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Abstract. A method to obtain a nonnegative integral solution of a system of linear 
equations, if such a solution exists is given. TLe metkod writes linear equations as 
an integer programming problem and then solves tLe problem using a combination 
of artificial basis technique and a methed of integer forms. 
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L Introduction 

Many problems like those of  path-length, fixed-charge, batch-size, transportation 
and allocation, chemical reactor vessel (Gottfried and Weisman [7]), computer 
networking involve qt,.antities which can be only nonnegative integers. Such a 
problem giving rise to linear equations needs nonnegafive integral sok:tion. 

Ht:rt and Waid [8] propose a generalized inverse .4- which gives the general 
integral solution (all the integral solutions) to linear equations (also Ben-Israel and 
Greville [11; Marcus and Minc [9]; Sen and Shamim [12 D. There seemsto be no 
easy way to seeve out  nonnegative integral solutions from the general form x ----- 
A-b + (I -- ,4- A) y where y and I are arbitrary integral n-vector and n x n unit 
matrix, respectively. Ax = b are the equ~ttions where A is an m x n integral 
matrix. 

The method described here investigates equations Ax = b, consistent or not, 
underdetermined or overdetermined as an all-integer programming (aU-ip) problem 
and gives a nonnegative integral solution x when it exists. To solve the all-ip 
problem the method involves a particular form of  the artificial basis technique 
(Sen I l l ] ;  Chung [2]; Strum [13D and the Gomory method of  integer forms 
(Gomory [61; Vajda [15]; Salkin [10D. 

2. The problem 

Obtain a nonnegative integral solution x of  Ax ---- b (if it  exists) where 
A = (a~) is a given m x n integral matrix, b ----- (bi) is a given non-negative 
integral m-vector and x ---- (xt) is an n-vector. (1) 
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Note. There is no loss of  generality in considering (i)b i> 0 and (ii) A and b 
integral. For, if  these are not then multiply the equations with negative b~ by -- 1 
and nonintegrat equations by suitable scalars. 

3. Existence of a nonnegative integral solution 

Ax = b has a non-negative solution x if  and only if A t y / >  0, b~y < 0 has no solu- 
tion y. t indicates the transl)ose (Vajda [14]; Farkas [3]). 

E:l-,ivalenfly, Ax = b has no nonnegative solution x if  and only if Aty>~ 0, 
b ty  < 0 has a s~lution y. 

Let A and b be integral and Ax ----- b be consistent O.e., A A - b  = b). Also, let 
Ax = b have a nonnegative solution. I f  A is nonsingular and its inverse is also 
integral then Ax = b has unique nonnegative integral solution x = A -1 b. Furff, er, 
if  x = A- b is not integral then Ax = b has no integral soh:tion (it has non-integral 
rational solutions though). A- here is a (reflexive) generalized inverse that  satisfies 

AA- A = A, A-  AA-  = A-, ,4- A and AA- are integral. 

These resz~ks are not of  immediate use. However, the method tells if  a non- 
negative solution of  Ax ----- b does not exist. In fact, the necessary and sufficient 
condition for Ax = b to have a nonnegative solution is the method producing one. 
Farther, the szfficient condition that  this solution is integral is the (Gory.try) 
method giving one. 

4. The method 

The method consists of two parts. 

Part 1 (Equivalent ip problem). Write (1) as an atl-ip problem. 

Part 2 (Gomory-artificial-basis technique). Solve this ip problem using Gomory 
method of  integer forms in which a particular form of  the artificial basis technique 
is embedded. 

O) Equivalent ip problem 

Let x and A be now extended (n + m)-vector and m x (n + m) matrix, respec- 
tively. Farther, let the last m columns of  A form an m x m unit matrix. The ip 
problem equivalent to (1) is 

Obtain x so that  
Min z = x,+l  + �9 �9 + x.+~ = 0 : Objective function 
subject to 
Ax = b : Constraints 
x >~ 0 and integral :  Nonnegativity and integrality condition~ (2) 

(ii) Gomory-artificial-basis technique 

Step 1. Solve the ip problem as a linear programming (lp) problem using the arfi. 
tteial basis technique in ' restricted tableau '  (described later). I f  it is infeasible, 
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so is the ip problem--terminate. If  the optimal solution is all integer then the ip 
problem is solved--terminate. Otherwise go to step 2. 

Step 2. Consider one of  the variables which have a fraction* in their value in the 
optimal (simplex) restricted tableau. 

(i) Let the row o f  such a variable be 

x zx . .  Zt Zo 

where z0 is the present value of  the variable x. 
(ii) Write every z~ as Lt q-f~, where L~ = the largest integer contained in z, 

and hence f~ is nonnegativel In particular, fo is positive. 
('fii) Add to the (simplex) tableau the further row (Gomory constraints) 

sl - - A  . .  - - f ,  - - f0.  

(iv) Apply the Dual  Simplex method (described later) on this tableau. This 
renders the new variable sl non-basic. 

Note. The Simplex tableau is already dual feasible, since the final tableau o f  tlze 
artificial basis technique (Simplex method) is reached. So the Dual  Simplex method 
has been used. 

Step 3. I f  the result again contains a basic variable wl-_ich is not an integer tl-.en 
continve introducing new variables, s~ . . . .  The method terrrinates in a tirdte 
number of  steps if  the feasible region of  the ip problem is bounded (st:fficient but 
not necessary). 

5. Art i f i c ia l  basis technique in r e s t r i c t e d  t a b l e a u  

Step 1. Set up the restricted Simplex tableau for (2), and write tl=e coefficients 
(in parentheses) which xj have in the objective fi:nctien and tl-,e last row, i.e., 
@row using the checking rule (described later) as below 

( o )  . .  ( o )  . .  ( o )  

xl x~0 x, b 

(1) x,+l all a~jo al, bl 

(1) x..-, ~, a~,l a,.,o a,~ b~. 
l 

(1) x,+~ o,~x a,,~, am. b ,  
dl d., d. d.+1 

(3) 

Step 2. (pivot selection). Let d~0 be positive. Consider then, for all positive 
a~0, the ratios bi/a~t, and take a smallest. I f  this is obtained for io then call p --  a4.1o 

* It is generally assumed that convergence is speeded by choosing tint cut w/..ich bites as deeply 
as possible. This is usually taken to mean the selection of the row that gives the largest fraction 
frO. 
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the pivot (marked with a plus). Go to Step 3. Otherwise the present tableau is 
final and it either indicates no solution of  Ax .= b or gives a nonnegative solution. 

Step 3 (next-tableau computation). Having interchanged xjo and x,,,~, obtain 
the next tableau as follows. 

x~ . .  x ~  . .  x ,  b 

x .  ~ t - -  a l J p  

.vj, a,,~/p l i p  a,o,/p bt , /p 

x.+.,  - a , , . , / p  

- - d j . l p  

(4) 

The blank positions are filled in as follows : 

a~ ~ a~ - -  a~~ 

dj ~ d# - a ,o jdJp .  (5) 

N o t e .  ' ~ '  means ' i s  replaced by '  
(i) The foregoing two "reptazements' are actually identical when we consider 

the last row (i.e., dj-row) as just another row like the ro~ s of (aN). 
(ii) The right-hand side elements are the elements of  the foregoing tableau 

throughout the computation. 

S tep  4 (termination condition). If the bottom row i.e. dj-row exch, ding the last 
element is nonpositive, or if none of x,+x,.., x,~m occurs in tke basis ~ith a non- 
zero value then a nonnegative solution is reached. Otherwise go to step 2. 

6. The checking rule for a simplex tableau 

Let the lp problem be 
Minimize z = dx subject to Ax = y, x~> 0 

where 

. b. a,~ 

C = , X ---: " , ' )  = . , A = " . 

c~ x. [ b,~ a m 1  n 

We attach to all variables x~ the coefficient which they have in the objective function. 
Let, for example, a current ' restricted tableau'  be 

(ci) (cO (c,) 
x z  -~r x 2  x 4  

(Cs) Xs Pil Pie Pis Pi4 Vi 

(c~) x5 p~  P,~ P~ P~4 vs 

al a. 4 4 
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Then 
cap,~l + c5p21 - -  cx = d~ 

caPt4 + c~P24 - c~ = ds 

earl + csv~ = ds. 

Such a relationship holds in all tableaux. This relationship is referred to as the 
checking rule for a tableau. Satisfaction of  this rule is necessary for a restricted 
tableau to be correct but  it is not sufficient (i.e., the rule may be satisfied even if a 
computational mistake occurs). 

7. The dual simplex method 

When to use. Let an lp problem be 

Minimize z = C~Xl + . .  + c ,x ,  

subject to allxl  + �9 �9 + aa,xn + al ~+1 x~+l = bl 

a~lxl + �9 �9 + a m ,  x~ + a,~,+l x,_~ = b,~ 

x~>~O i =  l ( 1 ) n - ~ - m .  
Also, let 

a1,+1 . . . .  am+~ = -- 1 

and all c j j  = 1 (I) n be non-negative so that,  in the first tableau, the first n elements 
in the bot tom row are nonpositive (since we minimize). We call such a tableau 
dual feasible. If, in addition, all b~ i = 1 (1)m are nonnegative then the result 
is reached. Otherwise apply dual  simplex method. 

The method 

Step 1 (pivot selection). Let b~, be negative. Consider, for all a ~  < 0, 
I c~/a~oj ] and take a smallest. I f  this is obtained for j0 then a~,, is the pivot. 

Step 2. (next-tableau computation). Same as in the Simplex algorithm (Vajda 
[15], Chung [2]; Gass [4]) or as in Step 3 of  See. 5. 

Step 3 (termination condition). I f  the bo t tom row (i.e., c r row) excluding the 
last element is nonpositive then the solution is reached--terminate. Otherwise 
go to step 1. 

8. Examples 

(i) Obtain a nonnegative integral solution of  

2 0 x3 8 
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Restricted tableau 0 

(o) (o1 (o1 (o1 

x~ x2 xa x4 b 

(1) x5 --1 5+ 1 0 5 x~, 

(1) xe 1 2 0 1 8 x6 
0 7 [ 1 13 

Restricted tablem~ I 

xt  x~ xa x~ b 

--1[5 1/5 1/5 0 1 

7/5+ -2/5 -2/5 1 6 
7[5 --7/5 --2[5 1 6 

Restricted tableau 2 

X 6 Xs Xs X4 b 

x z 1/7 1/7 1/7 1[7 13/7 

xl 5[7 --2/7 --2[7 5/7 30/7 
--1 --1 0 0 0 

A nonnegative solution is thus  x = (30/7 13/7 0 0y. 
Consider the first row as it contains the largest fraction in the  value of  the variable 

xa, viz., 6]7. Generate the new row (Gomory cons t ra in t /as  in the  algorithm and 
append this row. Thus 

Restricted tableau 20 

xo x5 x3 x4 b 

xz 1/7 1/7 1/7 1]7 13/7 x~ 

xl 5]7 --2]7 --2/7 5/7 30/7 xl 

sl --1[7 --1]7 --1[7 + --1/7"--617 x3 

-- I  --1 0 0 0 

Restricted tableau 21 

xe xs sx x~ b 

0 0 1 0 I 

1 0 - -2  1 6 

1 1 - -7  1 6 

--1 --1 0 0 0 

Hence a nonnegative integral solution is x = (6 1 6 0y. 

Note, x = (0 I 0 6) ~ could also be another nonnegative integral solution. 

(ii) Degenerate case (redundant equation) 

Obtain a nonnegative integral solution (Sen [17]) o f  

I123   lXlr] 71 2 5 6 xa = 16 
xs --25 --5 --8 --9 -- x4 
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Restricted tableau 0 Restricted tableau 1 

(o) (o) (o) (o) 

xl x~ xs x~ b x~ x~ x5 x4 

(1) xs --1 2 3 + 3 7 x3 - -1/3  2/3 1/3 1 

(1) xo 2 5 6 3 16 x~ 4 1+ --2 --3 

(1) x7 5 8 9 3 25 x~ 8 2 --3 --6 

6 15 18 9 48 0 3 --6 --9 

Note. 

X3 

x~ 

x~ 

The last equation has been multiplied by --1 to make bs positive. 

Restricted tableau 2 

xl xo x5 x4 b 

--  3 - -2/3 5/3 3 1 

4 t --2 --3 2 

0 --2 1 0 0 

--12 --3 0 0 0 

The artificial variable x7 remains in the basis with a zero value. 
integral solution is x = (0 2 1 0)'. 

(iii) Nonnegative nonintegral solution 

Obtain a nonnegative integral solution of  

--~ --2 x2 2 
3r a 

Restricted tableau 0 

(o) (o) (o) 

x~ xz xa b 

(1) x4 1 2 1 t 

(1) x~ - 4  - 2  3 + 2 

--3 0 4 3 

Restrictedtableau2 

xx x 4 xe b 

x,  7/8 3/8 -1/8 1/8 

x~ --3/4 2/8 1]4 3/4 

0 --1 --1 0 

A 

Restricted tableau 1 

Xx X 2 X 5 

xt 7/3 8/3 + --I/3 

xa --4/3 --2/3 1/3 

7/3 8/3 --4/3 

b 

7/3 

2 

4 

6 

nonnegative 

b 

1/3 

2/3 

1/3 
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Hence a nonnegative solution is x = (0 

Adding the Gomory  constraint we have 

X2 

Xa 

51 

Restricted tableau 20 

xa x 4 x5 b 

7/8 3/8 -1/8 1/8 
--3/4 1/4 1/4 3/4 

--1/4 + --1/4 --1/4 --3/4 

0 --I  --1 0 

~/8 

X2 

Xa 

Xl 

3/4)s 

Restricted tableau 21 

sl x 4 x5 b 

7/2 - 1 / 2  -1+ - 5 / 2  
--3 1 1 3 

- -4  1 1 3 

0 --1 --1 0 

X5 

XS 

Xl 

sa x 4 x z b 

--7/2 1/2 --1 5/2 

1/2 1/2 ] l/2 

- 1 t 2  1/2 ~ 1/2 
--7/2 --[[2 --1 5/2 

By adding the Gomory  constraint we obtain the last row except the last element 
(viz., 5/2) nonpositive and one artificial variable, viz., xs is still in tZe basis with the 
nonzero value 5/2. Hence the equations have no integral solution, 

(iv) Inconsistent equations 

Obtain a nonnegative integral solution (Sen [11]) of  

[i ' !] [9 r,o  ' " =[U 
2 L :':3J 

Restricted tableau 0 

(o) (o) (o) 

xa xz x~ b xl  

(1) X4 5 3 2 10 X4 --1 

(l) Xs 2 1 2 5 Xs 0 

(1) X~ 4 2 + 4 1 x~ 2 
11 6 8 16 - - i  

x6 x3 b 

--3/2 --4 17/2 

1 0 9/2 

I/2 2 1/2 
--3 --4 13 

The last row except the last element (viz, 13) is nonpositive and two artificial vari- 
ables, viz, x4 and x5 are still in the basis with nonzero values. Hence the equations 
have no nonnegative solution. In fact, the equations have no solution at all, 
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