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Abstract

This paper deals with image restoration problems where the data are nonuniform

samples of the Fourier transform of the unknown object. We study the

inverse problem in both semidiscrete and fully discrete formulations, and our

analysis leads to an optimization problem involving the minimization of the

data discrepancy under nonnegativity constraints. In particular, we show that

such a problem is equivalent to a deconvolution problem in the image space.

We propose a practical algorithm, based on the gradient projection method,

to compute a regularized solution in the discrete case. The key point in

our deconvolution-based approach is that the fast Fourier transform can be

employed in the algorithm implementation without the need of preprocessing

the data. A numerical experimentation on simulated and real data from the

NASA RHESSI mission is also performed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The reconstruction of an image from the knowledge of a nonuniform sampling of its Fourier

transform is a common problem in several scientific areas, such as radioastronomy, x-ray

astronomy, computed tomography and magnetic resonance imaging [7, 10, 16]. In the general

case, given N points irregularly distributed in the frequency space, we want to recover the

corresponding image in the physical space. This problem presents both theoretical and

computational difficulties: from the theoretical point of view, we are dealing with an inverse

problem which is ill-posed in the sense of Hadamard [17]. In fact, due to the sparsity of the

samples in the frequency space, infinite solutions are admissible; moreover, some of these

solutions could not be physically meaningful because of the error which potentially affects
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Figure 1. Example of a typical sampling of RHESSI data in the frequency plane.

the data. On the other hand, from the computational point of view, the irregularity of the

data sampling prevents the straightforward application of the fast Fourier transform (FFT)

algorithm, with the result of a heaviness of the inversion procedure.

Several methods have been proposed in the recent literature to face these difficulties,

most of which are based on a two-step procedure (see [32] and references therein). At the

beginning, the data are interpolated with a suitable function fixed a priori. This interpolation

step (or gridding) has a twofold purpose: to fill the areas in the frequency space which lack in

measured data and to allow in this way a uniform re-sampling of the data themselves. Thanks

to this procedure, it is possible to invert the Fourier transform and reconstruct the desired

image through some FFT-based direct or iterative algorithm.

Such a strategy results to be particularly efficient when

• the measured data are available in a large number and well distributed (even if not

uniformly) in the frequency space. In this way, the choice of the interpolation function

should not engrave heavily on the re-sampled data and different interpolation functions

should lead to very similar reconstructed images;

• the signal-to-noise ratio is sufficiently high. In contrast, if the measured data were affected

by a high level of noise, the interpolation phase may lead to an amplification of this noise

level on the re-sampled data with the result of artefacts formation and undesirable effects

in the corresponding reconstructed image.

Unfortunately, these two conditions fail in a large number of datasets provided by the NASA

satellite Ramaty high energy solar spectroscopic imager (RHESSI), launched from Cape

Canaveral on 5 February 2002 with the aim to recover temporally, spatially and spectrally

resolved x-ray and γ -ray images of solar eruptions [21, 23]. The RHESSI satellite is still

working and keeps on providing every day a large amount of data with very high quality.

The crucial point in RHESSI technology is the fact that the spatial information is encoded

in the measured data as rapid temporal variations of the captured radiation [19]. In practice, the

raw data given by RHESSI for a fixed x-ray energy interval is a set of complex numbers, called

visibilities, which represents a sparse and nonuniform sampling of the radiation spatial Fourier

transform. Due to RHESSI’s hardware, the measured data correspond to spatial frequencies

distributed in the frequency plane on nine concentric circles whose radii form a geometric

sequence with a common ratio
√

3 (figure 1).
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For this reason, especially in the high frequencies where the sampling is more sparse, the

impact of the interpolation method can be nonnegligible. Moreover, particularly in the recent

period of depressed solar activity, most of the RHESSI datasets correspond to solar eruptions

with poor intensity and, therefore, are characterized by a low signal-to-noise ratio (due to the

Poissonian nature of the noise affecting the data).

In the present paper we introduce a new method (that we called Space-D) to reconstruct

an image from a nonuniform sampling of its Fourier transform which acts straightly on the

data without interpolation and re-sampling operations, exploiting in this way the real nature

of the data themselves. To this aim, we study the problem from the theoretical viewpoint

in both continuous and discrete settings and we reformulate it as a constrained minimum

problem. In particular, we show that the minimization of the data discrepancy is equivalent to

a deconvolution problem with a suitable kernel.

In our approach, the solution is effectively computed by means of a gradient projection

method with an adaptive steplength parameter. In particular, our choice is based on a suitable

alternation of the two Barzilai–Borwein rules [1] which recently obtained very good results in

signal and image denoising and deblurring problems [2, 8, 37]. Since the objective function

involves a convolution operator, the algorithm can be effectively implemented exploiting the

fast Fourier transform.

The main strength of our approach resides in a convenient problem formulation coupled

with an efficient optimization algorithm. Moreover, it has been experimentally shown that

the gradient projection method exhibits a semi-convergence behaviour [2, 8], thus providing

regularized solutions. Finally, super-resolution is achieved through projections of the images

obtained at each iteration of the algorithm on the admissible region [25].

The plan of the paper is the following: in section 2 we formulate the mathematical problem

in a semidiscrete framework, providing the formal expression of its generalized solution and

deducing the equivalent minimum problem through the introduction of a particular convolution

operator. In particular, in section 2.3, we fully discretize the problem and we follow the same

road covered in the continuous case to get the analogous minimum problem. In section 3, the

optimization algorithm is described and the regularization issue is discussed. Applications of

such a method on synthetic and real data provided by RHESSI are given in section 4, together

with a comparison with the two state-of-the-art reconstruction algorithms from visibilities

already available in the RHESSI software. Some conclusions and ideas for future developments

of the method are offered in section 5.

2. Mathematical formulation

The problem of reconstructing a function given a finite sampling of its inverse Fourier transform

can be considered as a semidiscrete problem [3, 4]: an unknown object belonging to an infinite-

dimensional functional space has to be recovered from a finite number of data. More precisely,

we define a mapping from an appropriate functional space into a finite-dimensional vector

space that relates a function with some samples of its Fourier transform. To this end, let us

define the square D = [X1, X2] × [Y1, Y2] in the image plane and the points

(uk, vk), k = 1, . . . , N

in the frequency plane. For a given two-dimensional function

D ∋ (x, y) �→ f (x, y) ∈ R,

the discrete data g ∈ C
N (also called visibilities) are defined as

gk =
∫

D

f (x, y) e2π i(ukx+vky) dx dy, k = 1, . . . , N (1)

3
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and can be considered a nonuniform sampling of the Fourier transform4

V (u, v) =
∫

D

f (x, y) e2π i(ux+vy) dx dy, (u, v) ∈ R
2. (2)

We consider the Hilbert space X = L2(D, C) and the semidiscrete operator A : X → C
N

defined as

(Af )k =
∫

D

f (x, y) e2π i(ukx+vky) dx dy, k = 1, . . . , N, f ∈ X . (3)

The adjoint of the operator A, A∗ : C
N → X , also called back-projection, is defined as

follows: given c ∈ C
N ,

(A∗c)(x, y) =
N

∑

k=1

ck e−2π i(ukx+vky), (x, y) ∈ D. (4)

Indeed, we have

〈Af, c〉
C

N =
N

∑

k=1

ck

∫

D

f (x, y) e−2π i(ukx+vky) dx dy

=
∫

D

f (x, y)

N
∑

k=1

ck e−2π i(ukx+vky) dx dy = 〈f,A∗c〉X

where 〈·, ·〉
C

N and 〈·, ·〉X denote the inner products of C
N and X , respectively.

Thus, the image reconstruction problem can be formulated as a linear inverse problem

with discrete data [4]

Af = g (5)

which is ill-posed since it has infinite solutions.

2.1. Generalized solution

In this section we derive the formal expression of the minimum norm solution, or generalized

solution, of problem (5), which can be reformulated in the following equivalent form: given

the set of functions {ϕ1, . . . , ϕN } in the Hilbert space X and the vector g ∈ C
N , find f ∈ X

such that

gk = 〈f, ϕk〉X , k = 1, . . . , N. (6)

In this way, the kth component (k = 1, . . . , N) of the element Af in the Euclidean space C
N

corresponds to the value of the bounded linear functional described by

(Af )k = 〈f, ϕk〉X . (7)

From (3) and (7) we can derive the following form for the function ϕk (k = 1, . . . , N):

ϕk(x, y) = e−2π i(ukx+vky), (x, y) ∈ D. (8)

The functions ϕ1, . . . , ϕN defined in (8) lead to the generalized solution f † of the inverse

problem (i.e. the unique solution of the minimal norm of (6)) through the introduction of the

Gram matrix G = (Gmn) whose entries are given by

Gmn = 〈ϕm, ϕn〉X , m, n = 1, . . . , N. (9)

4 Coherently with the definition of visibility given in [24, 27], we define the Fourier transform with a positive sign

in the exponent.
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In fact, it is well known that the relation

AA∗ = G

holds5; therefore, the eigendecomposition of the matrix G provides directly the singular vectors

a1, . . . , aN ∈ C
N and the singular values σ1 � · · · � σN ∈ (0,∞) of the operator A. The

singular system of A can be completed by straightforward calculation of the singular functions

ψ1, . . . , ψN ∈ X through the formulae

ψk(x, y) =
1

σk

N
∑

j=1

(ak)jϕj (x, y), k = 1, . . . , N, (x, y) ∈ D. (10)

From the singular system ofAwe can derive the generalized solution f † of the inverse problem

as

f †(x, y) =
N

∑

k=1

〈g, ak〉C
N

σk

ψk(x, y), (x, y) ∈ D (11)

(see also [3, 4]). In our case in which the functions ϕ1, . . . , ϕN are defined by (8), the entry

Gmn of the Gram matrix G (m, n = 1, . . . , N ) is given by

Gmn =
(

e2π i(un−um)X1 − e2π i(un−um)X2
) (

e2π i(vn−vm)Y1 − e2π i(vn−vm)Y2
)

4π2(un − um)(vn − vm)
.

Once computed the eigendecomposition of G, formula (11) can be directly applied to obtain

the function f †(x, y). However, the generalized solution may not have a physical meaning (for

example, in the image reconstruction problems we typically look for nonnegative solutions).

Besides, the condition number of the operator A, given by K(A) = σ1/σN , can be very large,

making the generalized solution sensitive to any perturbation of the data. Indeed, for the (u, v)

distribution in figure 1 (which is realistic for the numerical experiments shown in section 4)

and for symmetric squares D of different sizes L = 64, 128, 256 (i.e. X1 = Y1 = −L/2,

X2 = Y2 = L/2), we have K(A) = 1.2 × 1018, 6.8 × 1013, 2.4 × 104, respectively. For these

reasons, we consider a further formulation of our problem, including suitable constraints on

the solutions set and which can be practically solved, in its discrete version, with efficient and

stable numerical methods.

2.2. Convolution model

In this section we show that the generalized solution f † of the inverse problem (5) can be

viewed as a solution of a deconvolution problem in the space domain.

Indeed, f † is a minimum point of the least-squares functional

J (f ) ≡ 1
2
‖Af − g‖2

C
N , f ∈ X (12)

and, therefore, is a solution of the equation ∇J (f ) = 0, where

∇J (f ) = A∗Af − A∗g. (13)

From the definition of A and A∗ we can easily rewrite the operator A∗A as a convolution

mapping with an appropriate kernel D ∈ L2(R2, C) (also called dirty beam [22]). Indeed, for

each f ∈ X , from (3) and (4) we have

A∗Af = D ∗ f, (14)

5 For the sake of correctness, this relation is mathematically true if we consider the left-hand side the matrix is

naturally associated with the discrete linear operator AA∗.
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where

D(x, y) =
N

∑

k=1

e−2π i(ukx+vky), (x, y) ∈ R
2. (15)

Moreover, the term A∗g in (13) is the so-called dirty image fd defined by

fd(x, y) =
N

∑

k=1

gk e−2π i(ukx+vky), (x, y) ∈ D. (16)

Thus, the problem of minimizing (12) can also be formulated as the deconvolution problem

of finding a function f ∈ X such that

D ∗ f = fd . (17)

Since it is natural in image restoration to require the radiation flux to be real and nonnegative,

we are interested in solving the constrained minimization problem

min J (f ).
f ∈L2(D,R)

f �0

(18)

Moreover, in some applications, it could be useful to insert also an equality constraint
∫

D

f (x, y) dx dy = F,

where F represents the total flux emitted by the source and inferred in some way from the data.

We observe that problem (18) can be still ill-posed, since the set of nonnegative functions is

closed and convex in L2 but not compact.

2.3. Discrete formulation

In this section we want to introduce a discrete version of the problem previously described in

a continuous setting. Therefore, we consider a uniform grid over the square D given by the

points

xj = X1 + (j − 1)�x, yh = Y1 + (h − 1)�y, j, h = 1, . . . , n, (19)

and we discretize the integral of equation (1) by the rectangular rule obtaining a vector g ∈ C
N

with

gk ≈
n

∑

j,h=1

f (xj , yh) e2π i(ukxj +vkyh)�x�y, k = 1, . . . , N.

Since the choice of D and n automatically determines the band of the image, the value of n

must be chosen in such a way that the available (uk, vk) points (k = 1, . . . , N ) result to be

included in the band itself.

In the discrete scenario, we look for an approximation of the values

fjh = f (xj , yh)�x�y, j, h = 1, . . . , n.

Therefore, given a vector fjh ∈ C
n2

, we define the linear operator A as

(Af )k =
n

∑

j,h=1

fjh e2π i(ukxj +vkyh), k = 1, . . . , N (20)

6
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and its adjoint is

(A∗c)jh =
N

∑

k=1

ck e−2π i(ukxj +vkyh), j, h = 1, . . . , n, (21)

where c ∈ C
N . Operators (20) and (21) can be considered a numerical approximation of (3)

and (4); in these settings, the discrete inverse problems are given by

Af = g.

As a result of this, our optimal real positive radiation flux image will be the solution of the

minimization problem in the space domain

min J (f ) ≡ 1
2
‖Af − g‖2

C
N .

f ∈R
n2

f �0

(22)

Following the process described in section 2.2, the gradient of the objective function J can be

expressed again by means of a discrete convolution. With the same settings introduced before,

we define the points

xj = X1 + (j − 1)�x, yh = Y1 + (h − 1)�y, j, h = −n,−(n − 1), . . . , 0

and denote by Djh the values D(xj , yh)�x�y (j, h = −n, . . . , n).

Thus, the discrete counterparts of (14) and (16) become

(D ∗ f )(xj , yh) =
n

∑

p,q=1

fpqDj−p,h−q = (A∗Af )jh (23)

and

fd(xj , yh) =
N

∑

k=1

gk e−2π i(ukxj +vkyh) = (A∗g)jh, (24)

where (xj , yh) is a grid point (j, h = 1, . . . , n).

As in the semi-discrete case, the flux conservation condition can be easily imposed by

adding the equality

n
∑

j,h=1

fjh = F

to the constraints of problem (22), where again F represents the total flux emitted by the

source.

We conclude this section by pointing out two practical considerations:

• the computation of both the objective function and its gradient are performed entirely

in the space domain through equations (23) and (24). In particular, once the grid (19)

is fixed, we do not need to explicitly calculate the associated sampling of the frequency

plane given by the discrete Fourier transform;

• we can assume that the (u, v) points corresponding to the measured visibilities are

symmetric with respect to the origin in the frequency plane. This requirement can

be easily accomplished by adding the further visibilities

gN+k = V (−uk,−vk) = gk, k = 1, . . . , N.

As a consequence of this, the dirty image and the dirty beam are automatically real-valued

matrices.

7
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3. Description of the algorithm

For the numerical solution of the minimization problem (22) we propose to employ a gradient

projection algorithm [5, 6, 8, 33], which is well suited in the case of simple constraints.

In particular, we adopt the variable steplength approach [6, 8, 33], which applies to any

minimization problem

min J (f )
f ∈C,

(25)

where J is a differentiable real-valued function and C is a convex closed subset of R
m, m ∈ Z+.

Clearly, problem (22) is a special case of (25), since, even if the data are complex numbers,

the objective function is real valued and its argument is constrained in a subset of R
n2

.

The method starts from a feasible point f (0) ∈ C and generates a sequence

f (k+1) = f (k) + λkd
(k), k = 0, 1, 2, . . . ,

where each f (k) ∈ C and the search direction is computed as

d(k) = PC(f
(k) − αk∇J (f (k))) − f (k), k = 0, 1, 2, . . . .

Here, λk , αk are positive scalar parameters and PC denotes the orthogonal projection on the set

C. If αk is chosen in a bounded interval [αmin, αmax], with 0 < αmin < αmax, and λk satisfies an

Armijo-type condition, then the limit points of the sequence {f (k)} are stationary for problem

(25) [6, 8]. An overview of the gradient projection method is given in algorithm 1.

Algorithm 1. Gradient projection (GP) method

Choose the starting point f (0) ∈ C, set the parameters β, θ ∈ (0, 1), 0 < αmin < αmax.

FOR k = 0, 1, 2, . . . DO THE FOLLOWING STEPS:

STEP 1. Choose the parameter αk ∈ [αmin, αmax].

STEP 2. Projection: y(k) = PC(f
(k) − αk∇J (f (k))).

STEP 3. Descent direction: d(k) = y(k) − f (k).

STEP 4. Set λk = 1.

STEP 5. Backtracking loop:

let Jnew = J (f (k) + λkd
(k));

IF Jnew � J (f (k)) + βλk∇J (f (k))T d(k)
THEN

go to Step 6;

ELSE

set λk = θλk and go to Step 5.

ENDIF

STEP 6. Set f (k+1) = f (k) + λkd
(k).

END

In spite of its simplicity, the gradient projection method offers good practical performances

on large-scale problems compared to other optimization algorithms, especially when the

Hessian matrix of the objective function is not explicitly available.

However, the effectiveness of the algorithm strongly depends on its implementation. In

particular, in section 3.1, we focus on two aspects, the choice of the steplength parameter α

and the computation of the objective function in (22) and its gradient.

8
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Besides, we have to take into account the ill-conditioning of problem (22) and the noise that

may affect the data: to this end, some regularization techniques are needed. Even if a rigorous

theoretical study is not yet available, the numerical experience on image reconstruction from

noisy data demonstrates that the GP method exhibits the semi-convergence property [3, 14]

(see section 4.2): the results of the iteration first provide better and better approximations

of the true object but after a certain point they turn to the worse, due to increased noise

propagation. Therefore, regularization is obtained in practice by an appropriate early stopping

of the iterations: in this way, the gradient projection method is employed as an iterative

regularization method. The choice of the stopping criterion is discussed in section 3.2. A

general description of our approach to image reconstruction from sampling of the Fourier

transform, that we called Space-D, is given in algorithm 2.

3.1. Implementation details

A crucial feature for the effectiveness of the method is the choice of the steplength parameter

αk . Recent studies show that significant improvements in the convergence speed of gradient

methods can be obtained with a suitable alternation of the two Barzilai and Borwein (BB)

rules [1], which are defined as follows:

α
(1)
k =

s(k−1)T s(k−1)

s(k−1)T z(k−1)
and α

(2)
k =

s(k−1)T z(k−1)

z(k−1)T z(k−1)
, (26)

where s(k−1) = (f (k) − f (k−1)) and z(k−1) = (∇J (f (k)) − ∇J (f (k−1))). The BB rules are

motivated by the quasi-Newton approach, where the inverse of the Hessian is replaced by a

multiple of the identity matrix B(α) = αI . Then, omitting the iteration number, the two BB

formulae are given by α(1) = arg min ‖B(α)s − y‖ and α(2) = arg min ‖s − B(α)−1y‖.

The recent literature on the steplength selection in gradient methods suggests to design

steplength-updating strategies by alternating the two BB rules. Here we will use the adaptive

alternation strategy proposed in [8, 15] that gave remarkable convergence rate improvements

in many different applications. Given an initial value α0, the steplengths αk (k = 1, 2, . . .) are

defined by the following criterion:

if α
(2)
k

/

α
(1)
k � τk THEN

αk = min
{

α
(2)
j , j = max{1, k − Mα}, . . . , k

}

; τk+1 = τk ∗ 0.9;
ELSE

αk = α
(1)
k ; τk+1 = τk ∗ 1.1;

ENDIF,

where Mα is a prefixed nonnegative integer and τ1 ∈ (0, 1).

As observed in several experimental studies [2, 8], the GP method equipped with this

alternation of the two BB formulae is more efficient with respect to the same algorithm

with other steplength selection rules and also to other iterative approaches as the projected

Landweber method.

About the complexity of the algorithm, the main tasks are the computation of the objective

function J (f ) at every backtracking loop and of the gradient ∇J (f ) at each main iteration,

which are both depending on the quantities A∗Af (k) and A∗g. We remark that A∗g that is the

dirty image fd needs to be computed only once at the beginning by formula (24). Moreover,

thanks to the equivalence (23), the matrix A∗A has a block Toeplitz structure and, therefore,

the matrix–vector product A∗Af (k) can be efficiently computed with the FFT algorithm (see

[36]). Thus, taking into account of the zero boundary conditions on the reconstructed image,

the cost per iteration is O(4n2 log(4n2)).

9
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3.2. Stopping criterion and regularization

The stopping criterion for the iterative regularization method in the Space-D algorithm is based

on the Morozov’s discrepancy principle [14, 35]. In particular, we assume that the measured

data gδ can be represented in the form gδ = g + δg, where δg denotes the noise affecting

and g = Af , where f is the object to be reconstructed. Furthermore, we assume that the

quantity η = ‖δg‖ (or an estimate of it, as in the case of the application described in the

following section) is known. Then, a regularized solution f (k) is computed if we terminate

the optimization procedure at the first iteration k in which the inequality

‖Af (k) − gδ‖ � η, k = 0, 1, 2, . . . (27)

is satisfied.

As far as we know, no result exists proving that this criterion, applied to the GP iteration,

leads to a regularization method for the constrained least-squares problem (22). However, in

[2] it has been shown the practical effectiveness of the GP method equipped with criterion

(27) on image deconvolution problems.

Moreover, we include a further stopping condition based on the relative difference of the

objective function between two successive iterates

|J (f (k)) − J (f (k−1))| < ǫ|J (f (k))|, (28)

where ǫ is a prefixed tolerance. The criterion (28) is a quite standard condition to check the

convergence of an iterative optimization algorithm. Its main purpose is to devise the point

where no significant decrease in the objective function is obtained (see for example [37]). We

include this condition in algorithm 2 since, from the numerical experience, the discrepancy

criterion alone may terminate the optimization procedure too soon [2], especially when the

error norm η is overestimated. However, due to the ill-posedness of the problem, too small

values of ǫ must be avoided to guarantee a sufficient amount of regularization.

4. Numerical experiments: the RHESSI mission

In this section we test our algorithm in a real-world application arising in x-ray astronomy.

The specific problem we are interested in is to reconstruct the spatial distribution of the x-ray

Algorithm 2. Space-D algorithm

STEP 1. Back-projection

Compute the dirty beam and the dirty image at the given grid points

D(xj , yh) j, h = −n, . . . , n

fd(xj , yh) j, h = 1, . . . , n

using formulae (15), (24).

STEP 2. Deconvolution

Solve the problem

min J (f )
f ∈R

n2

f �0,

where J (f ) is defined in (22) with the GP algorithm, stopping the procedure

at the first iteration in which both the discrepancy principle (27) and the

inequality (28) are satisfied.

10
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Figure 2. Schematic representation of a rotating modulation collimator.

radiation emitted by accelerated particles in the solar chromosphere during the solar flares.

The datasets are provided by the Reuven Ramaty high energy solar spectroscopic imager

(RHESSI) satellite under the form of visibilities, which are calibrated measurements of the

source distribution’s two-dimensional spatial Fourier components. We compared our method

with the two state-of-the-art reconstruction algorithms from visibilities already available in

the RHESSI software by using both simulated data and real events.

4.1. The RHESSI spacecraft

The NASA RHESSI mission has been launched with the precise intent to investigate the particle

acceleration mechanisms during the solar flares through the spatial and spectral analysis of the

emitted x-ray radiation [21, 23]; RHESSI is currently operating and its datasets are at disposal

of the scientific community.

RHESSI is the last descendant of a generation of collimator-based satellites (HINOTORI,

YOHKOH/HXT, HEIDI) originated in 1980 from the hard x-ray imaging spectrometer

(HXIS), carried in the Solar Maximum Mission [19, 20, 30, 34]. It observes hard x-ray

emission from the entire solar disc through a set of nine co-aligned pairs of rotating modulation

collimators (RMCs—see figure 2); the transmitted radiation is recorded on a set of cooled

HPGe detectors, which provide spectral resolution of ∼1 keV over a wide spectral range.

Because of the RMC design of the instrument, imaging information is recorded in its most

‘native’ form, as a set of visibilities, measured at spatial frequencies (u, v) corresponding to

angular resolutions of each RMC pair. Therefore, the visibilities measured by RHESSI are

arranged around concentric circles in the frequency plane (see figure 1). A detailed description

of the relation between collimator and Fourier transform is presented in [19].

The reconstruction algorithms from visibilities available within the RHESSI mission are

the following ones.

• uv-smooth [24]. The key point of this method is the coverage of the frequency plane

through an interpolation step applied on the measured visibilities. The final image is

obtained by applying the Gerchberg–Papoulis method to the interpolated visibilities, in

which a projection onto the convex set of all nonnegative functions is performed at each

11
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iteration. The very fast interpolation routine and the low number of iterations required

make uv-smooth the fastest image reconstruction algorithm available within the RHESSI

mission.

• MEM-NJIT [9]. This method has been implemented by the solar group at New Jersey

Institute of Technology and is the first visibility-based method created for RHESSI data

analysis. The idea at the basis of MEM-NJIT is the maximization of an entropy functional

with constraints on the chi-square and the total flux of the image. A gridding initial step

is performed on the measured visibilities in order to make possible the use of the FFT

algorithm in the iterative optimization procedure adopted to solve the maximization

problem.

• forward-fit. The best-fit values of the parameters corresponding to assumed simple

functional forms for the source are determined through a fitting procedure. The actual

routine only provides for a limited choice of shapes (one or two circular Gaussians, one

elliptical Gaussian, one curved elliptical Gaussian).

The corresponding routines written in interactive data language (IDL) are available within the

Solar SoftWare (SSW) tree (uv smooth.pro, mem njit.pro and hsi vis fwdfit.pro, respectively).

Since we are not interested in considering pre-selected morphologies but want to introduce

a general method able to reconstruct any kind of source geometry, in the following we will

compare the performances of Space-D only with the first two algorithms.

4.2. Simulated data

Following the idea introduced in [24], instead of using sources described by mathematical

forms, we created a set of simulated images starting from real solar flare maps. To this aim,

we considered one of the most famous events since RHESSI is in orbit, which occurred on

23 July 2002 [13, 18, 26]. We selected a time range of about 1 min during the phase of

maximum emission (00:29:10–00:30:19 UT) and, starting straightly from the counts collected

by RHESSI, we used the Clean algorithm [19] to build the 64 × 64 (with 1 arcsec ×
1 arcsec pixel size) x-ray images corresponding to three different energy ranges: 20–22 keV,

41–46 keV and 156–177 keV. We remark that with these settings the band of the image is given

by the square [−0.5, 0.5] × [−0.5, 0.5], which includes all the spatial frequencies (uk, vk)

(k = 1, . . . , N ) provided by RHESSI (see figure 1).

The selected images represent very different source morphologies (see figure 3—first

column):

• in the low energy case, a single wide asymmetric x-ray source is present;

• for intermediate energies, a more complicated structure combining the superposition of

several sources is involved;

• at higher energies, the emission is limited to two compact sources plus a weaker one

in-between.

A threshold-based filter was applied to the Clean images in order to eliminate artefacts

potentially introduced by the Clean algorithm. The resulting maps have been considered

as the target distributions for the reconstruction algorithms; the corresponding visibilities

have been calculated through numerical integration of the Fourier transform and corrupted by

realistic noise with SSWs routines hsi vis map2vis.pro and hsi vis randomize.pro.

We remark that the Clean algorithm is a deconvolution procedure which builds an image

from the count profiles provided by RHESSI. Since the starting point of this algorithm is not

a sampling of the Fourier transform of the image, we did not consider it for the comparison

with Space-D but we simply used it as a sort of ‘fair referee’ to build our realistic simulated

12
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Figure 3. Results of the simulated tests for the three energy ranges considered: 20–22 keV (top

row), 41–46 keV (middle row) and 156–177 keV (bottom row). From left to right, the theoretical

image, the dirty image and the reconstructions with uv-smooth, MEM-NJIT and Space-D are

presented, respectively.

maps. We refer the reader to [11, 31] for a comparison of visibility and non-visibility-based

image reconstruction algorithms from RHESSI data.

In figure 3 we collect (from left to right, respectively) the original sources, the

corresponding dirty images and the reconstructed maps for the three simulated cases obtained

with uv-smooth, MEM-NJIT and Space-D. The considered algorithms ran on a PC equipped

with a 1.66 GHz Intel Core Duo T5500 in IDL environment with their default settings: in

particular, for Space-D we chose ǫ = 10−4 in the stopping rule (28) and a constant image with

total flux equal to maxk|gk| as the starting point f (0).

The aim of our experimentation is to compare the accuracy of the approximate solutions:

we just point out that the overall computation was performed in few seconds in all cases

(1–2 s for uv-smooth and Space-D and 4–5 s for MEM-NJIT), which is negligible with respect

to the time needed for loading the data.

For all the reconstructions we also report in table 1 both the Euclidean relative errors, i.e.

the quantity ‖f̄ − f ‖2/‖f ‖2 where f is the true object and f̄ is the approximation provided

by the algorithms, and the ratios between reconstructed and original total flux calculated by

simply summing up the pixel contents of the corresponding images.

From figure 3 and table 1 we can observe that, in general, the more accurate reconstructions

are obtained by the Space-D algorithm. The uv-smooth method performs very well on smooth

and geometrically simple sources (simulation 1). Some difficulty might be encountered in

recovering more structured diffuse objects (simulation 2) or multiple close compact sources

(simulation 3), possibly due to the smoothness forced in the interpolated data. On the other

side, MEM-NJIT seems to overfit the data, as also remarked in [11, 12, 24]: diffuse objects

are reconstructed as a combination of sharper and narrower sources. However, it is capable

to devise the weaker source in the third simulation. From our simulations, Space-D reveals
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Figure 4. Fourier transform’s amplitude of the Space-D reconstructed image in the three energy

ranges considered: 20–22 keV (left), 41–46 keV (middle) and 156–177 keV (right). The black

strip correspond to the boundary of the band containing the measured data.

Table 1. Relative reconstruction errors and ratio between reconstructed and theoretical total fluxes

for the three simulated datasets.

uv-smooth MEM-NJIT Space-D

20–22 keV Error 0.237 681 0.422 465 0.145 208

Flux ratio 1.061 657 0.981 008 1.002 756

41–46 keV Error 0.260 160 0.360 863 0.163 929

Flux ratio 0.978 989 0.993 390 1.005 529

156–177 keV Error 0.382 557 0.425 764 0.294 643

Flux ratio 1.105 895 1.063 128 1.039 846

a good capability both to recover simple geometries and to detect some details present in the

original image, thanks to the out-of-band extrapolation achieved through the projection at each

iteration of the image on the set of constraints C [25] (see figure 4). We have to admit that

extremely complicated morphologies as the one in simulation 2 represent a hard task also for

our methodology, even if on the whole the general structure is well reconstructed.

Finally, we conclude this section with some comments about the stopping criterium

adopted and the related parameter ǫ. To this aim, for each simulated case we report in figure 5

the Euclidean relative error as a function of the iteration number. The optimal iteration number

suggested by the discrepancy principle is highlighted with a square, while a triangle (resp. a

diamond, an asterisk and a plus sign) denotes the optimal number of iterations provided by

the stopping criterium (28) with ǫ = 10−2 (resp. 10−3, 10−4, 10−5). In our tests, the optimal

number of iterations provided by the algorithm is always the one highlighted with the asterisk,

i.e. 77 iterations for simulation 1, 57 for simulation 2 and 76 for simulation 3.

From figure 5 we can clearly see the following.

• The semi-convergence property of the iterative procedure which shows up in the presence

of a ‘best’ reconstruction with minimum relative error.

• The good stability of the reconstructions with respect to the parameter ǫ. Also in

simulation 3 (figure 5(c)), where the effect of noise is more evident, any value of ǫ

in the range [10−4, 10−3] provides essentially the same reconstruction error. As declared

before, for our images we arbitrarily chose ǫ = 10−4.

• The effect of the stopping criteria (27) and (28). Especially in simulations 1 and 2

(figures 5(a) and (b)), the number of iterations suggested by the discrepancy is particularly

low, possibly due to an overestimation of the errors on the input visibilities. Thus, the
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(a) (b)

(c)

Figure 5. Euclidean relative errors as functions of the iteration number for the Space-D algorithm

in the three energy ranges considered: (a) 20–22 keV; (b) 41–46 keV; (c) 156–177 keV. The squares

correspond to the iteration numbers provided by the discrepancy principle, while the triangles (resp.

diamonds, asterisks, plus signs) denote the numbers of iterations provided by the stopping criterium

(28) with ǫ = 10−2 (resp. 10−3, 10−4, 10−5).

addition of the stopping criterium (28) with an intermediate value for ǫ may help the

algorithm in going further with the iterations.

4.3. Real data

After the analysis of synthetic datasets, we complete the numerical experiments by testing the

performance of Space-D on real flare data provided by RHESSI. The three algorithms ran with

the same settings as in the previous simulations. Despite (of course) the true distributions are

unknown, we show again the images obtained with the other two methods considered before,

in order to compare the reconstructions and make some comments.

Given the importance of this event, we consider again the solar eruption of 23 July 2002

used to build the simulated images in the previous section. Following [13], we selected

18 energy intervals with increasing width in order to avoid that poor statistics would reflect

into extremely noisy visibilities. The reconstructions provided by uv-smooth, MEM-NJIT

and Space-D are given in figures 6(a)–(c), respectively, in lexicographic order for increasing

energies.

Each algorithm presents a behaviour similar to the one observed in the simulations with

respect to the different source morphologies. At low energies, a single extended emitting

region is revealed by all the three methods, with a narrower width in the MEM-NJIT case.
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(a)

(b)

(c)

Figure 6. Real data: (a) uv-smooth; (b) MEM-NJIT; (c) Space-D.

At intermediate and high energies, the source structure increases in complexity splitting into

several compact sources. The main discrepancy among the images provided by the different

algorithms resides in the northern area: while both Space-D and MEM-NJIT clearly devise

two separated emitting regions, for uv-smooth they collapse in a single source.
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5. Conclusions and future work

In this paper we presented a new deconvolution approach to recover an image from a sparse

and nonuniform sampling of its Fourier transform. The strength of our method is that, unlike

many classical and recent approaches, the reconstruction algorithm is applied straightly on the

measured data, avoiding that arbitrary assumptions may affect the results.

Applications of this method are possible in image and signal restoration problems

arising from several scientific and medical areas. We showed the potential of our algorithm

when applied to analyse real and synthetic data from the NASA RHESSI mission. From

the numerical experience, the proposed methodology seems to provide very accurate

reconstructions in very few seconds, thanks to the well-tried optimization algorithm adopted

for the deconvolution.

Future studies will be addressed in both theoretical and practical issues. We could consider

further formulations of the problem including more a priori information as, for example, a

suitable weighting of the measured visibilities. Moreover, it will be interesting to analyse

the behaviour of the algorithm when the regularization is performed by including an explicit

penalty term in the objective function (e.g. Tikhonov, entropy, total variation).

From the practical point of view, further comparisons on several real datasets with all

the algorithms already available for RHESSI imaging (visibility and non-visibility based)

are mandatory. Moreover, if combined with an existing software which infers the Fourier

transform of the emitting source (instead of the emission flux) [28, 29], images of the emitting

particles could be reproduced.
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