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Abstract

Plenty of methods have been proposed in order to discover latent variables (features) in data sets.

Such approaches include the Principal Component Analysis (PCA), Independent Component Analysis

(ICA), Factor Analysis (FA), etc., to mention only a few. A recently investigated approach to decompose

a data set with a given dimensionality into a lower dimensional space is the so-called Non-negative

Matrix Factorization (NMF). Its only requirement is that both decomposition factors are non-negative.

To approximate the original data, the minimization of the NMF objective function is performed in the

Euclidean space, where the difference between the original data and the factors can be minimized by

employing L2 norm. We propose a generalization of the NMF algorithm by translating the objective

function into a Hilbert space (also called feature space) under nonnegativity constraints. With the help

of kernel functions we developed an approach that allows high-order dependencies between the basis

images while keeping the non-negativity constraints on both basis images and coefficients. Two practical

applications, namely facial expression and face recognition, show the potential of the proposed approach.
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I. Introduction

Non-negative Matrix Factorization (NMF) decomposes a matrix X into two non-

negative low rank matrices W (source matrix) and A (mixing matrix), such that X ≈

WA [1]. The idea of imposing nonnegativity constraints was partly motivated by the

biological fact that the firing rates in visual perception neurons are non-negative. For

instance, Hoyer [2] proposed to model the receptive fields using non-negativity sparse

coding similar to NMF approach. Moreover, the non-negativity constraint arises in many

real image processing applications. For example, the pixels in a grayscale image have

non-negative intensities. In the case of NMF application to images, a set of n images

x are lexicographically scanned and stored in the columns of the matrix X. Then, as

already mentioned, NMF decomposes X into a basis image matrix W and the corre-

sponding coefficient matrix A [1]. NMF has been applied on a variety of applications,
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such as image classification [3], chemometry [4], sound recognition [5], musical audio

separation [6] or extraction of summary excerpts from audio and video [7], air emission

quality studies [8], identification of object materials from spectral reflectance data at

different optical wavelengths [9], or text mining [10]. Two particular image processing

tasks where NMF has been used are face and facial expression recognition. Regarding

face recognition, the NMF approach has been compared to PCA and a variant of NMF,

the so called Local Non-negative Matrix Factorization (LNMF) in [11]. LNMF has been

proposed as a way to improve the NMF’s basis image sparseness, as well as to reduce the

redundant information between basis images in its decomposition. This is accomplished

by imposing additional constraints related to spatial localization on the NMF associated

cost function. Therefore, the localization of the learned image features is improved. The

authors found that, while the NMF representation yields low recognition accuracy (actu-

ally lower than the one that can be obtained by using the PCA method), LNMF leads to

a better classification performance for face recognition. In another paper [12] NMF and

LNMF were compared on the task of face recognition on two face recognition databases,

namely, YALE and AT&T. The results showed that these algorithms lead to quite differ-

ent results, their performance being data dependent (i.e, for the YALE database NMF

performed better than LNMF, while, for the AT&T database NMF was outperformed

by LNMF). This could be due to differences in the database formation. Also, relatively

poor performance was shown by NMF, when applied to facial expression recognition [13].

An NMF variant that allows sparse coding in both basis images and activity (its coef-

ficients) was developed in [14]. The algorithm leads to an overcomplete decomposition,

i.e., generates a larger number of basis vectors than the dimensionality of the input space.

Regardless of the input data, NMF is a linear model in the sense that an image is

decomposed as a linear mixture of basis images. However, as suggested and evidenced

by numerous works, the receptive fields exhibit nonlinear behavior [15], [16]. In other
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words, the response of the visual cells is a nonlinear function of their stimuli, where the

response is characterized and analyzed on a low dimensional subspace [17], [18]. On the

other hand, it was recently argued and proved that, in order to achieve an efficient per-

ceptual coding system, a nonlinear image representation should be developed [19]. As

described in that paper, employing an adaptive nonlinear image representation algorithm

results in a reduction of the statistical and the perceptual redundancy amongst repre-

sentation elements. As far as the pattern recognition (and, in particular, the face and

facial expression recognition) task is concerned, the underlying features most useful for

class discrimination may lie within the higher order statistical dependencies among input

features. For example, Bartlett et al. [20] have demonstrated that the ICA is superior

to PCA in human face recognition in that ICA learns the higher-order dependencies in

the input besides the correlations. However, whether the facial expression is composed

of a set of independent components is not clear yet. The aspects described above bring

arguments in favor of developing a nonlinear counterpart of the NMF. Therefore, the

aim of a nonlinear NMF variant is twofold: (a) to yield a model compatible with the

neurophysiology paradigms (non-negativity constraints and nonlinear image decomposi-

tion) and (b) to discover higher-order correlation between image pixels that lead to more

powerful (in discriminative terms) latent features.

One way to handle nonlinear correlation can be provided by using kernel theory. Kernel-

based subspace methods have been extensively investigated in the literature. Nonlinear

methods based on the kernel theory, such as Kernel PCA and Kernel Fisher Linear

Discriminant were used for face recognition or denoising purposes and they were found

to outperform their linear variants [21]. In [22] kernels are decomposed in order to obtain

posterior probabilities for the class membership in a data clustering application. The

kernel theory was pushed further and was applied for retrieving independent features from

a non-linear mixture of sources. This has led to a kernel-based Independent Component
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Analysis proposed by Bach and Jordan [23]. Hyperkernels have been introduced in [24],

where the kernel is defined on the space of kernels itself, an approach which allows the

adaptation of the kernel function instead of its parameters. An efficient way to adapt

such hyperkernels using second-order cone programming is described in [25]. Recently, a

combination of kernel theory and Fisher Linear Discriminant criterion has been proposed

in [26] to extract the most discriminant nonlinear features and select a suitable kernel

simultaneously.

In the current paper, we make use of the kernel functions to develop a decomposition

method, where the discovered features (encompassed by the basis images) posses non-

linear dependencies, while the decomposition factors remain non-negative. In the light

of the kernel theory, we come up with a new formulation of NMF, where, although the

decomposition is still linear, the discovered features have non-linear dependencies. Here,

the nonlinearity aspect refers only to the relation between the pixels of basis images. In

principal, the original data residing in a given space are firstly transformed by a nonlinear

polynomial kernel mapping into a higher dimensional space, the so called reproducing

kernel Hilbert space (RKHS) and then a nonnegative decomposition is accomplished in

the feature space. The nonlinear mapping enables implicit characterization of the data

high-order statistics. By using a polynomial kernel function, the basis image features

are higher-order correlated, as we shall demonstrate in subsequent sections. We call the

proposed approach the Polynomial kernel Non-negative Matrix Factorization (PNMF).

Another important issue appears when the samples from the database are recorded

under varying lighting conditions which can cause the linear approach to perform poorly

[27]. It is known that when the Lambertian assumption regarding the illumination is

violated (i.e., the change in illumination is drastic) the linear subspace methods may fail.

Although we did not ran systematic experiments that involve an in-depth analysis of

the PNMF performance in the case of illumination changes, we can report preliminary
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results on a database containing samples recorded under varying lighting conditions,

where PNMF outperformed other methods.

The remainder of the paper is organized as follows. The mathematical description of the

NMF approach along with the corresponding cost function and its minimization is given

in Section II. The Polynomial kernel Non-negative Matrix Factorization is developed

in Section III. The potential of the method is investigated in the case of the face and

facial expression recognition tasks. The data description and the experimental setup are

presented in Section IV. The experimental results obtained by the PNMF algorithm are

further compared with those of NMF, LNMF, PCA and ICA in Section IV. Also, as

PNMF is a generalization of the NMF algorithm developed on the basis of kernel theory,

its performance is compared against the nonlinear counterparts of PCA and ICA, namely

kernel PCA (KPCA) and kernel ICA (KICA). Conclusions are drawn in Section V.

II. Non-negative matrix factorization

Suppose that we have a data space X and n non-negative input (training) m - dimen-

sional vectors xj = [x1j, x2j, . . . , xij, . . . , xm]T ∈ X stored in a matrix X = [x1,x2, . . . ,xn],

i = 1, . . . ,m, j = 1, . . . , n. Suppose, also, that we can approximate the input data through

a linear combination of a smaller set W = [w1,w2, . . . ,wp], with wr = [w1r, w2r, . . . , wir, . . . , wmr]
T ∈

X (called basis images), r = 1, . . . , p, and p < n. That is, each column xj of X can be

written as linear combination of this set, i.e. xj ≈ Waj, where aj is a p × 1 vector

containing the linear decomposition coefficients. Non-negative matrix factorization finds

W and aj in a such a way that both the decomposition matrix W and coefficients aj

contain non-negative elements (i.e. Wir, ar ≥ 0) [1]. Expanding the approximation to

all data we have X ≈ WA. The quality of approximation depends on the cost function

used. Two cost functions were proposed by Lee and Seung: the squared Euclidean dis-

tance between X and WA and the Kullback-Leibler divergence [28], [29]. The squared

Euclidean distance ‖X − WA‖2 can be minimized via Expectation Maximization (EM)
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[30], leading to the following iterative algorithm for updating the decomposition factors

A and W, at each iteration t [28]:

A(t) = A(t−1) ⊗ (W(t−1)TX) � (W(t−1)TW(t−1)A(t−1)) (1)

W(t) = W(t−1) ⊗ (XA(t−1)T ) � (W(t−1)A(t−1)A(t−1)T ) (2)

W(t) = W(t) � S (3)

where ⊗ and � denote elementwise multiplication and division, respectively and T de-

notes matrix transposition. Equation (3) normalizes the basis images such that w ∈ [0, 1],

i.e. S is a m × p matrix, whose columns are given by sr =
∑m

i=1 Wir, r = 1, . . . , p.

Regarding NMF variant whose cost function is based on Kullback-Leibler divergence,

it can be shown to be a particular version of Bregman divergence [31]. A general NMF

decomposition expression based on Bregman divergence is modeled in [32] to encompass

various special NMF algorithm variants derived in the literature.

III. Non-negative matrix factorization in polynomial feature space

Before deriving a non-negative matrix factorization in a polynomial feature space, we

give the following two definitions:

Definition 1: A kernel is a function κ that satisfies κ(x, z) = 〈φ(x), φ(z)〉, for all

x, z ∈ X , where φ is a mapping from X to an (inner product) feature space F , φ : x −→

φ(x) ∈ F [33].

Here 〈., .〉 denotes the inner product.

Definition 2: Given two matrices X and Y of dimensions m×n and m×p, respectively,

the kernel matrix K ∈ X n×p has elements Kij = κ(xi,yj) for the data x1,x2, . . . ,xn ∈ X ,

y1,y2, . . . ,yp ∈ X and some kernel function k.

To have a first idea about the role of the kernel function let us consider an example of

a two-dimensional input space x = (x1, x2) ∈ X 2×1 ⊆ R
2 together with the feature map
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φ(x) = (x2
1, x

2
2,
√

2x1x2) ∈ F ⊆ R
3 [33]. The space of linear functions in F would be of

the form:

g(x) = α11x
2
1 + α22x

2
2 + α12

√
2x1x2. (4)

As one can see, the feature map maps the data from a two dimensional to a three di-

mensional space in such way that the linear relations in the feature space correspond to

quadratic relations in the input space. The use of kernel functions eliminates the need for

an explicit definition of the nonlinear mapping Φ, because the data appear in the feature

space only as dot products of their mappings:

〈φ(x), φ(z)〉 = 〈(x2
1, x

2
2,
√

2x1x2), (z
2
1 , z

2
2 ,
√

2z1z2)〉

= x2
1z

2
1 + x2

2z
2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2

= 〈x, z〉2. (5)

Frequently used kernel functions are the polynomial ones, κ(xi,xj) = (xi · xj)
d, and the

Gaussian ones, κ(xi,xj) = exp(−‖xi−xj‖2/(2σ2)). This paper deals with the polynomial

kernels.

Let us assume now that our input data X ∈ X ⊆ R
m×n are transformed to the

higher dimensional space F ⊆ R
l×n, l � m. We denote the set of the transformed

input data with F = [φ(x1), φ(x2), . . . , φ(xn)], where the l - dimensional vector φ(xj) =

[φ(x)1, φ(x)2, . . . , φ(x)s, . . . , φ(x)l]
T ∈ F . We can find a matrix Y = [φ(z1), φ(z2), . . . , φ(zp)],

Y ∈ F , that approximates the transformed data set, such that p < n. Therefore, each

vector φ(x) can be written as a linear combination as φ(x) ≈ Yb. We introduce the

following squared Euclidean distance in the space F between the mapping of the vector

xj and its decomposition factors as being our cost function:

qj =
1

2
‖φ(xj) − Ybj‖2. (6)
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The aim is now to minimize qj subject to br, Zir ≥ 0, and
∑m

i=1 Zir = 1.

Theorem III.1: For the polynomial kernels of degree d, κ(xi,xj) = (xi · xj)
d the cost

function Q = ‖φ(X) − YB‖2 is non-increasing under the following updating rules, for

each iteration t:

B(t) ⇐ B(t−1) ⊗ K(t−1)
zx � (K(t−1)

zz B(t−1)) (7)

Z(t) ⇐ Z(t−1) ⊗ [(XK
′(t−1)
xz ) � (Z(t−1)ΩK

′(t−1)
zz )] (8)

Zt ⇐ Zt � S (9)

where Kzx := 〈φ(zi), φ(xi)〉 and Kxz := 〈φ(xi), φ(zi)〉 are kernel matrices of dimensions

p × n and n × p, respectively, containing values of kernel functions of zi ∈ Z and xi ∈ X,

and Kzz = 〈φ(zi), φ(zo)〉 is a p×p kernel matrix of any vectors zi, zo ∈ Z. Ω is a diagonal

matrix whose diagonal elements are ωrr =
∑n

j=1 Brj, r = 1, . . . , p. The columns of S are

given by sr =
∑m

i=1 Zir, r = 1, . . . , p.

The proof of (7) and (8) is given in Appendix. The sign “ ′ ” denotes the derivative of

matrix elements (functions). For the polynomial kernel k
′
(xi,xj) = d · k(xi ·xj)

d−1. Note

that, if the non-negativity constraint is not imposed in the decomposition coefficients,

then, the coefficients can be computed as (see equation (A-10) in Appendix):

B = (Kzz)
−1Kzx. (10)

The choice of the Euclidean distance as a cost function for the non-linear feature space was

motivated by the fact that we want to avoid to explicitly express the nonlinear mapping

φ(x) and φ(z). Indeed, if we expand equation (6), taking into account equation (5), we

have:

Q = k(x,x) − 2k(x, zi)b + bTk(zi, zo)b, (11)

In other words, the problem can be easily solved by invoking only the kernel function. The

polynomial kernel corresponds to an inner product in the space of d - th order monomials
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of the input space. If x represents an image, then, we work in the feature space which is

spanned by the products of any d pixels. If we would need to work with the mapped value

φ(x), the dimensionality would be, for example, l = 1010 for a 16×16 pixels image and d =

5. Thus, by using polynomial kernel we can take into account higher-order image statistics

without being concerned about the ”curse of dimensionality”. The PNMF’s complexity

is O(mnpd) compared to O(mnp) corresponding to NMF. Unfortunately, the updating

scheme does not guarantee a global minimum due to its nonconvex optimization structure

(applied simultaneously to B and Z), but only a local minimum. The local minimum that

is reached depends on the initialization, i.e. the initial values of B and Z, usually chosen

randomly. PNMF algorithm suffers from the same optimization drawback as NMF. One

way to partially overcome this problem, i.e. prevent the algorithm from getting ”stuck”

in a ”shallow” local minimum is to run it several times with different initializations.

It should be noted that the way the development of the iterative approach for updating

the decomposition factors was carried out does not permit a non-negative decomposition

for a RBF kernel. This is due to the negative solution resulting from the derivative

associated to the RBF kernel. Other approaches have to be found for allowing a more

flexible kernel.

The developed algorithm is closely related to the reduced set methods applied to Sup-

port Vector Machines (SVMs) [34], [35]. These approaches were developed in order to

increase the speed of the SVMs and to reduce the computational complexity of kernel

expansion by approximating them by using fewer terms without a significant loss in accu-

racy. The same Euclidean cost function was used, but no non-negativity constraint was

imposed on the computation of the reduced set and their coefficients. Also, the input

data of the reduced set method comes from the SVM output, which is a decision function

depending on the Lagrangian computed by the SVMs optimization procedure and the

kernel formed from the training and test data, while, in our case the input is formed only
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from the non-linear mapping of the original data.

IV. Experimental performance and evaluation setup

To asses the performance of the PNMF method, experiments on face and facial expres-

sion recognition were conducted. For comparison purpose NMF and LNMF have been

involved in the experiments. Also, ICA [36] and PCA [37], along with their nonlinear

variants namely kernel ICA (KICA) [38] and kernel PCA (KPCA) [39], respectively, were

used.

A. Data description and processing

Two databases were used for facial expression recognition and another two databases

were used for the face recognition task. The first set of facial images used for the fa-

cial expression recognition task come from the Cohn-Kanade AU-coded facial expression

database [40]. The database was originally created for the representation of Action Units

(AU) appearing in the FACS coding system and not for explicit facial expression recog-

nition. The facial actions (action units) that are described in the image annotations have

been converted into facial expression class labels according to [41]. Despite the fact that

100 posers were available, we were only able to identify thirteen of them who displayed all

six facial basic expressions, namely anger, disgust, fear, happiness, sadness and surprise.

These thirteen persons have been chosen to create the image database that has been used

in our expression recognition experiments. Each subject from Cohn-Kanade database

forms an expression over time starting from a neutral pose and ending with a very in-

tense expression, thus having several video frames with different expression intensities.

However, the number of these intermediate video frames is not the same for the various

posers. We have selected three poses with low (close to neutral), medium and high (close

to the maximum) facial expression intensity, as depicted in Figure 1, and used them to

form the database utilized in our experiments.
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Fig. 1. Frames corresponding to the three selected intensities (low, medium and high) for the happiness

and disgust expression as expressed by the same subject.

The total number of frontal images used was 234. The registration of each original

frontal image x was performed by mouse clicking on the eyes, thus retrieving the eyes

coordinates, followed by an image shift step for centering the eyes. Furthermore, the

images were rotated to align the face horizontally according to the eyes. In the next step,

the face region was cropped in order to remove the image borders, while keeping the

main facial features (as eyebrows, eyes, nose and chin). Finally, each resulting image of

size 80 × 60 pixels was downsampled to a final size of 40 × 30 pixels for computational

load reduction. The face image pixels were stored into a 1200 - dimensional vector (m =

1200). These vectors formed the columns of matrix X.

The second database contains 213 images of Japanese female facial expressions (JAFFE)

[42]. Ten subjects produced 3 or 4 examples of each of the 6 basic facial expressions plus a

neutral pose, thus producing a total of 213 images of facial expressions. Image registration

was performed in the same way as for the Cohn-Kanade database.

As far as the face recognition task is concerned, two other databases were used. The

first one, Yale face database [43] contains 165 grayscale images of 15 individuals. There

are 11 images per subject, one per different facial expression or configuration: center-light,
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with glasses, happy, left-light, without glasses, normal, right-light, sad, sleepy, surprised,

and winking. The second database was the AT&T face database [44] that contains ten

different images for forty distinct subjects. All images have been shot against a dark

homogeneous background with the subjects in an upright, frontal position with tolerance

for slight pose differences. For computational reasons the image size was reduced to 42×31

pixels in the case of Yale and to 42×34 pixels for the AT&T database, respectively, after

being preprocessed in order to align them using the previous mentioned procedure for

the Cohn-Kanade database. It should be noted that, in the case of the face recognition

databases, we did not crop the original images since the whole face together with the hair

part could contain important information about a person’s identity.

B. Training procedure

Before applying the training phase which consists in running the algorithm until it

converges and retrieving the basis images and the coefficients, the n face images were split

into a training set containing ntr images and a disjoint test set containing nte images. The

corresponding matrices were Xtr and Xte, respectively. The training images Xtr are used

in the expressions (7) - (9) for updating B and Z. To form the training set, ntr = 164

and ntr = 150 face images were randomly chosen from the Cohn-Kanade derived and

the JAFFE database, respectively, while the remaining nte = 70 and nte = 63 images

were used for testing, thus forming the test image set. Both the training and the test

set contained all facial expressions. Finally, in the case of face recognition, for the Yale

database, the first six images of each subject were used to form the training data set,

while the remaining five samples were used as test images. In the case of the AT&T

database, the images have been randomly split in 200 training images and 200 test images.

For NMF, LNMF and PNMF, each training face image xtr was projected by using the

pseudoinverse basis images matrix, resulting in a feature vector ftr = Z−1xtr, where

xtr is modified to become zero mean. For the ICA approach, which has been used for
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comparison, we used the first architecture described in [20] that gives us the coefficients

to be applied for classification. The ICA decomposition coefficients of each image form

essentially a row of the matrix Ftr = XtrPpA
−1. Here Pp is the projection matrix

resulting from PCA procedure applied prior to ICA and A is the unmixing matrix found

by the ICA algorithm. The number of independent components is controlled by the first

p eigenvectors [20]. PCA alone was also applied on our experimental data. In this case,

the eigenvectors (eigenimages) are extracted from the database comprising the training

images. Further, the training images are projected onto the transpose of the matrix which

contains the eigenimages, thus yielding the training feature vector corresponding to the

PCA approach. The same strategy was adopted for KICA and KPCA. However, we must

notice that, in order to have a fair comparison to PNMF, KPCA was used only with the

polynomial kernel in our experiments.

C. Test procedure

In the test phase, and for NMF, LNMF and PNMF, each test face image xte was

modified so as to become zero mean one and subsequently, a test feature vector fte was

formed by fte = Z−1xte. For the ICA approach, the test feature vector was formed as

fte = xtePpA
−1. For the PCA, the test images were projected onto the eigenimages

achieved in the training step, yielding the PCA test feature vectors. The same strategy

was adopted for KICA and KPCA.

D. Classification procedure

The six basic facial expressions (i.e. anger , disgust , fear , happiness , sadness and surprise)

available for the Cohn-Kanade database form six classes. One more class (neutral) exists

in the case of the JAFFE database. Regarding the YALE and AT&T database that were

used in the face recognition experiment, each class represents an individual and the class

labels denote the identity of each individual. If we construct a classifier, whose class label
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output for a test sample fte is l̃, then the classifier accuracy is defined as the percentage

of the correctly classified test images, i.e., the percentage of images l̃(fte) = l(fte), where

l(fte) being the correct class label. Three classifiers were employed for classifying the

features extracted by the algorithms. The first classifier is a nearest neighbor classifier

based on the cosine similarity measure (CSM). This approach uses as similarity measure

the cosine of angle between a test feature vector and a prototype one, i.e. one derived

from the training phase. More specifically, l̃ = l(fk,tr) where k = argmini=1,...,ntr
{di}

and di =
(fte)T fi,tr
‖fte‖‖fi,tr‖ . The second classifier is a two layer neural network (RBFNN) based

on radial basis functions (RBFs) g(x) = exp(−‖fi − fj‖2/(2σ2)), where f is the feature

vector associated to either training or test image. Finally, the third classifier is based on

SVMs [45] with different kernels (linear, polynomial, and RBF). The sequential minimal

optimization technique developed by Platt [46] was used to train the SVMs. Since clas-

sical SVM theory was intended to solve a two class classification problem, we chose the

Decision Directed Acyclic Graph (DDAG) learning architecture proposed by Platt et al.

to cope with the multi-class classification [47].

E. Performance evaluation and discussions

E.1 Facial expression recognition

We ran the PNMF algorithm for various number of basis images p and different values

of the polynomial degree d = {2,3,4,5,6,7,8,9,10}. Also, the same polynomial degree range

was used for KPCA and the results presented are the ones that correspond to the degree

that gave the best results. Several basis images discovered by PNMF are depicted in

Figure 2 for the Cohn-Kanade database and for different values of d. The basis images

corresponding to d = 2 and d = 3 are noisy. As the degree increases more pixels are

taken into account. This leads to a “finer” image representation and an emphasis on the

expression. The phenomenon can be easily observed especially in the third basis image
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of Figure 2, where the happiness expression passes through different intensities (from a

vague “smile” to an intense “smile”).

Fig. 2. Five different basis images retrieved by the PNMF with d = {2,3,4,5,6,7,8} (left to right) for the

Cohn-Kanade database.

The classification results for the facial expression recognition task for different image

representations and classifiers (CSM, RBFNN, SVM) involved in the experiment are

shown in Table I. The minimum number of basis images p corresponding to the maximum

classification accuracy is also tabulated. The results of the six other subspace image

representations (NMF, LNMF, PCA, KPCA, ICA and KICA) are also presented. For

all three databases and all classifiers, PNMF outperformed all other methods. Generally,

for both Cohn-Kanade (C-K) and JAFFE databases, the best results are provided when

the features are classified by SVM followed by CSM and RBFNN. As far as the feature

extraction algorithm is concerned, in the case of C-K, the best classification performance

was achieved by PNMF, while the second best performance was attributed to the LNMF

approach. A greater difference in performance between the best (PNMF) and the second
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best algorithm (NMF and LNMF) was obtained for the JAFFE database, where PNMF

outperforms NMF by almost 3 %, in the case of SVM classifier. Both KPCA and KICA

have shown superior performance compared to PCA and ICA, respectively. However, they

performed worse than PNMF. Interestingly, KPCA and KICA achieved lower accuracy

than PCA and ICA when they classified facial expressions from the C-K database. This is

in line with the results reported in [48] where KPCA was found inferior in performance to

PCA for the JAFFE database. Compared with the Cohn-Kanade database, the JAFFE

database leads to lower classification performance, due to the fact that the subjects

posing for this database are not as expressive as those in the Cohn-Kanade, making

facial expression harder to be recognized. As experiments showed, the difference between

the classification performance of the PNMF (best one) and the second best one is larger

in the case of the JAFFE database than in the Cohn-Kanade database. This fact is an

indication that the benefit from using PNMF is more prominent in cases where classes

are difficult to separate.

It has been argued [49], [13] that, by performing the processing on difference images

obtained by subtracting each expression image from its corresponding neutral pose, when

available, the classification accuracy is much improved. Thus an experiment involving

difference images was conducted. The difference images were formed for the JAFFE

database and the new database was denoted by JAFFEdiff . The same procedure as

above was then applied on the new database. Indeed, the accuracy increased for all image

representation approaches and all classifiers. An impressive gain was achieved in the case

of the PNMF with CSM, where the accuracy increased from 69.8% in JAFFE up to 93.8%

in JAFFEdiff . In terms of classifiers the highest accuracy is obtained by CSM followed

by NN and SVM. However, regardless of classifier used, again, PNMF performed better

than all other approaches, including KPCA and KICA. A slight accuracy improvement

was observed for the KPCA over PCA.
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E.2 Face recognition

The second experiment dealt with face identity recognition. Several basis images from

the YALE database retrieved by the PNMF algorithm for d = {2,3,4,5,6,7,8,9,10} are

depicted in Figure 3. Notice that for the first, fourth and fifth basis image of this Figure,

Fig. 3. Five different basis images retrieved by the PNMF with d = {2,3,4,5,6,7,8} for the YALE

database. While the basis images corresponding to d = 2 and 3 are quite noisy, as the degree

increases more pixels are taken into account and the basis images retrieve person identity.

as the degree increases the same subject is represented, whilst in the third different

subjects are represented. For the second one, the basis image corresponding to d = 6 and

d = 7 is a mixture of two subjects (the one mainly represented by the second basis image

and the one represented by the third basis image with d = 7), due to the face similarity.

Also, notice that the subjects in the case of the third basis image are in shadow at the

right part of the image.

The results of face recognition for the YALE database are tabulated in Table II. The

best performance is provided by PNMF for all three classifiers. KPCA and PCA per-
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formed equally for the CSM classifier with a slight improvement in accuracy of 0.2% for

the RBFNN classifier. 100 % accuracy is yielded in the case of PNMF combined with

RBFNN, while the same maximum accuracy is obtained by all methods when SVM clas-

sifier is used. Since the PNMF has a very good performance in this database where the

subjects were recorded under various lighting conditions and different facial expressions,

making the faces less recognizable, PNMF seems to be much more robust to illumination

changes than the other tested approaches. This is emphasized by two aspects. First,

by visual inspection of Figure 3, where basis images incorporate illumination effects in

their representation, and, second, by comparing the results for all methods corresponding

to the YALE database presented in Table II for the CSM classifier. For this classifier,

which is the simplest of the three classifiers and thus, in this case, the superiority of a

classifier-image representation pair can be mainly attributed to the image representation

part of the pair, PNMF performed the best, yielding an accuracy 2 % higher than the

second best technique, i.e., NMF.

The last database involved in the experiments was the AT&T. In this case the results

are quite different from the ones obtained for the YALE database. The best results are ob-

tained by the KICA followed by LNMF and PCA when combined with CSM. These results

are consistent with the ones reported in [11] where the performance of LNMF is improved

because this algorithm is rotation invariant (up to some degree), since it generates local

features in contrast to NMF which yields more distributed features. Approximately the

same performance is obtained by RBFNN, while SVM classifier performed much worse.

In all cases, the PNMF method performs better than the algorithm that it tries to im-

prove, namely the NMF algorithm, that yielded the second lowest performance. KPCA

was the worst performing algorithm in this database.

As noted in the database description, AT&T database contains slightly rotated faces

and we believe that this is the main reason that the PNMF algorithm does not perform

B - 19



well in this database. More specifically, the basis images generated by PNMF have a

holistic (distributed) appearance, as is obvious in Figure 3 and thus the algorithm is

vulnerable to rotation. This explanation is also supported by the following facts: a) the

NMF algorithm that also generates holistic basis images performs poorly in the same

database b) the LNMF algorithm that generates sparse (local) basis images (that are

more robust to rotations) performs better than both NMF and PNMF in this database.

The approach we have developed for updating the basis images and the coefficients

relies on iterative minimization. Obviously, other optimization techniques such as, for

example, Sequential Quadratic Programming or the interior-reflective Newton method

can be used. However, due to the fact that we deal here with a large-scale optimization

(taking into account the vector dimension) these approaches can be prohibitive in terms

of computational cost or memory requirements as was shown in the following experi-

ment. Having evaluated the analytical expression for the derivative and the constraints

for the cost function, we run the MATLAB [50] routine “fmincon” with the large-scale

optimization option to tackle our problem and compared it with our iterative solution

starting with the same initial random matrices B and Z. The routine “fmincon” for

large-scale optimization uses the interior-reflective Newton method with the help of pre-

conditioned conjugate gradients. The initial value of the cost function was found to be

Qinitial = 3.4610 · 108. Table III shows the final value Qfinal of the cost function and the

time necessary to reach the minimum for 9 basis images of 20 × 15 pixels. The methods

provided slightly different values for the final cost function. This is due to the fact that

both methods are only able to find local minima and they rely on different minimization

procedure. The proposed algorithm which was also implemented in MATLAB, was ex-

ecuted almost 431 times faster than “fmincon”. We must also notice that we were not

able to run “fmincon” with images having the dimension of 40 × 30 pixels and for more

than 5 basis images due to the memory limitations.
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V. Conclusions

In this paper we have modified the NMF algorithm in such manner that the dis-

covered features have a non-linear dependency, while the decomposition factors remain

non-negative. The underlying idea of the new factorization algorithm, named PNMF,

is the usage of the polynomial kernel function, which causes the decomposition to take

place in a feature space instead of the input space. The algorithm has been applied on

two databases for the facial expression classification task and on two databases for face

recognition. For comparison purposes six reference feature extraction algorithms (NMF,

LNMF, PCA, KPCA, ICA and KICA) have been also used. The features retrieved by the

aforementioned approaches have been classified by three classifiers CSM, NN, and SVM,

respectively. Except for one database (AT&T) out of the four, PNMF outperforms the

other approaches for all classifiers. The benefit of the proposed approach is evident in

problems where the classes are difficult to separate, as in the case of the JAFFE database.

When comparing PNMF with the other two kernel-based approaches that have been

proposed, namely KPCA and KICA, one can state that the major difference of PNMF

with its counterparts is the non-negative nature of the nonlinear features that it retrieves.

It turns out that, generally, these features possess powerful discriminant features. How-

ever experiments showed that there is no guarantee that PNMF is superior to KPCA or

KICA for all data sets, a statement that is also applicable to all decomposition methods,

e.g whcn comparing PCA against ICA (a comparison that resulted in contradicting re-

sults, depending on the data set). A situation where PNMF appears to be superior to

KPCA (and to all other approaches, as implied by its good performance in the case of the

YALE database) is in cases where illumination variations exist in the data, a case that

KPCA is known to be unable to handle well. However, additional experiments (object

recognition task) should be performed to strengthen our claim, or to verify it. We plan

to conduct such experiments in the future. However, one can state with confidence that
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PNMF is always better than its linear counterpart, i.e. the NMF algorithm, in terms of

retrieving more powerful latent variables for pattern classification, as evidenced by the

experimental results.

The way the development of the iterative approach for updating the decomposition

factors was carried out in this paper, does not permit a non-negative decomposition for

another kernel type, such as, for instance, the RBF kernel. This is due to the negative

solution resulting from the derivative associated to the RBF kernel. Other approaches

that allow a more flexible kernel have to be found, which can be a topic of future work.

Using other kernel types could be a potential way to improve the performance of the

kernel non-negative matrix factorization approach
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Appendix

A. Derivation of the polynomial KNMF coefficients update

For updating the expression of the polynomial KNMF coefficients we present two ap-

proaches which lead to the same updating rule. The first approach derives the multi-

plicative rule (7) based on finding an upper bound minimizer which iteratively moves

towards tighter upper bounds of the cost function involved. The second approach utilizes

a gradient descent optimization procedure.

Definition 2 The function G(b, b(t)) is an upper bound for Q(b) if, for any b and b(t)

we have G(b, b) = Q(b) and G(b, b(t)) ≥ Q(b), ∀b �= b(t) [28].

Lemma 1 If G is an upper bound for Q, then Q is decreasing under the update

b(t+1) = argminbG(b, b(t)).
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Proof: Q(b(t+1)) = G(b(t+1), b(t+1)) ≤ G(b(t+1), b(t)) ≤ G(b(t), b(t)) = Q(b(t))

Lemma 2 Let δij denote the Kronecker delta function and let L be a diagonal matrix

with elements Lij = δij(Kzzb)i/b
(t)
i . Then the following theorem holds:

Theorem .1: The upper bound of the function

Q(b) =
1

2

n∑
j=1

(
Φ(xq) −

p∑
r=1

brΦ(zr)

)2

(A-1)

is given by:

G(b, b(t)) = G(b(t)) + (b − b(t))T∇Q(b(t)) +
1

2
(b − b(t))T L(b(t))(b − b(t)), (A-2)

where ∇Q(b(t)) = ∂Q(b(t))

∂b(t)
is the first partial derivative with respect to b(t).

Proof: The cost function Q(b) can be written as Taylor expansion in the neighbor-

hood of the fixed point b(t) as follows:

Q(b) = Q(b(t)) + (b − b(t))T∇Q(b − b(t)) +
1

2
(b − b(t))T∇2Q(b(t))(b − b(t)), (A-3)

where ∇2Q(b(t)) = ∂2Q(b(t))

∂b
′2 is the second partial derivative with respect to b(t). Obviously

when b = b(t) we have G(b, b) = Q(b). For b �= b(t), G(b, b(t)) ≥ Q(b) is explicitly given by:

(b − b(t))T (L(b(t)) − Kzz)(b − b(t)) ≥ 0, (A-4)

taking into account that ∂2Q(b(t))

∂b′2
= Kzz. The relation (A-4) is equivalent with the state-

ment that the matrix L − Kzz is positive semidefinite. In order to prove that, consider

first the matrix P whose elements are of the form:

Pij = b
(t)
i (L − Kzz)ijb

(t)
j . (A-5)

The matrix P is generated by rescaling elementwise the elements of L−Kzz. Therefore,

L − Kzz is positive semidefinite if P is positive semidefinite. For P and for any b we
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have:

bTPb =
∑
i,j

biPijbj (A-6)

=
∑
i,j

bibjb
t
jδij(Kzzb)i −

∑
i,j

bt
ib

t
jbibjK

zz
ij

=
∑
i,j

bt
ib

t
jK

zz
ij b2

i −
∑
i,j

bt
ib

t
jbibjK

zz
ij

=
1

2

∑
i,j

bt
ib

t
jb

2
i K

zz
ij +

1

2

∑
i,j

bt
ib

t
jK

zz
ij b2

j −
∑
i,j

bt
ib

t
jbibjK

zz
ij

=
1

2

∑
i,j

Kzz
ij bt

ib
t
j(bi − bj)

2 ≥ 0.

Here, Kzz
ij is the {i, j} element of the matrix Kzz.

Derivation of eq. (7), first solution.

Proof: Since G(b, b(t)) is un upper bound for Q(b) and b(t+1) = argminbG(b, b(t)) we

find its minimum by taking the derivative and setting it to zero:

∂G(b, b(t))

∂b
= ∇Q(b(t)) + L(b(t))(b − b(t)) = 0. (A-7)

This gives us:

L(b(t))b = L(b(t))b(t) −∇Q(b(t)). (A-8)

Multiplying on the left by L(b
′
)−1, we get:

b = b(t) − L(b(t))−1∇Q(b(t)). (A-9)

The partial derivative of ∇Q(b(t)) with respect to b(t) is given by:

∂Q(b)

∂bq

= −Φ(zq)
n∑

j=1

(
Φ(xq) −

p∑
r=1

brΦ(zr)

)
=

−
( n∑

j=1

Φ(zq)Φ(xq) −
n∑

j=1

p∑
r=1

brΦ(zq)Φ(zr)

)
=

= −(kzx − Kzzb)

(A-10)

Since L(b(t)) is a diagonal matrix,

Lij(b
(t))−1 = b

(t)
i

1

δij(Kzzb)i

. (A-11)
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By substituting (A-11) and (A-10) in (A-9), we obtain

bi = b
(t)
i + b

(t)
i

1

(Kzzb)i

((kzx)i − (Kzzb)i) (A-12)

= b
(t)
i + b

(t)
i

(kzx)i

(Kzzb)i

− b
(t)
i

(Kzzb)i

(Kzzb)i

= b
(t)
i

(kzx)i

(Kzzb)i

.

Putting it in a matrix form, we obtain the expression (7).

Derivation of eq. (7), second solution.

Proof: An alternative solution can be found if we use a gradient descent optimization

such as:

b = b(t) − η(∇Q(b(t))), (A-13)

with 0 < η < 1
β
,where η is the learning step and β > 0. Taking the Taylor expansion

(A-3) and substituting b from (A-13), we finally have:

Q(b) − Q(b(t)) = η(∇2Q(b(t)))

(
1 − 1

2
βη

)
. (A-14)

Choosing an appropriate value for η and α such as η = Lij and β = Kzz, we have η < 1
β
,

therefore

(
1 − 1

2
βη

)
> 0 for any element z ∈ [0, 1], hence Q(b) > Q(b(t)). However, this

approach leads to the same solution since the relation (A-13) is equivalent with (A-9)

after substituting η and β.

B. Derivation of the polynomial KNMF basis images update, i.e. of eq. (8)

Proof: The same rationale is followed for obtaining an update rule for the basis

images by employing eq. (11). Taking all images, the partial derivative of ∇Q(z) with

respect to z is given by:

∂Q(z)

∂zµi

= −
n∑

j=1

bµK
′
(xj · zµ)xji +

p∑
r=1

brbµK
′
(zr · zµ)zri. (A-15)

In this case, the relation G(z, z(t)) ≥ Q(z) translates into the following:

1

2

∑
ij

[dzbKd−1
zz − d(d − 1)z2bKd−2

zz + d(d − 1)x2Kd−2
xz ]z

(t)
i z

(t)
j (zi − zj)

2 ≥ 0, (A-16)
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which is equivalent with:

x2Kd−2
xz ≥ z2bKd−2

zz . (A-17)

Finally, the following inequality holds:

x2Kd−2
xz ≥ x2Kd−2

zz ≥ z2bKd−2
zz , (A-18)

since (xTz)d−2 ≥ (zTz)d−2, ∀x ∈ [0, 255], z ∈ [0, 1] and d ≥ 2, with equality for d = 2.

Further, by choosing Lij = δij(zωKzz)i/z
(t)
i we come up with the updating expression for

basis images in (8).
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TABLE I

Maximum accuracy (%) obtained for the various methods used in the facial expression

classification experiments. The minimum number of basis images corresponding to the

maximum accuracy is also presented. The degree of the polynomial PNMF is given in

parenthesis. The best result is shown in bold.

Database Classifier Maximum accuracy (%)/number of basis images

NMF LNMF PNMF ICA PCA KICA KPCA

CSM 77.4/36 81.4/25 81.8/16 71.4/25 72.9/16 74.3/36 72.9/64

(d = 6)

C-K RBFNN 67.1/81 77.1/25 78.6/81 72.9/16 74.3/25 72.9/16 74.3/100

(d = 2)

SVM 78.6/100 81.4/81 83.9/100 80/64 81.4/100 82.9/25 82.9/100

(d = 2)

CSM 66.3/81 62.4/49 69.8/25 63.4/100 61.3/100 66.7/49 58/16

(d = 5)

JAFFE RBFNN 61.9/81 60.3/25 65/16 61.9/121 60.3/49 61.9/64 55/25

(d = 4)

SVM 74.6/49 74.6/36 77.8/49 74.6/36 74.6/36 76.2/81 71.4/81

(d = 6)

CSM 70/121 89.3/49 93.8/100 91/16 90.1/16 89.3/25 91/49

(d = 7)

JAFFEdiff RBFNN 76.8/25 82.1/25 87.5/100 82.1/25 85.7/25 82.1/36 86/25

(d = 7)

SVM 78.6/36 82.1/25 83.9/25 82.1/16 82.1/16 82.1/49 82.5/64

(d = 5)
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TABLE II

Maximum accuracy (%) obtained for the various methods used in the face recognition

experiments. The minimum number of basis images corresponding to the maximum

accuracy is also presented. The degree of the polynomial PNMF is given in

parenthesis. The best result is shown in bold.

Database Classifier Maximum accuracy (%)/number of basis images

NMF LNMF PNMF ICA PCA KICA KPCA

CSM 93.2/49 87.8/64 95.2/25 90.6/49 88/25 93.2/49 88/81

(d = 7)

YALE RBFNN 98.3/64 98.3/64 100/9 98.1/25 99.3/9 98/49 99.5/100

(d = 2)

SVM 100/9 100/9 100/9 100/9 100/9 100/9 100/9

(d = 2)

CSM 94.1/49 96/100 94.1/64 93.5/81 95/100 98/64 86.5/121

(d = 3)

AT&T RBFNN 90/36 95.5/100 92.5/100 93/49 94.5/196 94.5/49 85/49

(d = 6)

SVM 70.5/25 72.5/36 71.5/81 73/49 73/49 73/49 70/64

(d = 7)

TABLE III

Convergence time (in seconds), initial and final value for the cost function Q for the

iterative (PNMF) and “fmincon” methods, respectively. The number of basis images is

9 and the dimension of the basis image is 20 × 15 pixels.

Method Time (seconds) Qinitial Qfinal

PNMF 50 3.4610 · 108 2.3077 · 104

fmincon 21548 3.4610 · 108 2.2270 · 104
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