NONNEGATIVE MATRICES WITH NONNEGATIVE INVERSES

RALPH DEMARR

Abstract

We generalize a result stating that a nonnegative finite square matrix has a nonnegative inverse if and only if it is the product of a permutation matrix by a diagonal matrix. We consider column-finite infinite matrices and give a simple proof using elementary ideas from the theory of partially ordered linear algebras.

In [1] the authors show that a nonnegative square matrix has a nonnegative inverse if and only if its entries are all zero except for a single positive entry in each row and column. In this note we generalize this result and simplify the proof as well.

Let A denote the real linear algebra of all column-finite infinite matrices with real entries. We partially order A as follows: $\left[\alpha_{i j}\right] \leqq\left[\beta_{i j}\right]$ if and only if $\alpha_{i j} \leqq \beta_{i j}$ for all i, j. Thus, A is a partially ordered linear algebra (pola) and if 1 denotes the identity matrix, then $0 \leqq 1$. See [2] for the precise definition of a pola. An example will illustrate the result to be obtained. Let $x=\left[\alpha_{i j}\right]$ and $y=\left[\beta_{i j}\right]$ be defined as follows: $\alpha_{i j}=1$ if $i=j+1$ and is zero otherwise; $\beta_{i j}=1$ if $j=i+1$ and is zero otherwise. Thus, $0 \leqq x, 0 \leqq y$ and $0 \leqq x y \leqq 1 \leqq y x$. Note that each column of x contains exactly one positive entry and each row of x contains at most one positive entry.

Theorem. Let A be the pola described above. If $x, y \in A, 0 \leqq x, 0 \leqq y$ and $0 \leqq x y \leqq 1 \leqq y x$, then each column of x contains exactly one positive entry and each row of x contains at most one positive entry. The conclusion applies to the matrix y if we interchange the words "row" and "column".

Proof. Define $d=y x-1 \geqq 0$ and note that $1+d \leqq(1+d)^{2}=y x y x \leqq y x=$ $1+d$ since $x y \leqq 1$. Hence, $1+2 d \leqq(1+d)^{2} \leqq 1+d$, which means $d \leqq 0$. Thus $d=0$ and $y x=1$, which means that y is a left inverse for x. Hence, each column of x must contain at least one positive entry. Next construct a matrix z so that $0 \leqq z \leqq x$ and each column of z has only one positive entry and this entry is equal to the corresponding entry in the matrix x.

[^0]Note that $0 \leqq z y \leqq x y \leqq 1$, which means that $z y$ and $x y$ are diagonal matrices. Hence, $(z y)(x y)=(x y)(z y)$. Now $z=(z y)(x y) x=(x y)(z y) x=x(y z)$ and $0 \leqq y z \leqq y x=1$, which means that $y z$ is a diagonal matrix. Using elementary properties of matrix multiplication and the fact that x and z have one positive entry in common in each column we see that $y z=1$ and therefore $x=z$. Hence, x has exactly one positive entry in each column.

The example above shows that some rows of x may contain only zeros. We show that x has at most one positive entry in each row. Let us now construct a matrix w so that $0 \leqq n \leqq x$ and each row of w has only one positive entry if the same row of x has a positive entry in it and this entry is equal to the corresponding entry in the matrix x. Now $w=$ (wy) x and since $0 \leqq w y \leqq x y \leqq 1$, we see that $w y$ is a diagonal matrix. The same reasoning applied above to the matrix z shows that $w=x$. Hence, x has at most one positive entry in each row.

References

1. I. A. Brown, M. Juncosa and V. Klee, Invertibly positive linear operators on spaces of continuous functions, Math. Ann. 183 (1969), 105-114. MR 42 \#8314.
2. R. E. DeMarr, Convergence of a sequence of powers, Proc. Amer. Math. Soc. 23 (1969), 401-403. MR 39 \#6805.

Department of Mathematics, University of New Mexico, Albuquerque, New Mexico 87106

[^0]: Received by the editors October 1, 1971.
 AMS 1970 subject classifications. Primary 15A09; Secondary 15A45, 15 A48.
 Key nords and phrases. Matrix theory, inverses, ordered algebras.

