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Abstract

Dynamic system modeling plays a crucial role in the development of techniques for stationary and non-stationary

signal processing. Due to the inherent physical characteristics of systems under investigation, non-negativity is a desired

constraint that can usually be imposed on the parameters to estimate. In this paper, we propose a general method for

system identification under non-negativity constraints. We derive the so-called non-negative least-mean-square algorithm

based on stochastic gradient descent, and we analyze its convergence. Experiments are conducted to illustrate the

performance of this approach and consistency with the analysis.

This work has been partly supported by CNPq grant No. 305377/2009-4.
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I. Introduction

In many real-life phenomena including biological and physiological ones, due to the inherent physical char-

acteristics of systems under investigation, non-negativity is a desired constraint that can be imposed on the

parameters to estimate in order to avoid physically absurd and uninterpretable results. For instance, in the

study of a concentration field or a thermal radiation field, any observation is described with non-negative

values (ppm, joule). Non-negativity as a physical constraint has received growing attention from the signal

processing community during the last decade. For instance, consider the following non-negative least-square

inverse problem

min
x

1
2‖Ax − b‖2

subject to [x]i ≥ 0, ∀i,

(1)

with A a real M×N matrix of rank k ≤ min(M, N), b an M -length real vector, and x an N -length real vector.

‖·‖ denotes the Euclidean 2-norm and [ · ]i the i-th entry of the vector. This problem has been addressed

in various contexts, with applications ranging from image deblurring in astrophysics [1] to deconvolution of

emission spectra in chemometrics [2]. Another similar problem is the non-negative matrix factorization (NMF),

which is now a popular dimension reduction technique [3], [4], [5]. Given a matrix X with non-negative entries,

the squared error version of this problem can be stated as follows

min
W ,H

‖X − WH‖2
F

subject to [W ]ij ≥ 0, [H]ij ≥ 0, ∀i, j

(2)

where ‖·‖F denotes the Frobenius norm. This problem is closely related to the blind deconvolution one, and

has found direct application in hyperspectral imaging [6]. Separation of non-negative mixture of non-negative

sources has also been considered in [7], [8].

Over the last fifteen years, a variety of methods have been developed to tackle non-negative least-square

problems (NNLS). Active set techniques for NNLS use the fact that if the set of variables which activate

constraints is known, then the solution of the constrained least-square problem can be obtained by solving an

unconstrained one that only includes inactive variables. The active set algorithm of Lawson and Hanson [9]

is a batch resolution technique for NNLS problems. It has become a standard among the most frequently

used methods. In [10], Bro and De Jong introduced a modification of the latter, called fast NNLS, which

takes advantage of the special characteristics of iterative algorithms involving repeated use of non-negativity

constraints. Another class of tools is the class of projected gradient algorithms [11], [12], [13], [14]. They

are based on successive projections on the feasible region. In [15], Lin used this kind of algorithms for NMF
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problems. Low memory requirements and simplicity make algorithms in this class attractive for large scale

problems. Nevertheless, they are characterized by slow convergence rate if not combined with appropriate step

size selection. The class of multiplicative algorithms is very popular for dealing with NMF problems [4], [16].

Particularly efficient updates were derived in this way for a large number of problems involving non-negativity

constraints [17]. These algorithms however require batch processing, which is not suitable for online system

identification problems.

In this paper, we consider the problem of system identification under non-negativity constraints on the

parameters to estimate. The Karush-Kuhn-Tucker (KKT) conditions are established for any convex cost

function, and a fixed-point iteration strategy is then applied in order to derive a gradient descent algorithm.

Considering the square-error criterion as a particular case, a stochastic gradient scheme is presented. A

convergence analysis of this algorithm is proposed. The resulting model accurately predicts the algorithm

behavior for both transient and steady-state conditions. Finally, experiments are conducted to evaluate the

algorithm performance and its consistency with the analysis.

II. System identification with non-negativity constraints

Consider an unknown system, only characterized by a set of real-valued discrete-time responses to known

stationary inputs. The problem is to derive a transversal filter model

y(n) = α
⊤
x(n) + z1(n), (3)

with α = [α1, α2, . . . , αN ]⊤ the vector of the model parameters, and x(n) = [x(n), x(n−1), . . . , x(n−N +1)]⊤

the observed data vector. The input signal x(n) and the desired output signal y(n) are assumed stationary

and zero-mean. The sequence z1(n) accounts for measurement noise and modeling errors.

Due to the inherent physical characteristics of systems under investigation, in this paper, non-negativity

is a desired constraint that is imposed on the coefficient vector α. Therefore, the problem of identifying the

optimum model can be formalized as follows

α
o = arg min

α
J(α)

subject to αi ≥ 0, ∀i,

(4)

with J(α) a continuously differentiable and strictly convex cost function in IRN , and αo the optimal solution

to the constrained optimization problem.
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A. A fixed-point iteration scheme

In order to solve the problem (4), let us consider its Lagrangian function Q(α,λ) given by [18]

Q(α,λ) = J(α) − λ
⊤
α,

where λ is the vector of non-negative Lagrange multipliers. The Karush-Kuhn-Tucker conditions must neces-

sarily be satisfied at the optimum defined by αo, λ
o, namely,

∇αQ(αo,λo) = 0

αo
i [λo]i = 0, ∀i

where the symbol ∇α stands for the gradient operator with respect to α. Using ∇αQ(α, λ) = ∇αJ(α) − λ,

these equations can be combined into the following expression

αo
i [−∇αJ(αo)]i = 0, (5)

where the extra minus sign is just used to make a gradient descent of J(α) apparent. To solve Equation (5)

iteratively, two important points have to be noticed. The first point is that D(−∇αJ(α)) is also a gradient

descent of J(α) if D is a symmetric positive definite matrix. The second point is that equations of the

form ϕ(u) = 0 can be solved with a fixed-point iteration algorithm, under some conditions on function ϕ,

by considering the problem u = u + ϕ(u). Implementing this strategy with Equation (5) leads us to the

component-wise gradient descent algorithm

αi(n + 1) = αi(n) + ηi(n)fi(α(n))αi(n)[−∇αJ(α(n))]i (6)

with ηi(n) a positive step size required to get a contraction scheme and to control the convergence rate.

Function fi(α) > 0 in (6) is the i-th entry of a diagonal matrix D. It is an arbitrary positive function

of α. Some criteria J(α) are defined only for inputs α with positive entries, e.g., Itakura-Saito distance,

Kullback-Leibler divergence. If necessary, this condition can be managed by an appropriate choice of the step

size parameter. Let us assume that αi(n) ≥ 0. Non-negativity of αi(n + 1) is guaranteed if

1 + ηi(n)fi(α(n))[−∇αJ(α(n)]i ≥ 0. (7)

If [∇αJ(α(n))]i ≤ 0, condition (7) is clearly satisfied and non-negativity does not impose any restriction on

the step size. Conversely, if [∇αJ(α(n))]i > 0, non-negativity of αi(n + 1) holds if

0 ≤ ηi(n) ≤
1

fi(α(n)) [∇αJ(α(n))]i
. (8)
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Using a single step size η(n) in [0, ηmax(n)] for all entries of α so that

ηmax(n) = min
i

1

fi(α(n)) [∇αJ(α(n))]i
, i = 1, . . . , N (9)

the update equation can be written in vector form as

α(n + 1) = α(n) + η(n)d(n), (10)

where the weight adjustment direction d(n), whose i-th entry is defined as follows

[d(n)]i = fi(α(n))αi(n)[−∇αJ(α(n))]i (11)

is a gradient descent direction because fi[α(n)]αi(n) ≥ 0. It should be noted that condition (9) on the step

size η(n) guarantees the non-negativity of α(n) for all n, but does not ensure the stability of the algorithm.

B. The non-negative least-mean-square algorithm

Let us now consider the mean-square error criterion Jmse(α) to be minimized with respect to α, that is,

α
o = arg min

α
E{[y(n) − α

⊤
x(n)]2}

subject to αo
i ≥ 0, ∀i,

(12)

where we have included the non-negativity constraint only on the optimum solution because Jmse(α) is defined

for all α, that is, for all positive and negative entries αi. The gradient of Jmse(α) can be easily computed as

∇αJ(α) = 2 (Rxα − rxy) (13)

with Rx the autocorrelation matrix of x(n) and rxy the correlation vector between x(n) and y(n). Using (10)

and (11) with fi(α) = 1
2 for all i, the update rule for minimizing the mean-square error under non-negativity

constraints is given by

α(n + 1) = α(n) + η(n) Dα(n) (rxy − Rx α(n)) (14)

where Dα(n) is the diagonal matrix with diagonal entries given by α(n). Following a stochastic gradient ap-

proach, the second-order moments Rx and rxy are replaced in (14) by the instantaneous estimates x(n)x⊤(n)

and y(n) x(n), respectively. This leads to the stochastic approximation of (14) given by1

α(n + 1) = α(n) + η(n) e(n) Dx(n) α(n), η(n) > 0 (15)

where Dx(n) stands for the diagonal matrix with diagonal entries given by x(n), and e(n) = y(n)−α⊤(n) x(n).

1Note that Dα(n) x(n) = Dx(n) α(n).
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It is interesting to notice how the term α(n) in the update term on the right-hand side (r.h.s.) of (15)

affects the dynamics of the coefficient update when compared with the well know LMS algorithm [19]. Note

that the extra multiplying factor αi(n) in the update term of the i-th row of (15), which is not present in

the LMS update, provides extra control of both the magnitude and the direction of the weight update, as

compared to LMS. For a fixed step size η, the update term for the i-th component of α(n) is proportional

to −αi(n) e(n) xi(n), the stochastic gradient component. Thus, compared to the LMS stochastic gradient

component −e(n)xi(n), the constrained algorithm includes the multiplying factor αi(n). A negative αi(n)

will then change the sign of the LMS adjustment, which on average tends to avoid convergence to negative

coefficients of the unconstrained solution. Thus, coefficients that would normally converge, on average, to

negative values using unconstrained LMS will tend to converge to zero using the constrained algorithm. In

addition, αi(n) close to zero will tend to slow its own convergence unless the magnitude of e(n)xi(n) is very

large. Finally, αi(n) = 0 is clearly a stationary point of Equation (15).

In the following, the adaptive weight behavior of the adaptive algorithm (15), called non-negative LMS, is

studied in the mean and mean-square senses for a time-invariant step size η.

III. Mean behavior analysis

We shall now propose a model to characterize the mean behavior of the non-negative LMS algorithm. Fig-

ure 1 shows a block diagram of the problem studied in this paper. The input signal x(n) and the desired output

signal y(n) are assumed stationary and zero-mean. Let us denote by α∗ the solution of the unconstrained

least-mean-square problem

α
∗ = arg min

α
E{[y(n) − α

⊤
x(n)]2}. (16)

whose solution α∗ satisfies the Wiener-Hopf equations

Rx α
∗ = rxy. (17)

The residual signal z(n) = y(n)−x⊤(n) α∗ in Figure 1 accounts for measurement noise and modeling errors.

It is assumed in the following that z(n) is stationary, zero-mean with variance σ2
z and statistically independent

of any other signal. Thus, E{z(n) Dx(n} = 0.

The adaptive algorithm (15) attempts to estimate the optimum αo for the constrained problem (12).

The analytical determination of the optimal solution αo is not trivial in general. In the particular case of

independent and identically distributed (i.i.d.) input samples, however, Rx = σ2
x I where I is the identity

matrix. In this case, the Karush-Kuhn-Tucker conditions imply that αo is obtained by turning the negative

entries of α∗ to zero

α
o = {α∗}+ (18)
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where {u}+ = max{0, u}. The minimum mean-square error produced by solution αo is then

Jmsmin
= σ2

y − 2 rxy {α
∗}+ + σ2

x {α
∗}⊤+{α

∗}+ (19)

with σ2
y the variance of y(n).

A. Mean weight behavior model

Defining the weight-error vector v(n) = α(n) − α∗ = [v1(n), v2(n), . . . , vN (n)]⊤, the update equation (15)

can be written as

v(n + 1) = v(n) + η e(n) Dx(n)
(

v(n) + α
∗
)

. (20)

Using e(n) = y(n) − α⊤(n) x(n) = z(n) − v⊤(n)x(n) leads us to the following expression

v(n + 1) = v(n) + η z(n) Dx(n) v(n) + η z(n)Dx(n) α
∗ (21)

−η Dx(n) v(n)v
⊤(n) x(n) − η Dx(n) α

∗
x
⊤(n) v(n).

Taking the expectation of expression (21), neglecting the statistical dependence of x(n) and v(n),2 and using

that E{z(n) Dx(n)} = 0 yields

E{v(n + 1)} ≈
(

I − η E{Dx(n) α
∗
x
⊤(n)}

)

E{v(n)} − η E{Dx(n) v(n) v
⊤(n) x(n)}. (22)

The first expectation on the r.h.s. of (22) is given by

E{Dx(n) α
∗
x
⊤(n)} = E{Dα∗ x(n) x

⊤(n)} = Dα∗ Rx. (23)

2This assumption is less restrictive than the well-known independence assumption [19, p. 247], as it does not require x(n) be

Gaussian.

z(n)

y(n)
x(n)

α(n)

Algo.

+

+

+

−
e(n)α

∗

Fig. 1. Adaptive system under study
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In order to evaluate the second expectation on the r.h.s. of (22), let us compute the i-th component of the

vector Dx(n) v(n) v⊤(n) x(n). We have

[Dx(n) v(n) v
⊤(n) x(n)]i =

N
∑

j=1

x(n − i + 1) vi(n) vj(n) x(n − j + 1) (24)

Taking the expectation of this expression, defining K(n) = E{v(n)v⊤(n)}, and neglecting the statistical

dependence of x(n) and v(n), we obtain

[E{Dx(n) v(n) v
⊤(n)x(n)}]i ≈

N
∑

j=1

rx(j − i) [K(n)]ij (25)

= [Rx K(n)]ii

This implies that E{Dx(n)v(n) v⊤(n) x(n)} ≈ diag{Rx K(n)}, where diag{A} denotes the vector whose i-th

entry is defined by [A]ii. Using these results with Equation (22) yields the following mean weight-error vector

update equation

E{v(n + 1)} =
(

I − η Dα∗ Rx

)

E{v(n)} − η diag{Rx K(n)}. (26)

This equation requires second-order moments defined by K(n) in order to update the first-order one E{v(n)}.

A recursive model will be derived for K(n) in Section IV, see Equation (39). That model can be used

along with (26) to predict the mean weight behavior of the algorithm. Nevertheless, we have found that a

sufficiently accurate and more intuitive mean behavior model can be obtained using the following separation

approximation

K(n) ≈ E{v(n)}E{v⊤(n)}. (27)

Using (27) in (26) we obtain the following result

E{v(n + 1)} =
(

I − η Dα∗ Rx

)

E{v(n)} − η diag{Rx E{v(n)}E{v⊤(n)}}. (28)

Approximation (27) assumes that

Cov{vi(n), vj(n)} ≪ E{vi(n)}E{vj(n)} (29)

In general, (29) is valid when the adaptive weights are far from convergence, as the mean weight-error com-

ponent tends to be much larger than the weight-error fluctuation about the mean. For correlated x(n), the

level of the weight-error fluctuations at convergence tends to be much less than the values of the nonzero op-

timal weights. For white input signals E{vi(n)} tends to zero for those indexes corresponding to the positive

coefficients of αo. In this case, approximation (29) will in fact tend to eliminate the weight estimation error

at convergence. Extensive simulation results have shown that the simplified model in (28) yields a prediction

of the mean weight behavior which is sufficient for design purposes. Furthermore, this simplification allows

the more detailed analytical study of the mean weight behavior shown in the next section.
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B. Special case of a white input signal

In general, the behavior of (28) can become very complex to be studied analytically [20]. In order to obtain

analytical results that allow some understanding of the mean weight behavior, we study here the particular

case of x(n) i.i.d. and drawn from a zero-mean distribution. Unit variance σ2
x is also assumed without loss of

generality. Using Rx = I in (28) yields the component-wise expression

E{vi(n + 1)} = (1 − η α∗

i ) E{vi(n)} − η E{vi(n)}2. (30)

Function E{vi(n + 1)} in Equation (30) is a parabola in the variable E{vi(n)} with roots at E{vi(n)} = 0

and E{vi(n)} =
1−η α∗

i

η
. It reaches its maximum value

(1−η α∗

i
)2

4η
at E{vi(n)} =

1−η α∗

i

2η
. Fixed points are found

by solving E{vi(n + 1)} = E{vi(n)}, which yields E{vi(n)} = 0 or E{vi(n)} = −α∗

i . This result is consistent

with solution (18) where

vo
i =







0 if α∗

i ≥ 0

−α∗

i otherwise
(31)

with vo
i the i-th entry of vo = αo − α∗.

Let us now derive conditions ensuring convergence of (30) to 0 and −α∗

i . Writing u(n) = η
1−η α∗

i

E{vi(n)},

where the index i has been dropped to simplify the notation, we obtain the following difference equation

known as the logistic map [20], [21], [22]

u(n + 1) = ρ u(n) (1 − u(n)) (32)

with ρ = 1 − η α∗

i , which is assumed nonzero. Fixed points defined in (31) now correspond to u = 0 and

u = ρ−1
ρ

, respectively. Convergence of the logistic map to these values depends on the parameter ρ and on

the initial condition u(0) as follows. See [20], [21], [22] for details and Figure 2 for illustration.

Case 1: 0 < ρ < 1

An illustration of this case is shown in Figure 2 (left). The fixed point u = 0 attracts all the trajectories

originating in the interval
]

ρ−1
ρ

; 1
ρ

[

. The logistic map u(n) is identically equal to ρ−1
ρ

for n ≥ 1 if u(0) = ρ−1
ρ

or u(0) = 1
ρ
. Outside the interval, u(n) diverges to −∞.

Case 2: ρ = 1

The fixed point u = 0 attracts all the trajectories originating in the interval [0; 1]. The logistic map u(n) is

identically equal to 0 for n ≥ 1 if u(0) = 0 or 1. It diverges to −∞ if u(0) /∈ [0; 1].

Case 3: 1 < ρ ≤ 3

An illustration of this case is shown in Figure 2 (right). The fixed point u = ρ−1
ρ

attracts all the trajectories
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0

u(n)

u(n + 1)

ρ−1
ρ

ρ−1
ρ

Fig. 2. Convergence of the logistic map, in the Case 1 (left) and in the Case 3 (right). The dashed line is the line of

equation u(n + 1) = u(n).

originating in ]0; 1[. With the initial conditions u(0) = 0 or u(0) = 1, we have u(n) = 0 for all n > 0. It can

be shown that the logistic map diverges to −∞ if u(0) /∈ [0; 1].

Case 4: ρ > 3

Fixed points become unstable. New fixed points appear between which the system alternates in stable cycles

of period 2k, with k tending to infinity as ρ increases. This case may even lead to a chaotic behavior, and

falls out of the scope of our study.

To derive conditions for convergence of the difference equation (30) to 0 or −α∗

i , we must consider separately

components of E{vi(n)} associated with positive or negative unconstrained optimum α∗

i , respectively. On the

one hand, based on the analysis of the logistic map (32), convergence of (30) to 0 corresponds to the conditions

on ρ and u(0) satisfying Case 1 and Case 2 above. This yields

0 < η <
1

α∗

i

− α∗

i < vi(0) <
1

η
(33)

in the case where α∗

i > 0. If α∗

i = 0, these two conditions become η > 0 and 0 < vi(0) < 1
η
. On the other

hand, ρ and u(0) must obey the conditions presented in Case 3 for convergence of Equation (30) to −α∗

i . This

leads to

0 < η ≤ −
2

α∗

i

0 < vi(0) <
1

η
− α∗

i (34)

in the case where α∗

i < 0. Finally, combining these inequalities leads to the following theoretical conditions

for convergence of E{v(n)}:

0 < η ≤ min
i

1

|α∗

i |
and 0 < vi(0) <

1

η
for all i (35)
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or, using also Equations (33) and (34), for convergence of E{α(n)}:

0 < η ≤ min
i

1

|α∗
i |

and 0 < αi(0) <
1

η
for all i. (36)

Conditions (35) and (36) on vi(0) and αi(0) show that there is more freedom in choosing αi(0) for small values

of η. They guarantee the convergence of the difference equation (30).

C. Simulation examples for the first-order moment analysis

This section presents simulation examples to verify the validity of the first-order moment analysis of the

non-negative LMS algorithm. We illustrate the accuracy of the model (30) through a first example where

inputs x(n) and noise z(n) are i.i.d. and drawn from a zero-mean Gaussian distribution with variance σ2
x = 1

and σ2
z = 10−2, respectively. The impulse response α∗ is given by

α
∗ = [0.8 0.6 0.5 0.4 0.3 0.2 0.1 − 0.1 − 0.3 − 0.6]⊤ (37)

The initial impulse response α(0) is drawn from the uniform distribution U([0; 1]), and kept unchanged for

all the simulations. The algorithm’s stability limit was determined experimentally to be ηmax ≈ 5× 10−3. As

usually happens with adaptive algorithms, this limit is more restrictive than the mean weight convergence

limit given by (36), as stability is determined by the weight fluctuations [19]. The mean value E{αi(n)} of

each coefficient is shown in Figure 3 for η = 10−3 = ηmax/5 and η = 5 × 10−5 = ηmax/10. The simulation

curves (blue line) were obtained from Monte Carlo simulation averaged over 100 realizations. The theoretical

curves (red line) were obtained from model (30). One can notice that all the curves are perfectly superimposed

and, as predicted by the result (18), each coefficient αi(n) tends to {α∗

i }+ as n goes to infinity.

It is interesting to note that convergence towards the solution {α∗}+ agrees with the theoretically predicted

behavior of (32). For each positive entry α∗

i of α∗, the corresponding value of ρ = 1 − η α∗

i is in ]0; 1[. This

corresponds to Case 1 in Section III-B, where the fixed point u = 0 attracts all the trajectories and vi(n)

converges to zero. It can also be verified that each ρ associated with a negative entry α∗

i is in ]1; 3]. This

corresponds to Case 3 where u = (ρ − 1)/ρ attracts all the trajectories and limn→∞ vi(n) = −α∗

i .

The second simulation example illustrates the accuracy of the model (30) for inputs x(n) correlated in

time. We consider a first-order AR model given by x(n) = a x(n − 1) + w(n), with a = 1
2 . The noise w(n) is

i.i.d. and drawn from a zero-mean Gaussian distribution with variance σ2
w = 1 − 1

4 , so that σ2
x = 1 as in the

first example. The other parameters of the initial experimental setup remain unchanged, except for the step

size values. In order to verify the model’s accuracy also for large step sizes we performed the simulations for

η = 2.5×10−3 = ηmax/2 and η = 5×10−5 = ηmax/10. The mean value E{αi(n)} of each coefficient is shown in

Figure 4. As before, the simulation curves (blue line) and the theoretical curves (red line) are superimposed.
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Fig. 3. Convergence of the coefficients αi(n) in the case where input x(n) and noise z(n) are i.i.d. Two different step

sizes are considered: η = 10−3 on the left figure, and η = 5 × 10−4 on the right figure. The theoretical curves (red

line) obtained from the model (30) and simulation curves (blue line) are perfectly superimposed.
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Fig. 4. Same experiment as in Figure 3 except that input sequence x(n) is generated by a first-order AR process. Two

different step sizes are considered: η = 2.5 × 10−3 on the left figure, and η = 5 × 10−4 on the right figure.

It can be noticed that α(n) no longer converges to {α∗}+ since the input samples x(n) are now correlated.

We can easily verify that E{e2(n)} = 4.97 dB using {α∗}+, and E{e2(n)} = 3.82 dB at convergence of the

non-negative LMS algorithm.

IV. Second-order moment analysis

We now present a model for the behavior of the second-order moments of the adaptive weights. To allow

further analysis progress, we assume in this section that the input x(n) is Gaussian.



13

A. Second moment behavior model

Using e(n) = z(n) − v⊤(n) x(n), neglecting the statistical dependence of x(n) and v(n), and using the

properties assumed for z(n) yields an expression for the mean-square estimation error (MSE):

E{e2(n)} = E{(z(n) − v
⊤(n) x(n))(z(n) − v

⊤(n) x(n))}

= σ2
z + E{v⊤(n) x(n) x

⊤(n) v(n)}

≈ σ2
z + trace{Rx K(n)}.

(38)

Equation (26) clearly shows that the mean behavior of each coefficient is a function of a single diagonal entry

of matrix Rx K(n). In this case, approximation (28) could be used without compromising the accuracy of

the resulting mean behavior model. This accuracy has been verified through Monte Carlo simulations in

Section III-C. The MSE in (38), however, is a function of the trace of Rx K(n). Thus, the effect of the second

order moments of the weight-error vector entries on the MSE behavior becomes more significant than in (26),

and in general cannot be neglected. Thus, we determine a recursion for K(n) starting again from the weight

error update equation (21).

Premultiplying Equation (21) by its transpose, taking the expected value, and using the statistical properties

of z(n),3 yields

K(n + 1) = K(n) − η P 1(n)K(n) − η K(n) P
⊤

1 (n) + η2σ2
z P 2(n) + η2σ2

z [P 3(n) + P
⊤

3 (n)]

+ η2σ2
z P 4(n) − η [P 5(n) + P

⊤

5 (n)] + η2
P 6(n) + η2

P 7(n) + η2
P 8(n) + η2

P 9(n)

(39)

where matrices P 1 to P 9 are defined by

P 1 = E{Dx(n) α
∗
x
⊤(n)} (40)

P 2 = E{Dx(n) α
∗
α

∗⊤
Dx(n)} (41)

P 3 = E{Dx(n) v(n) α
∗⊤

Dx(n)} (42)

P 4 = E{Dx(n) v(n) v
⊤(n) Dx(n)} (43)

P 5 = E{v(n) x
⊤(n) v(n) v

⊤(n) Dx(n)} (44)

P 6 = E{Dx(n) α
∗
x
⊤(n) v(n)v

⊤(n) x(n)α
∗⊤

Dx(n)} (45)

P 7 = E{Dx(n) α
∗
x
⊤(n) v(n) x

⊤(n) v(n) v
⊤(n) Dx(n)} (46)

P 8 = E{Dx(n) v(n) v
⊤(n)x(n) v

⊤(n) x(n) α
⊤

∗ Dx(n)} (47)

P 9 = E{Dx(n) v(n) v
⊤(n) x(n) x

⊤(n) v(n) v
⊤(n)Dx(n)} (48)

3The two important properties of z(n) used in evaluating (39) are its independence of any other signal and its zero-mean.
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The expected values in (40)–(48) are calculated in the following. In order to keep the calculations mathemat-

ically tractable, the following statistical assumptions are employed:

A1: The input vector x(n) is zero-mean Gaussian.

A2: The weight-error vector v(n) is statistically independent of x(n) x⊤(n). The reasoning for this approxi-

mation has been discussed in detail in [23].

A3: The statistical dependence of v(n) v⊤(n) and v(n) is neglected. This assumption follows the same

reasoning valid for assuption A2, see [23].

A4: v(n) and (x⊤(n) v(n))2 are statistically independent given A2. This is because (x⊤(n) v(n))2 is a linear

combination of the entries of v(n) v⊤(n). Thus, this approximation follows basically the same reasoning

discussed in [23] to justify A2.

Expected value P 1

This expected value has been already calculated in (23). Remember that

P 1 = E{Dx(n) α
∗} = E{Dα∗ x(n) x

⊤(n)} = Dα∗ Rx. (49)

Expected value P 2

Basic linear algebra gives

P 2 = E{Dx(n) α
∗
α

∗⊤
Dx(n)} = E{Dα∗ x(n) x

⊤(n) Dα∗} = Dα∗ Rx Dα∗ . (50)

Expected value P 3

Neglecting the statistical dependence of x(n) and v(n) yields

P 3 = E{Dx(n) v(n) α
∗⊤

Dx(n)} ≈ E{Dv(n)}Rx Dα∗ . (51)

Expected value P 4

The (i, j)-th entry of the matrix within the expectation in P 4 is given by

[Dx(n) v(n) v
⊤(n) Dx(n)]ij = x(n − i + 1) vi(n) vj(n) x(n − j + 1). (52)

Using A2, E{x(n − i + 1) vi(n) vj(n) x(n − j + 1)} ≈ E{x(n − i + 1)x(n − j + 1)}E{vi(n) vj(n)} and

P 4 ≈ Rx ◦ K(n) (53)

where ◦ denotes the so-called Hadamard entry-wise product.

Expected value P 5

Defining Dv(n) as the diagonal matrix with diagonal entries given by v(n), we first note that

E{v(n) x
⊤(n) v(n) v

⊤(n) Dx(n)} = E{v(n) v
⊤(n) x(n) x

⊤(n) Dv(n)}. (54)
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Now, using A2 and A3, the expectation can be approximated as

E{v(n) x
⊤(n) v(n) v

⊤(n) Dx(n)} ≈ E{v(n) v
⊤(n) x(n) x

⊤(n)}E{Dv(n)}. (55)

Finally, using again A2 we obtain

P 5 ≈ K(n) Rx E{Dv(n)}. (56)

Expected value P 6

Basic linear algebra gives

P 6 = E{Dx(n) α
∗
x
⊤(n) v(n)v

⊤(n) x(n) α
∗⊤

Dx(n)}

= Dα∗ E{x(n) x
⊤(n) v(n) v

⊤(n) x(n) x
⊤(n)}Dα∗ .

(57)

Under A1 and applying the same methodology used to derive [24, Equation (29)],

P 6 ≈ Dα∗

(

2 Rx K(n)Rx + E{v⊤(n) Rx v(n)}Rx

)

Dα∗

= Dα∗

(

2 Rx K(n) Rx + E{trace{v⊤(n) Rx v(n)}}Rx

)

Dα∗

= Dα∗ (2 Rx K(n) Rx + trace{Rx K(n)}Rx) Dα∗ .

(58)

Expected value P 7

Using basic algebra, A2 and A3 as done to obtain (55), we have

P 7 = E{Dx(n)α
∗
x
⊤(n) v(n) x

⊤(n) v(n) v
⊤(n)Dx(n)}

≈ Dα∗ E{x(n) x
⊤(n) v(n) v

⊤(n) x(n) x
⊤(n)}E{Dv(n)}.

(59)

Finally, under A1 and applying the same methodology as in [24, Equation (29)], yields

P 7 ≈ Dα∗ (2 Rx K(n) Rx + trace{Rx K(n)}Rx) E{Dv(n)}. (60)

Expected value P 8

Using basic algebra we obtain

P 8 = E{Dx(n)v(n) v
⊤(n) x(n) v

⊤(n) x(n) α
∗⊤

Dx(n)}

= E{Dv(n) (x⊤(n) v(n))2 x(n) x
⊤(n)}Dα∗ .

(61)

Using A4, P 8 becomes

P 8 ≈ E{Dv(n)}E{(x⊤(n) v(n))2 x(n) x
⊤(n)}Dα∗ . (62)

The expected value E{(x⊤(n) v(n))2 x(n) x⊤(n)} for zero-mean Gaussian signal x(n) has already been eval-

uated in [24, equations (7)–(9)], using results from [25]. Following the same procedure as in [24] yields

E{(x⊤(n) v(n))2 x(n) x
⊤(n)|v(n)} ≈ v

⊤(n) Rx v(n) Rx + 2 Rx v(n) v
⊤(n) Rx

= trace{Rx v(n) v
⊤(n)}Rx + 2 Rx v(n) v

⊤(n) Rx.

(63)
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Now, taking the expected value with respect to v(n),

E{(x⊤(n)v(n))2 x(n)x
⊤(n)} ≈ trace{Rx K(n)}Rx + 2 Rx K(n) Rx. (64)

Then we obtain the final result

P 8 ≈ E{Dv(n)} (trace{Rx K(n)}Rx + 2 Rx K(n) Rx) Dα∗ . (65)

Expected value P 9

Computing the (i, j)-th entry of matrix P 9 within the expectation, and using A2, yields

[P 9]ij =
∑

ℓ

∑

k

E{x(n − i + 1) [v(n) v
⊤(n)]ik [x(n)x

⊤(n)]kℓ [v(n) v
⊤(n)]ℓj x(n − j + 1)}

=
∑

ℓ

∑

k

E{x(n − i + 1) x(n − k + 1)x(n − ℓ + 1) x(n − j + 1)}E{vi(n) vj(n) vk(n) vℓ(n)}.

(66)

For x(n) zero-mean Gaussian (A1), we know that [26]

E{x(n−i+1)x(n−k+1)x(n−ℓ+1)x(n−j+1)} = rx(k−i) rx(j−ℓ)+rx(ℓ−i) rx(j−k)+rx(j−i) rx(ℓ−k). (67)

The expectation E{vi(n) vj(n) vk(n) vℓ(n)} cannot be evaluated directly, as the statistics of v(n) are unknown.

Approximate expressions can be obtained using numerous different approaches. We have chosen to use the fol-

lowing approximation which preserves relevant information about the second moment behavior of the adaptive

weights while keeping the mathematical problem tractable. We first note that

E{vi(n) vk(n) vℓ(n) vj(n)} = E{vi(n) vj(n)}E{vk(n) vℓ(n)} + Cov{vi(n) vj(n), vk(n) vℓ(n)}. (68)

Now, writing vi(n + 1) vj(n + 1) =
(

vi(n) + η ∆vi(n)
) (

vj(n) + η ∆vj(n)
)

, we see that the fluctuations in

vi(n + 1) vj(n + 1) are proportional to η. Using the same reasoning for vk(n) vℓ(n) we finally note that the

covariance in (68) is proportional to η2. The higher order moments of the entries of v(n) in (68) will then

be proportional to ηp with p ≥ 2. Thus, for sufficiently small values of η, neglecting these terms yields the

approximation

E{vi(n) vk(n) vℓ(n) vj(n)} ≈ E{vi(n) vj(n)}E{vk(n) vℓ(n)}. (69)

This approximation is supported by the simulation results presented in Section IV-B. Substituting the two

equations above into the expression of [P 9]ij leads to

[P 9]ij ≈ rx(j − i)
∑

ℓ

∑

k

rx(ℓ − k) [K(n)]kℓ [K(n)]ij

+
∑

ℓ

∑

k

rx(k − i) rx(j − ℓ) [K(n)]kℓ [K(n)]ij

+
∑

ℓ

∑

k

rx(ℓ − i) rx(j − k) [K(n)]kℓ [K(n)]ij .

(70)
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The first right-hand term of Equation (70) can be expressed as follows

rx(j − i)
∑

ℓ

∑

k

rx(ℓ − k) [K(n)]kℓ [K(n)]ij = [Rx]ij
∑

k

(
∑

ℓ

[Rx]kℓ[K(n)]kℓ)[K(n)]ij

= [trace{Rx K(n)}Rx]ij [K(n)}]ij .

(71)

The second and third right-hand terms write

∑

ℓ

∑

k

rx(k − i) rx(j − ℓ) [K(n)]kℓ [K(n)]ij =

(

∑

ℓ

∑

k

[Rx]ik[K(n)]kℓ[Rx]ℓj

)

[K(n)]ij

= [Rx K(n) Rx]ij [K(n)}]ij .

(72)

This leads to the following close-form expression

[P 9] = (trace{Rx K(n)}Rx + 2 Rx K(n) Rx) ◦ K(n). (73)

Using the expected values P 1 to P 9 in Equation (39), we finally obtain a recursive analytical model for

the behavior of K(n). This result can be used to study the convergence properties of E{e2(n)}, and can

be applied to design.4 The next section illustrates the model accuracy in predicting the non-negative LMS

algorithm behavior.

B. Simulation examples for the second-order moment analysis

This section presents simulation examples to verify the accuracy of the model (39). Figures 5 and 6 show

the behavior of the excess MSE Jemse(n) = trace{Rx K(n)} corresponding to the experiments conducted in

Section III-C. The simulation curves (blue line) were obtained from Monte Carlo simulation averaged over

100 realizations. The theoretical curves (red line) were obtained from model (39). Note the model’s accuracy

even for step sizes as large as ηmax/2 (left side of Figure 6). Also note that the theoretical value of the

minimum excess mean-square error Jemsemin
is represented in Figure 5.5 It can be observed that Jemse(n)

tends to Jemsemin
as n goes to infinity. Figure 7 highlights the performance of the model for uncorrelated and

correlated input signals x(n) through the same experimental setup as described before, except that the noise

variance σ2
z is now set to 1. All these experiments illustrate the accuracy of the model, which can provide

important guidelines for the use of the non-negative LMS algorithm in practical applications.

4This model can also be used in (26) for the mean weight behavior if needed. However, our experience has been that the

simplified model (28) suffices for predicting the mean weight behavior for most practical needs. It also makes the analytical study

presented in Section III-B tractable.
5It can be easily shown, from Equations (17)–(19), that Jemsemin

= ‖α∗ − (α∗)+‖
2 in the case where Rx = I .
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Fig. 5. Convergence of Jemse(n) in the case where input x(n) and noise z(n) are i.i.d. Two different step sizes are

considered: η = 10−3 on the left figure, and η = 5 × 10−4 on the right figure. The theoretical curves (red line)

obtained from (38) and the model (39) and simulation curves (blue line) are perfectly superimposed.
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Fig. 6. Same experiment as in Figure 5 except that input sequence x(n) is generated by a first-order AR process. Two

different step sizes are considered: η = 2.5 × 10−3 on the left figure, and η = 5 × 10−4 on the right figure.

V. Conclusion

In many real-life phenomena, due to the inherent physical characteristics of systems under investigation,

non-negativity is a desired constraint that can be imposed on the parameters to estimate in order to avoid

physically absurd and uninterpretable results. In this paper, we proposed a general method for system

identification under non-negativity constraints, and we derived the so-called non-negative LMS based on

stochastic gradient descent. This algorithm switches automatically between a gradient descent mechanism

and a gradient ascent one depending whether the non-negativity constraint is violated or not. Finally, we

analyzed the algorithm convergence in the mean sense and in the mean-square sense. In future research
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efforts, we intend to explore these models in practical applications since they provide important guidelines to

algorithm designers. We also plan to derive variants of this approach, e.g., in the spirit of the normalized-LMS

and the sign-LMS algorithms.
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Fig. 7. Convergence of Jemse(n) with step size η = 5×10−4, in the case where input x(n) is i.i.d. on the left figure, and

generated by a first-order AR process on the right figure. Compared to Figure 5 (right) and 6 (right), the variance

of the noise z(n) has been increased from 10−2 to 1.
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