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Abstract

We have performed magnetic measurements on a diluted system
of γ − Fe2O3 nanoparticles (d ∼ 7nm), and on a ferritin sample. In
both cases, the ZFC-peak presents a non-monotonic field dependence,
as has already been reported in some experiments, and discussed as a
possible evidence of resonant tunneling. Within simple assumptions,
we derive expressions for the magnetization obtained in the usual ZFC,
FC, TRM procedures. We point out that the ZFC-peak position is
extremely sensitive to the width of the particle size distribution, and
give some numerical estimates of this effect. We propose to combine
the FC magnetization with a modified TRM measurement, a proce-
dure which allows a more direct access to the barrier distribution in a
field. The typical barrier values which are obtained with this method
show a monotonic decrease for increasing fields, as expected from the
simple effect of anisotropy barrier lowering, in contrast with the ZFC
results. From our measurements on γ−Fe2O3 particles, we show that
the width of the effective barrier distribution is slightly increasing with
the field, an effect which is sufficient for causing the observed initial
increase of the ZFC-peak temperatures.
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1 Introduction

A rapid characterization of ensembles of small magnetic particles (like fer-
rofluids) is very commonly achieved by “zero-field cooled” (ZFC) magneti-
zation measurements. The ZFC curve is measured by cooling the sample in
zero field, applying the field at low temperature and then measuring the mag-
netization while raising the temperature by steps. The ZFC curve peaks at a
temperature which is related to a typical scale of the anisotropy energy bar-
riers in the system; it is commonly referred to as the “blocking temperature”
of the sample. For ZFC curves measured under increasing field amplitudes,
the peak is expected to reflect the lowering of the anisotropy barriers, and
hence should shift towards lower temperatures (as observed e.g. in [1]).

However, in several experiments [2, 3, 4, 5], an astonishing increase of
the ZFC-peak temperature with the field amplitude has been reported. In
the first papers [2, 3], no explanation was proposed for this apparent bar-
rier increase under the effect of the applied field. In very recent works on
antiferromagnetic particles of ferritin [4, 5], interestingly, the effect has been
discussed as a possible indication of a resonant spin tunneling phenomenon
[6]. In brief, if the magnetic moment of the particles can flip by quantum
tunneling through the anisotropy barrier (a process which should be favored
in antiferromagnetic particles [7]), then the flipping rate should be enhanced
by a resonance effect when the up and down energy levels coincide. In Mn-12
magnetic molecules, where the energy levels can be well defined, the reso-
nances have been recently observed for the corresponding values of the field
[8, 9]. In a system of size-distributed particles, there can be no coincidence
of the various up and down energy levels in the different particles, except in
the symmetrical situation of zero field. Resonant tunneling has thus been
suggested to produce an increase of the relaxation rate around zero field [6],
which could (among other evidences, see [4, 5]) show up as the observed
anomalous increase of the ZFC-peak temperature for increasing fields.

In the present paper, we want to address the question of the origin of this
anomalous behavior, and to argue in favor of other characterization proce-
dures than the ZFC measurement. We first present a series of experiments on
a sample of γ−Fe2O3 particles, which do indeed exhibit the ZFC anomaly in
the ∼ 65K region, a rather high temperature range for expecting evidences
of quantum effects. Under some simple approximations, we discuss the ex-
pression of the ZFC magnetization, and point out that the peak temperature
is strongly influenced by the width of the barrier distribution. We propose
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as a possible explanation of the anomaly that this width increases under the
influence of increasing field.

In comparison with the ZFC-peak results, we use another experimental
procedure, which also gives access to a characteristic temperature depending
on the applied field amplitude. This other characteristic temperature can
be expected to be much less sensitive to the width of the barrier distribu-
tion (and even insensitive in an ideal log-normal case). Our measurements
on γ − Fe2O3 particles indeed show that this characteristic temperature de-
creases for increasing fields, without any anomaly. We also extract from the
γ − Fe2O3 measurements an approximate width of the barrier distribution,
which we find to slightly increase with field; the effect has the correct order
of magnitude for reproducing the observed ZFC-anomaly.

The largest part of the present paper (Sect. 3 and 4) is devoted to
the γ − Fe2O3 sample, which we have studied in more details until now
[10, 11, 12]. We use these results as an example for discussing the physical
information which can be extracted from the various experimental proce-
dures. Finally, in Sect. 5, we apply the same procedures to a ferritin sample.
The anomaly is found in the ZFC measurements around 3000Oe (in agree-
ment with the other works [3, 4, 5]), and disappears with the other procedure,
making likely our “classical” explanation of the ZFC-anomaly.

2 Experimental procedure and samples

Our first sample consists in small ferrimagnetic particles of γ−Fe2O3 (maghe-
mite), which have been embedded in a silica matrix obtained by a room
temperature polymerization process [13]. Other samples of the same batch
have recently been used for studying the features of the magnetic relaxation
in the limit of very low temperatures [10, 11]. Here, the particles are diluted
to the very low volume fraction of fv = 2 10−4, in order to favor independent
relaxation processes of the particles. In a saturated sample (all particle
moments being aligned, which is far from our case), the corresponding dipolar
field would be of order 1 Oe.

We could not directly observe the γ−Fe2O3 particles in the TEOS matrix.
However, TEM imaging of the particles before their incorporation in silica
has been made; Fig.1 displays the resulting diameter histogram, which can
be tentatively fitted (as is usually done in the literature) to a log-normal
shape
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 , (1)

yielding d0 = 7 nm and σd = 0.3.
We have performed the magnetization measurements with a commercial

SQUID magnetometer (from Cryogenic Ltd, U.K.). Fig.2 presents example
curves from the γ−Fe2O3 sample, obtained at a given field amplitude along
various procedures. The ZFC curve is measured as explained above. The
“FC” (Field Cooled) curve is obtained by cooling the sample in the field,
and measuring while increasing the temperature. We have used in addition
a less common measurement procedure, which we denote as “R-TRM” (Re-
versed Thermo-Remanent Magnetization); it consists in cooling the sample
in the field, reversing the field at low temperature, and then measuring upon
increasing the temperature. Compared to the more usual “TRM” proce-
dure, in which the field is cut-off instead of being reversed, it presents the
advantage that the field conditions for the initial and final states of the par-
ticle relaxation are identical; the effect of the field amplitude on the barrier
distribution can be studied more directly, as we argue below.

Our second sample in this study is made of horse-spleen commercial fer-
ritin (Sigma Chimie). Ferritin is an iron-storage protein; it consists in a
protein shell of outer and inner diameters 12nm and 7.5nm, which is par-
tially or completely filled with an antiferromagnetic iron oxide core (maxi-
mum of ∼ 5000 Fe ions per ferritin molecule) [14]. The concentration of our
solution is 100mg/ml, which again corresponds to a dipolar field of order
1Oe (at saturation of the non-compensated moments). As an example of
antiferromagnetic nanoparticles, ferritin is considered a good candidate for
the observation of quantum tunneling of the Néel vector [7], and has been
the subject of numerous studies at low temperatures these last years (see
[3, 4, 5, 15, 16] and references therein).

All throughout the paper, we have chosen as a convention to present the
results in terms of magnetic moments, in c.g.s. electromagnetic units; we have
not divided the measured magnetic moments by the sample volume, which
we estimate for the γ − Fe2O3 particles to Vtot = 2.1 10−5 cm3. For ferritin,
we only know the total mass, which amounts to 8.4 10−3g of ferritin particles.
Coherently, in the following equations, we do not divide by integrals over the
particle volumes.
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3 ZFC measurements: anomalous field de-

pendence

We present now the ZFC measurements which we have performed on our
sample of γ−Fe2O3 particles, for field amplitudes ranging from 1 to 200 Oe
(in this sample, the effective coercive field which brings the total magneti-
zation to zero after saturation is ∼ 300 Oe at 2 K [12]). The curves are
displayed in Fig.3a, and the peak temperature variation with the field is
shown in Fig.3b. Surprisingly, the peak temperature increases with the field
up to ∼ 80 Oe, before decreasing for larger values as expected.

The initial increase of a ZFC curve reflects the additive contributions of
larger and larger particles which are deblocked as the temperature is raised;
the maximum is obtained when these contributions are compensated by the
superparamagnetic reduction of already deblocked moments. It is therefore
clear that the peak temperature has no simple relation with the peak of the
size distribution. One may however consider that it is related to some typical
anisotropy barrier; in that case, the effect of an increasing field amplitude
should be to lower the anisotropy barrier, in contradiction with our result in
Fig.3b.

A similar observation has already been reported for magnetite particles
[2], and also in ferritin [3]; no explanation was proposed. Again in ferritin,
the phenomenon has recently been quoted [4, 5], and discussed as a possible
indication of a resonant tunneling process at zero field [6]. In our present
sample, the temperature range of the ZFC-peak (∼ 65 K) does not favor an
explanation of quantum origin. In the following, we write in more details the
MZFC expression under simple assumptions, and propose a semi-quantitative
explanation of a non-monotonic behavior of the peak temperature in terms
of the field influence on the barrier distribution.

The ZFC data being taken in a field H , deblocking of particles with
anisotropy barrier U(H) occurs at a temperature Tb such that the typical time
for crossing the barrier U(H) is equal to the measurement time tm ∼ 100 s,
namely

kBTb =
U(H)

ln tm/τ0
(2)

where the attempt time τ0 is of order 10
−10s, giving ln tm/τ0 ≃ 28. We assume

that the anisotropy barrier U of a particle is proportional to its volume V ;
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in zero field, U = KV , where K is the energy density for uniaxial anisotropy
(from other measurements, K ≃ 6 105 erg/cm3 [12]). In the general case of
random orientations of the easy axes of the particles, the question of the field
dependence U(H) of the anisotropy barriers cannot be solved analytically
(approximations are discussed in [17]). If the easy axes are parallel to the
field, in contrast, it is straightforward to derive exactly

U(H) = KV (1−
H

Hc

)α (3)

with α = 2. Hc is the coercive field, at which the given barrier vanishes. In
[18], it has been observed that the disorder of the easy axes orientations yields
a distribution of the Hc values. We restrict ourselves to simply considering
that we can approximate the orientational disorder by Eq.3 with α = 1.5
instead of α = 2 [19], keeping the same Hc for all particles.

At a given temperature T , the magnetization MZFC is the sum of the
superparamagnetic contributions of the particles for which Tb < T , or in
other words of volume smaller than a blocking value Vb such that

Vb(T,H) =
kBT ln tm/τ0

K(1−H/Hc)α
. (4)

For the sake of simplicity, we approximate here the superparamagnetic be-
havior by an 1/T Curie shape, and do not include a temperature dependence
of the saturated magnetization Ms. We do not expect these approximations
to significantly affect the present discussion (see more detailed analysis in
[12]).

Within this framework, MZFC reads

MZFC(T ) = Mr(H) +
M2

s

3 kB T
H

∫ Vb(T,H)

0
f(V ) V 2dV . (5)

where Mr stands for the reversible contribution which is due to the canting of
the moments from the easy axes towards the field direction. This term equals
Mr = M2

s Vtot H / 3 K in the T = 0 limit; at non-zero temperatures, it is
a correction to the main term which accounts for the fact that the moments
are not exactly lying along the easy axes. As is usually done, we neglect
it in the present discussion of the ZFC-peak; we show below that this term
disappears to first order in some other quantities.

Firstly, one sees in Eq. 5 that the temperature dependence of MZFC

occurs (at least) via Vb(T,H) and the Curie term. The temperature derivative
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cannot be written in simple terms, and there is no explicit expression of the
peak temperature (which, however, obeys a simple first-order differential
equation [20]). Secondly, the f(V ) distribution is here involved through
a V 2f(V ) contribution, which clearly emphasizes the effect of the largest
particles; the sensitivity of MZFC to the standard deviation σv = 3σd is
stronger than that of other quantities which involve lower powers of V, like
the one that we propose below.

In order to quantitatively estimate the sensitivity of MZFC to σv, we have
performed numerical calculations of Eq.5, which are shown in Fig.4a. The
K and V0 parameters have been adjusted to the values of the experiment; in
this elementary calculation, due to the various approximations, the shape of
the ZFC curves is not completely realistic [12]. However, one sees clearly in
Fig.4a that the ZFC-peaks shifts extremely rapidly towards higher tempera-
tures when σv is increased. In Fig.4b, we present the ratio of the ZFC-peak
temperature to the blocking temperature for the typical volume V0. For our
sample (σv ∼ 0.9), the calculation yields a ratio of 4.4 (neglecting the Ms(T )
variation should produce a slight overestimate). In most cases found in the
literature, the standard deviation of the volume distribution is of this same
order of magnitude; the particle volume which is commonly deduced from
the ZFC-peak must therefore be divided by a non-negligible factor before
being compared with V0.

In our opinion, the result in Fig.4b opens the way to a possible expla-
nation of the Tb(H) increase at low fields, which could be due to a slight
enlargment of the barrier distribution under the influence of the field. A
simple reason for that can be the disorder of orientations. For randomly ori-
ented particles of a unique size, the applied field lowers differently the barriers
with respect to their orientation, thus enlarging the barrier distribution. One
may also imagine that, in relation with the defects of a particle, an increasing
field results in different coupling energies of the field to various parts of the
particle, thus yielding several different energy barriers. Whatever its origin,
which remains an open question, an enlargment of the barrier distribution
can indeed be found in the analysis of our R-TRM data (see below).
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4 Other measurement procedures for prob-

ing the barrier distribution

A TRM measurement corresponds to the inverse field-history of the ZFC
procedure; the sample is cooled in the field, the field is cut at low temperature,
and deblocking is measured for increasing temperatures in zero field. Keeping
the same assumptions as above, the TRM can be written as the sum of the
moments which are still blocked in the field-cooled state:

MTRM (T ) =
M2

s

3 kB
H

∫

∞

Vb(T,0)

f(V ) V 2

Tb(V,H)
dV . (6)

Contrary to the ZFC case, no Mr term appears, and now the 1/T term is
replaced by 1/Tb, since each particle has kept a magnetization which is equal
to the superparamagnetic value at the blocking temperature Tb(V,H). Tb is
obtained from Eqs. 2,3, where tm now corresponds to the time scale τc of
blocking during the field-cooling process. An estimate of τc can be obtained
from the cooling rate vc = dT/dt (≃ 0.04K/s). As the temperature decreases,
the Arrhenius relaxation time τ for a given barrier abruptly increases, and
freezing occurs when ∂τ(t)/∂t ∼ 1. One finds that τc satisfies

τc ln
2 τc
τ0

= −
U

kBvc
, (7)

which yields τc ∼ 30 s ∼ tm for U = KV0; the ln tm/τ0 term which is involved
in Tb for the TRM procedure is almost the same as above. Replacing now
Tb(V,H) in Eq.6, we obtain:

MTRM (T ) =
M2

s ln tm/τ0
3K(1−H/Hc)α

H
∫

∞

Vb(T,0)
f(V ) V dV . (8)

The only temperature dependence of the TRM occurs in the lower bound
Vb(T, 0) of the integral; this allows us to take very simply the temperature
derivative of MTRM [21], which reads

∂MTRM

∂T
= −

M2
s kB H

3 K2

ln2 tm/τ0
(1−H/Hc)α

Vb(T, 0)f(Vb(T, 0)) . (9)

Thus, the TRM derivative gives a direct access to the quantity V f(V );
if f(V ) is log-normal, then V f(V ) peaks at V = V0, independently of the
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width of the distribution. This makes a crucial difference with the ZFC case,
for which the peak rapidly shifts as σv increases. However, the blocking
volume Vb(T, 0) which is involved in ∂MTRM/∂T is the blocking volume in
zero field, because the measurement is performed in zero field. The effect of
the field amplitude only appears through a multiplicative factor in Eq.9; in
other words, ∂MTRM/∂T does not give access to the field-modulated barrier
distribution.

This is our motivation for using another experimental procedure, which
allows the study of the effect of the field amplitude on the barrier distribution.
We have performed a series of “Reversed-TRM” measurements (R-TRM) for
various field values; after field-cooling in +H , the field is reversed to −H
at low temperature, and the magnetization is measured while increasing the
temperature. An example of such a curve has been given in Fig.2. Within
the same framework as above, the magnetization MR−TRM at a given tem-
perature T can be written as the sum of the contributions of the smaller
particles, already deblocked at T in −H , plus that of the larger ones, still
blocked in the +H field-cooled state; again using the Tb(V,H) expression for
the blocked term, one obtains

MR−TRM (T,H) = Mr(−H) +
M2

sH

3

[

−
1

kBT

∫ Vb(T,H)

0
f(V ) V 2 dV

+
ln(tm/τ0)

K(1−H/Hc)α

∫

∞

Vb(T,H)
f(V ) V dV

]

. (10)

This expression looks rather complicated; but it is almost the same as
that of the field-cooled magnetization MFC , up to the respective signs of the
superparamagnetic contributions (also, the reversible parts Mr are just of
opposite sign). In a +H field, MFC reads:

MFC(T,H) = Mr(+H) +
M2

sH

3

[

1

kBT

∫ Vb(T,H)

0
f(V ) V 2 dV

+
ln(tm/τ0)

K(1−H/Hc)α

∫

∞

Vb(T,H)
f(V ) V dV

]

. (11)

The idea is to consider the sum MR−TRM +MFC of both magnetizations,
and thus get rid of the superparamagnetic contribution (and of Mr), which
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presents the most intricate temperature dependence:

MR−TRM (T,H)+MFC(T,H) = 2
M2

sH

3

ln(tm/τ0)

K(1−H/Hc)α

∫

∞

Vb(T,H)
f(V ) V dV .

(12)
As in the TRM case (Eqs. 6,8), the temperature derivative can easily be

taken:

∂(MR−TRM +MFC)

∂T
= −2

M2
s H kB ln2 tm/τ0

3K2(1−H/Hc)2α
Vb(T,H)f(Vb(T,H)) . (13)

In this quantity, the blocking volume corresponds to blocking in a field H , a
quantity which was not involved in simple TRM measurements. Using our R-
TRM and FC measurements, we have estimated the derivatives Eq.13 for our
1− 200 Oe measurement fields; the resulting curves are displayed in Fig.5a.
If the f(V ) distribution is log-normal, then V f(V ) is a simple gaussian of
lnV/V0, which peaks at V0 whatever the distribution width. One may there-
fore argue that the peak of this quantity in different fields corresponds to
the same objects. Obviously, the assumption of a log-normal f(V ) remains
questionable (see below); however, within this assumption which is the most
commonly used, our procedure allows a clearly more direct characterization
of the barrier distribution than the ZFC measurement.

The peak temperatures of Fig.5a are plotted versus H in Fig.5b, which can
be compared with the ZFC data in Fig.3b . The peak temperatures monoton-
ically decrease with increasing field, whereas the ZFC results were exhibiting
a striking non-monotonic behavior. The peak temperatures can be fitted to
the expected field-dependence Eq.3; fixing α = 1.5 [19] and V0 = 180 nm3

from TEM (Fig.1), we obtain Hc ≃ 250 Oe and K = 6.4 105 erg/cm3, in
good agreement with other estimates [12].

Another combination of R-TRM and FC data can be used for checking
the overall coherence of our data and analysis. According to Eqs. 5,10 and
11, the three kinds of experiments are related:

MZFC =
1

2
(MFC −MR−TRM ) , (14)

or, in other words, given two of the measurements, the third one can be
deduced. Eq.14 is thus the generalization to the situation of a non-negligible
field of the well-known relation MZFC = MFC −MTRM . Following a remark
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by D. Fiorani, we note that Eq.14 allows the reader who prefers to avoid
the R-TRM measurements to use, in place of the sum MR−TRM +MFC , the
equivalent quantity 2(MFC −MZFC).

We have checked the validity of Eq.14 with our γ − Fe2O3 data. Fig.6a
compares the measured ZFC magnetizations (symbols) with the ones which
are obtained by combining the FC and R-TRMmeasurements through Eq.14.
They are in rather good agreement, except a slight amplitude difference in
the vicinity of the peak for the lower field curves. In Fig.6b, we compare the
field variation of the ZFC-peaks obtained in both direct and indirect way;
they are fully compatible within the errors bars, and in particular the non-
monotonic behavior is found in both cases, whereas it does not show up in
the FC+R-TRM analysis of Fig.5b.

The fact that the anomalous behavior of the ZFC-peak does not appear
in a (FC+R-TRM) measurement, which is less sensitive to the f(V ) width,
prompts us to propose that the initial increase of the ZFC-peak with increas-
ing field be related to an increase of the distribution width. This effect can
be searched in the Vbf(Vb) data which were presented in Fig.5a; in Fig.7,
we present differently this same data, in a way which favors the comparison
of the various curves. If f(Vb) is log-normal, all Vbf(Vb) curves are simple
gaussians of lnT ; their peak temperature corresponds to blocking V0 in a
field H , that is the peak temperatures are deduced from each other by a
multiplicative factor (which is the effect of the field on the anisotropy bar-
rier). In Fig.7, the data is presented as a function of lnT , and the peaks are
superposed by a T-affinity; also, for clarity, the peak amplitudes have been
normalized to one.

A slight but systematic asymmetry of the curves can be noted; they are
a little bit more spread out on the low-T side. The derivative estimate of
the first points can be less accurate; apart from that difficulty, the effect
suggests that the log-normal approximation is not completely correct. This
may indicate a difference between the geometrical sizes which are seen by
TEM and the effective magnetic sizes. However, the accuracy with which the
size histogram of Fig.1 suggests a log-normal shape is less than that of Fig.7.
The universal success of the log-normal shape for particle size distributions
could be more related to practical reasons than really scientifically grounded.

Even slightly asymmetric, the curves in Fig.7 show that the width of
the effective distribution increases for increasing field. Within the present
assumptions, we do not intend to reproduce in details the observed ZFC-peak
temperature variation, but we can roughly quantify the effect. For example,
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when H goes from 1 to 50 Oe, the approximative σv which can be read in
Fig.7 increases from 0.8 to 1.1 . ForHc = 250Oe as obtained above, and using
Eq.3 with α = 1.5 for the field influence on the barriers, we have computed
the corresponding ZFC curves; the curve with (H = 50Oe, σ = 1.1) peaks
at a 1.3 times higher temperature than the one with (H = 1Oe, σ = 0.8).
Hence, for increasing field, the observed distribution enlargment is enough
for producing an increase of the ZFC-peak temperature, despite the lowering
of the barriers.

5 Ferritin results

In ferritin, a non-monotonic variation of the ZFC-peak, together with other
particular features of the magnetization relaxation, has been discussed in
terms of resonant tunneling at zero field [4, 5]. A “pinch” of the hysteresis
loop is observed around H = 0 [4, 5]; viscosity data can be interpreted as
showing an anomaly [5] (not yet clear in [4]), but this latter point still raises
the question of a relevant normalization for the comparison of viscosity data
at various fields, which is not yet completely solved [4],[22]. The observation
of resonant tunneling is more plausible in ferritin than in the γ−Fe2O3 parti-
cles, because of the antiferromagnetic character of the particles, which makes
their resultant moment smaller (∼ 50 iron moments); the energy level spac-
ing is thus larger, making wider the field range around zero where the effect
can be visible [6]. Prompted by discussions with some of the authors of [4]
and [5], we have measured a commercial ferritin sample and applied the same
analysis as above for γ − Fe2O3 particles.

We have performed the measurements for fields ranging from 50 to 6000
Oe. The ZFC curves are shown in Fig.8a, together with the field dependence
of the peaks in Fig.8b. Here again a non-monotonic variation is found, in
agreement with previous works [3, 4, 5]. Following the procedure of Sect.4,
we have also measured the FC and R-TRM curves at the same fields, and
estimated the temperature derivative of the sum, which is shown in Fig.9a
(peak values in Fig.9b). The result is qualitatively similar to the case of
the γ − Fe2O3 particles. In the region of ∼ 3000Oe where the ZFC-peak
data show a clear maximum, the peak values of the derivative monotonically
decrease for increasing field. An anomalous behavior still remains possible
within the error bars below 1000Oe, but it is located far below the anomaly
which is seen in the ZFC-results, and more accurate data would be needed
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for discussing this point. Thus, on both samples that we have studied, the
same non-monotonic behavior is obtained from the ZFC peak-temperatures,
and the anomaly is not confirmed in the other procedure. The analysis of
∂(MFC+MR−TRM )/∂T seems therefore able to provide a physical information
which is of much more direct interpretation than that extracted from ZFC
measurements.

6 Conclusions

In this paper, we have discussed the physical interpretation of standard mag-
netic measurement procedures in systems of nanometric magnetic particles,
on the basis of experiments performed with two very different samples. One
is made of ferrimagnetic particles (γ − Fe2O3), highly diluted, with a ZFC-
peak temperature of ∼ 65K, and the other of antiferromagnetic particles
of ferritin, less diluted but with much lower magnetic moment, with a ZFC
peak in the 10− 15K range.

In both samples, the ZFC-peak temperature is found to initially increase
with field, at variance with the common sense expectation of an anistropy
barrier lowering due to the field. From a very simple description of the
blocking and deblocking processes, we recall that the ZFC-peak temperature
is not simply related to the typical volume of the distribution f(V ); it is
influenced by the 1/T behavior of the deblocked particles, and involves a
V 2f(V ) term which enhances the contribution of the larger volumes. The
ZFC curve is thus extremely sensitive to the distribution width; the peak
rapidly shifts to higher temperatures when the width increases, an effect
that we have quantified under simple approximations.

We propose to understand the ZFC anomaly at the light of another experi-
mental procedure. As a first example, the temperature variation of the TRM,
which is measured in zero field, does not involve the 1/T superparamagnetic
contribution, and contains a V f(V ) term which yields a weaker sensitivity
to the distribution width. But the TRM does not bring informations about
the effective distribution of anisotropy barriers in a field. This point can be
studied using a Reversed-TRM procedure, in which the field is reversed to
its opposite value at low temperature. In the sum of the FC magnetization
and the R-TRM, the 1/T term is eliminated (together with the reversible
magnetization), and f(V ) comes in through V f(V ) (weak sensitivity to the
width), in which V now stands for the volume which is deblocked in the field,
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thence the access to the field-modulated barrier distribution. Note that one
may also use the equivalent combination MFC −MZFC , which presents the
same property.

The temperature derivative ∂(MFC+MR−TRM )/∂T of this sum is propor-
tional to V f(V ), which peaks to a typical volume in the distribution, and our
point is the following: for different experiments with various field amplitudes,
the magnetic objects which correspond to the peak value remain almost the
same (exactly the same in the log-normal case), which is far from being the
case for ZFC measurements. Indeed, our measurements on both samples
show that the peak of ∂(MFC +MR−TRM )/∂T decreases for increasing field,
in contrast with the peak of the ZFC curves.

The effect of the field on the distribution of anisotropy barriers is not
easily described in details [17], mainly for two reasons. On the one hand,
for random orientations of the particle easy axes, there is no general analyt-
ical treatment of the problem. On the other hand, the usual assumptions
which are commonly made for describing systems of small particles might
become less applicable in the presence of higher fields (is each particle a sin-
gle fixed macro-moment, or do some parts couple selectively to the field ?
are the particles relaxing independently, or do they become influenced by
the field of their neighbors ?). On the γ − Fe2O3 sample, which we have
studied in more details than the ferritin, the examination of the measured
∂(MFC + MR−TRM )/∂T shows that, for increasing field, V f(V ) naturally
peaks to lower values, but also becomes wider, as already expected from
the only effect of orientational disorder. The observed effect has the cor-
rect order of magnitude for compensating the barrier decrease at low fields,
and hence for producing the observed anomalous increase of the ZFC peak
temperature. We therefore consider that the non-monotonic variation of the
ZFC-peak temperature is related to an enlargment of the effective barrier
distribution under the influence of the field; no anomaly is found using the
other procedure.

There has been these last years a renewed interest for the low-temperature
dynamics of systems of small particles, motivated by a search for quantum
tunneling phenomena in these quasi-macroscopic objects [7]. Evidencing
the quantum effects from viscosity measurements is hindered by the lack
of knowledge of the effective barrier distribution, which modulates the tem-
perature variation of the measured relaxation rates [10, 18]. Very recently,
observations of the non-monotonic field dependence of the ZFC-peak tem-
perature in ferritin [4, 5] have been discussed in terms of possible resonant
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tunneling effects in zero field [6]. This has prompted us to extend the present
work, mainly centered on γ − Fe2O3 particles, to a ferritin sample. It ap-
pears that the same “classical” explanation of the ZFC anomaly should work
in both cases. This conclusion does not concern other possible evidences
of the resonant tunneling effects in ferritin, like e.g. the pinched hysteresis
cycles [4, 5]. Here again, as is the case for viscosity, it appears that the
barrier distribution plays a non-negligible role, and that the choice of physi-
cally meaningful quantities for characterizing the low-temperature dynamics
of magnetic nanoparticle systems remains a delicate matter.

We want to thank E.M. Chudnovsky for numerous stimulating discussions
all along this work, and D. Fiorani for a useful suggestion.
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Figure captions

Figure 1: Histogram of the γ − Fe2O3 particle diameters, as observed in
TEM imaging (symbols). 454 particles have been sampled. The dotted line
is a fit to a log-normal distribution, with d0 = 7.05nm and σd = 0.32.

Figure 2: Example magnetization curves from the γ − Fe2O3 particles
(H = 80Oe), obtained following the different experimental procedures: Field-
Cooled, Zero-Field Cooled, and Reversed Thermo-Remanent Magnetization
(the R-TRM curve has been multiplied by −1 in the figure).

Figure 3a: Measured ZFC magnetizations on the γ −Fe2O3 sample, nor-
malized to the field amplitude. From top to bottom, the field values are 1,
10, 20, 50, 80, 110, 150 and 200 Oe.

Figure 3b: Peak temperatures of the measured ZFC magnetization curves
for γ − Fe2O3.

Figure 4a: Calculated ZFC curves, using a log-normal volume distribu-
tion, for various values of the standard deviation σv.

Figure 4b: Ratio of the calculated ZFC-peak temperatures to the block-
ing temperature corresponding to V0 (reference volume of the log-normal
distribution), for different values of the standard deviation σv.

Figure 5a: Temperature derivative of the sum of the measured magneti-
zations MFC + MR−TRM , divided by the field amplitude, for different fields
(γ − Fe2O3 sample).

Figure 5b: Peak temperatures of the curves in Fig.5a, for different fields;
these temperatures do not show the non-monotonic behavior which is found
using the ZFC-peaks.

Figure 6a: Comparison for the γ − Fe2O3 sample of the measured ZFC
magnetizations (symbols) with the combination of measured magnetizations
(MFC −MRTRM)/2 (solid lines), showing the consistency of the data and of
our description (the magnetizations are normalized to the field amplitude).
The field values are the same as in Fig.3a.



Figure 6b: Comparison of the peak temperatures of the measured ZFC
curves (full circles) with the peak temperatures of the combination (MFC −

MR−TRM )/2 of other measured magnetizations (open squares).

Figure 7: Temperature derivative (normalized to the peak amplitude) of
the combination (MFC +MR−TRM ) of measured magnetizations, as a func-
tion of the neperian logarithm of the temperature (normalized to the peak
position), for the γ − Fe2O3 sample.

Figure 8a: Measured ZFC magnetizations on the ferritin sample, normal-
ized to the field amplitude. From top to bottom, the field values are 50, 200,
600, 1000, 2000, 3000, 4500 and 6000 Oe.

Figure 8b: Peak temperatures of the measured ZFC magnetization curves
for ferritin (more data than in Fig.8a).

Figure 9a: Temperature derivative of the sum of the measured magneti-
zations MFC + MR−TRM , divided by the field amplitude, for different fields
(ferritin sample).

Figure 9b: Peak temperatures of the curves in Fig.9a (ferritin sample,
more data than in Fig.9a), for different fields, which do not confirm the
non-monotonic behavior observed for the ZFC-peak.
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