhood is defined for
positive formulas only. (We do not see any reasonable
way to define theoremhood for formulas containing not.)

To illustrate this definition, consider first the special
case when all axioms of 7" are objective. If F' is objective
also, then T |= F if and only if F 1s a consequence of T 1n
the sense of classical propositional logic. If F is allowed
to contain K, then the definition of = turns into (the
propositional case of) the definition of k¢ from [Reiter,
1990].

If, for instance, the only axiom of T 1s pV ¢, then
-Kp is a theorem. If —¢ is added as another axiom, this
theorem will be lost. Thus the consequence relation =
is nonmonotonic even for objective T

If I1 is a general logic program or a digjunctive
database, we can ask whether a positive formula F' is
a consequence of II. For instance, ¢ O p 18 not a conse-
quence of the program (4), because it is false in one of
the interpretations from (5). Theorem 1 (Part C) shows
that a hiteral 1s a consequence of I if and only if it be-
longs to all answer sets of II.

We conclude this section with two remarks about gen-
eral properties of the consequence relation. First, we
would like to say that every axiom is a theorem, but this
makes sense for positive axioms only. It is easy to check,
however, that the result of replacing all occurences of
not by -K in an aXiom is a theorem. Second, let Fy and
F2 be positive formulas; if KFy, D KFy is provable in
59, and T = Fy, then T = F3. In this sense, the set of
theorems is closed under S5,

7 Quantification

QOur next goal 18 to extend the definitions given above
to languages with quantification. For simplicity, we con-
sider first-order quantifiers only; extension to the higher-
order case 1s straightforward.

Consider the language obtained from a first-order lan-
guage L by adding the modal operators K and not. A
theory 18 now a set of sentences of this language; an in-
terpretation is a structure for £. The universe of an in-
terpretation 7 will be denoted by |7|. For any nonempty
set I/, by Iy we denote the set of all interpretations with
the universe .

Let I be an interpretation, and let $%, S™ be subsets of
Z;1- We will define when a sentence is true in (I, S*, S").
To this end, we need to extend the language by object
constants representing all elements of | ]; these constants
will be called names. Truth will be defined for all sen-
tences of the extended language. We assume that all
propositional connectives and quantifiers are expressed
in terms of -, A and V.

1. If F is an atomic sentence, F is true in (I, S*, S")
iff Fis truein 1.

2. ~F is true in (I,S%,8") iff F is not true in
(1, 8%, 5").

384 Knowledge Representation

3. FAG is true in (I, .S"",S“) iff F' and G are both
true in (I, 5%, 5").

4. YzF(z) is true in (I, S*,5") iff, for every name ¢,
F(£) is true in (I, 5%, 8").

5. KF is true in (/, 5%, 8"} iff, for every J € S*, F is
true in (J, 5%, 5").

6. not F 1s true In (I,S",S“) iff, for some J € S™, F
is not true in (J, 5%, S").

For any theory T, nonempty set {/, and subset S of
Iy, by I'y (T, S) we denote the set of all maximal sets
S’ C Iy which satisfy the condition:

For every I € 5, the axioms of T are true in (I, 5", 5).

If S € I'y(T, S), then we say that (U, S) is a model of T'.

If all axioms of T are objective, then the models of T
are the pairs (U, Mod ¢y (T)), where Mody;(T) stands for
the set of classical models of T" with the universe I/,

With quantification available, we can represent logic
programs as axiom sets in a more direct way, without
first replacing rules by their ground instances. A dis-
junctive database can be identified with the axiom set
consisting of (1) the universal closures of the formulas
(8) corresponding to its rules (7), and (i) appropriate
equality axioms {see [Clark, 1978]}). This semantics dif-
fers from the one presented in Section b in that it permits
“non-Herbrand models.”®

A positive sentence F 1s a theorem of a theory T if, for
every model (U, 5) of T and every interpretation I € §,
F is true in (I,5). The two properties of the propo-
sitional consequence relation stated at the end of the
previous section apply to the first-order case also.

8 Relation to Default Logic and
Circumscription

In accordance with the idea of Lin and Shoham [1990],
we ilentify a default

a:Bur.. P/ (10)
with {the universal closure of) the formula
Ka A not—=8 A ... A not-8m D Ka. (11)

The following theorem refers to “default logic with
a fixed universe”—a modification of the system of [Re-
iter, 1980] proposed in [Lifschitz, 19901, The main differ-
ence 1s that, in the standard default logic, parameters of
an open default are treated as metavariables for ground
terms, whereas the modified system handles parameters
as genuine object variables.

Theorem 2. An objective sentence F is a fixed-universe
consequence of (D, WY if DUW E F,

This theorem shows that the translation (11) embeds
default logic with a fixed universe into MKNF.

In [Lifschitz, 1990] we showed how to embed circum-
scription (with all nonlogical constants varied) into de-
fault logic with a fixed universe. The composition of

*See [Przymusinski, 1989] on the role of non-Herbrand
models in logic programming.



these two transformations reduces the circumscription
of P in a sentence F(P) to the formula

F(P)AYz(not P(z) D ~P(z)).

The objective consequences of this formula in the sense
of MKNF are exactly the sentences that follow from the
circumscription in classical logic.

9 Conclusion

The logic of minimal knowledge with negation as failure
provides a unified framework for several nonmonotonic
formalisms and for the Levesque/Reiter theory of epis-
temic queries. Its semantics, like the semantics of cir-
cumscription and of default logic with a fixed universe,
IS a generalization of the standard concept of a model
of a first order theory; we consider this an important
advantage.

However, this unification is not entirely satisfactory,
for two reasons. First, the logic of minimal knowledge
(even in the propositional case and without negation
as failure) has the following puzzling and unintuitive
propertys When a theory T is extended by an "explicit
definition™ of an atom p—by an axiom p = F, where p
occurs neither in the axioms of T nor in F—this may af-
fect the class of theorems that do not contain p. In other
words, in the logic of minimal knowledge, a "definitional"
extension is not necessarily "conservative." This obser-
vation seems to point to a serious defect of the idea of
minimal knowledge. Second, MKNF does not cover the
important concept of "strong introspection,” introduced
recently by Gelfond [1991].
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