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Abstract

In this paper, we present a Gibbs Random Field (GRF)

modeling based Nonnegative Matrix Factorization (NMF)

algorithm, called GRF-NMF. We propose to treat the com-

ponent matrix of NMF as a Gibbs random field. Since each

component presents a localized object part, as usually ex-

pected, we propose an energy function with the prior knowl-

edge of smoothness and locality. This way of directly mod-

eling on the structure of components makes the algorithm

able to learn sparse, smooth, and localized object parts.

Furthermore, we find that at each update iteration, the con-

strained term can be processed conveniently via local fil-

tering on components. Finally we give a well established

convergence proof for the derived algorithm. Experimental

results on both synthesized and real image databases shows

that the proposed GRF-NMF algorithm significantly out-

performs other NMF related algorithms in sparsity, smooth-

ness, and locality of the learned components.

1. Introduction

Nonnegative Matrix Factorization (NMF) [4] have been

proved to be effective for learning object parts. It is a

technique for decomposing a nonnegative data matrix into

a product of two nonnegative matrices. NMF is widely

used for discovering semantics in a given set of similar sig-

nals. The application areas include machine vision, video

sequence analysis, spectral analysis, document clustering,

and so on.

However, the classic NMF algorithm [4, 5] is not al-

ways successful in finding sparse and localized object parts

[1]. In recent years several algorithms have been pro-

posed to improve NMF for sparse and local components

[6, 2, 7, 3, 10]. Most of them go for extracting sparse and lo-

cal parts by utilizing some additional constrains, like sparse

constrain [3], Lasso constrain [2, 7, 10], or orthogonal con-
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strain [6, 10] on the factors. They might be successful in

finding sparse and localized parts, however, they also get

some noisy representations, or even break images into lots

of nonsense tiny pieces when the quality of the input data is

not so well. This is because none of them considers the prior

structure of the learned components themselves. For exam-

ple, two-dimensional images are always treated as concate-

nated one-dimensional signals, regardless of the mutual re-

lationships of pixels among each other in original images.

There has been a newly proposed work [9] that consid-

ers the prior knowledge of the factors, but it assumes that

the two NMF factors are independently determined by a

Gaussian process. Under this assumption the relationship

between the coefficient matrix and the component matrix is

cut off, and it does not consider the underlying structure of

the components as well.

In this paper, we try to directly model the prior ob-

ject structure of the components into the NMF problem.

We consider two prior knowledge about the components to

learn: smoothness and locality. It is assumed that each com-

ponent obeys smoothness constrain over neighboring ele-

ments, and it is locally concentrated. Taking this we apply

the Gibbs Random Field (GRF) to effectively model them

into the classic NMF problem, and accordingly we derive a

new algorithm called GRF-NMF for learning sparse, local

and smooth object parts.

The paper is structured as follows. In Section 2 we re-

view the NMF technique, and introduce priors in a Bayesian

framework. In Section 3 we model NMF with GRF, de-

rive the GRF-NMF algorithm and show the corresponding

convergence proof. Section 4 demonstrates experimental

results on several data sets, and finally we summarize this

paper in Section 5.

2. Bayesian Nonnegative Matrix Factorization

with Priors

Given a nonnegative data matrix X of size m × n, the

classic NMF algorithm [4, 5] considers the problem of find-



ing two nonnegative matrices W and H , such that

X = WH + N, (1)

where W is an m× r component matrix containing r com-

ponents in columns, H is a coefficient matrix of size r × n,

and N is the residual noise matrix.

Consider that the noises are i.i.d. Gaussian distributed,

with zero mean and variance of σ2, then the likelihood of

the factors W and H can be written as

P (X|W,H) =
1

(
√

2πσ)mn
e−

1

2σ2
‖WH−X‖2

F , (2)

where ‖ · ‖F denotes the Frobenious-norm. Therefore, tak-

ing the negative log likelihood, the maximum likelihood

(ML) estimate under nonnegative constrain can be formu-

lated as the following classic NMF problem

min ‖WH − X‖2
F

s.t. W,H ≥ 0,
(3)

where the object function is known as the least squares like-

lihood or the Euclidian criterion [5]. Lee and Seung [5]

shown that the NMF problem of Equ. (3) can be solved

using two alternating multiplicative update rules as

W ← W ⊙ (XH ′) ⊘ (WHH ′), (4)

H ← H ⊙ (W ′X) ⊘ (W ′WH), (5)

where P ′ is the transpose of matrix P , ⊙ and ⊘ are element-

wise multiplication (also known as the Hadamard prod-

uct operator) and division operators between matrix respec-

tively.

Recently, Schmidt and Laurberg proposed a maximum a

posteriori (MAP) NMF method based on Gaussian process

priors [9]. Using Bayes’ rule, the posterior is formulated as

P (W,H|X) =
P (X|W,H)P (W,H)

P (X)
, (6)

where P (W,H) is a prior probability. Under the assump-

tion that the factors of W and H are independent with each

other, the prior could be further factorized as

P (W,H) = P (W )P (H). (7)

As a result, the MAP estimate of Equ. (6) is equivalent to

the following minimization problem

min
W,H≥0

− ln P (X|W,H) + αφ1(W ) + βφ2(H), (8)

where φ1(W ) ∝ − lnP (W ), and φ2(H) ∝ − ln P (H),
with parameters α ≥ 0 and β ≥ 0 balancing the constrains

and the likelihood.

Many existing improved NMF methods [6, 2, 7, 3, 10, 9]

can be viewed as special cases under this framework, with

various priors related to W and H respectively to constrain

the solution. However, the assumption of independent W
and H might not properly be true, because at least they are

correlated by a diagonal constant matrix Λ as a scale factor

[4] such that WH is invariant under the transformation of

W → WΛ, H → Λ−1H. (9)

Therefore, to construct really effective constrains, we be-

lieve that W and H should be jointly modeled in the prior

P (W,H).

3. Gibbs Random Field Modeling of Nonnega-

tive Matrix Factorization

It is known that in NMF each column of X and W rep-

resent a signal, then each entry of it may have its originally

neighboring elements. Especially when input signals are

two-dimensional images, each pixel has its spatially neigh-

boring pixels. If the learned components represent object

parts, as usually expected, they should obey some local

smoothness constrain among neighboring pixels, as a nor-

mal image does. On the other hand, the size of each object

part might not be large. The components are probably be

some small localized parts of the object. In this work we

mainly consider the two prior knowledge about the compo-

nents, i.e. the smoothness and the locality. We apply the

Gibbs Random Field (GRF) to effectively model them into

the classic NMF problem. Accordingly we derive a new

algorithm called GRF-NMF for learning sparse, local and

smooth object parts.

3.1. Modeling Smoothness and Locality Priors

Let S = {(i, k) | 1 ≤ i ≤ m, 1 ≤ k ≤ r} be a set

of sites on a regular lattice related to the component ma-

trix W , with (i, k) indexing the i’th element of the k’th

component. Consider a homogeneous neighborhood sys-

tem on S such that N = {Nik ∪ Ñik | (i, k) ∈ S}, where

Nik = {(l, k) | l ∈ Ai, (l, k) ∈ S}, and Ñik = {(l, k) | l ∈
Bi, (l, k) ∈ S}. Both Nik and Ñik contain sites only in

the same column of k, and their difference is that Nik con-

tains sites adjacent to (i, k), while Ñik includes sites far

away from (i, k). Note that (l, k) ∈ Nik is equivalent to

l ∈ Ai. Define a m × m matrix A with Ail = 1Ai
(l),

where 1 is the set indicator function, so that l ∈ Ai is equiv-

alent to Ail = 1. Similarly, let B be a m × m matrix with

Bil = 1Bi
(l), then the relationship among Ñ , B, and B is

the same with that among N , A, and A. We call A and

B kernel matrices of the neighborhood system. Also note

that both A and B are symmetric matrices, because of the

property of the neighborhood system.



For modeling the priors, we consider only pair-site (sec-

ond order) cliques and define the following clique potentials

Va(Wik,Wlk) =
1

2
α(Wik − Wlk)2, (10)

Vb(Wik,Wlk) = βWikWlk, (11)

where α ≥ 0 and β ≥ 0 are constant weighting factors.

The first potential function is a regularizer for (l, k) ∈ Nik,

imposing the a priori smoothness constraint on the solu-

tion. On the other hand, the second one is a localization

and sparsity term for (l, k) ∈ Ñik, indicates that the far

away element Wlk is tend to be distinct from Wik, making

the component locally concentrated, and meanwhile it will

naturally be sparse.

Let

fk(W ) =
∑

i

(
∑

l∈Ai

Va(Wik,Wlk) +
∑

l∈Bi

Vb(Wik,Wlk)

)

=
∑

i,l

(
1

2
αAil(Wik − Wlk)2 + βBilWikWlk

)
,

(12)

and

gk(H) =
∑

j

H2
kj , (13)

then given H , we formulate the (conditional) prior energy

function as

U(W |H) =
1

2

∑

k

fk(W )gk(H), (14)

where fk(W ) is considered as the prior energy of the k’s

component , and gk(H) can be viewed as a conditional

weighting factor. In fact,
√

gk(H) is the L2-norm of the

k’th row of H , thus when gk(H) is larger, it means that in

NMF formulation (c.f . Equ. (1)) the k’s component is more

important for reconstruction. Therefore we set the penalty

on such component to be heavier accordingly.

Now the (conditional) prior distribution of W under the

Gibbs distribution form can be written as

P (W |H) =
1

Z
e−U(W |H), (15)

where Z is a normalizing constant. Assume that the prior

distribution of the coefficient matrix is flat, then the joint

prior distribution is

P (W,H) = P (W |H)P (H) ∝ e−
1

2

∑
k

fk(W )gk(H). (16)

The jointly modeled prior distribution considers both W
and H , and the scale correlation between them. In this way,

further combine with the likelihood distribution in Equ. (2),

the posterior distribution will be

P (W,H|X) ∝ P (X|W,H)P (W,H)

∝ e−
1

2σ2
‖WH−X‖2

F
− 1

2

∑
k

fk(W )gk(H).
(17)

As a result, the MAP estimate of Equ. (17) can be found

by minimizing the following GRF-NMF object function1

J(W,H) =
1

2
‖WH − X‖2

F +
1

2

∑

k

fk(W )gk(H). (18)

And accordingly, the GRF-NMF problem is defined as

min J(W,H)

s.t. W,H ≥ 0,
∑

i

Wik = 1,∀k, (19)

where the latter constrain is set for a unique solution, be-

cause J(W,H) is invariant under the transformation of Equ.

(9), which can be easily verified.

The object function of Equ. (18) is not convex with re-

spect to both W and H . It is popularly solved by alternating

updates. When H is fixed, as discussed above, minimizing

J(W,H) with respect to W will maximize the likelihood

in the constrain of smooth, local, and sparse components,

with α, β, and g(H) balancing between them. On the other

hand, when W is fixed, fk(W ) can be viewed as a condi-

tional weighting factor measuring the degree of dissatisfac-

tion of the k’th component. Therefore the k’th row of H
will be penalized more if fk(W ) is larger. Consequently,

minimizing J(W,H) with respect to H will maximize the

likelihood in the constrain of weighted L2-norm of H , and

it will make the solution of H conditionally sparse.

3.2. Algorithm

To solve the GRF-NMF problem of Equ. (19), we derive

two alternating matrix-wise multiplicative update rules as

W ← W ⊙ (XH ′ + SG) ⊘ (WHH ′ + TG), (20)

H ← H ⊙ (W ′X) ⊘ (W ′WH + FH), (21)

where S(W ) and T (W ) are m × r nonnegative matrices

computed as

Sik(W ) = 2α
∑

l∈Ai

Wlk, (22)

Tik(W ) = α
∑

l∈Ai

(Wik + Wlk) + β
∑

l∈Bi

Wlk, (23)

and F (W ) and G(H) are r × r diagonal nonnegative ma-

trices defined as

Fik(W ) = δikfk(W ), Gkj(H) = δkjgk(H), (24)

with δij be the Kronecker delta. Matrices F (W ) and G(H)
are two diagonal weighting matrix, as analyzed in Section

3.1. The multiplicative update rules of Equ. (20)(21) are

1For convenience, σ in Equ. (17) is set to be 1, and α and β in Equ.

(12) is rescaled accordingly.



similar with that of the classic NMF (c.f . Equ. (4)(5)),

while more constrains are added to yield desired solution.

For example, the term FH in the denominator of Equ. (21)

constrains H to be conditionally sparse weighted by F (W ).
Note that the update procedure only involves matrix oper-

ations, so we can efficiently process it with some matrix

computing engine (e.g. MATLAB).

An interesting finding is that, according to Equ. (22),

S(W ) can be rewritten as Sik(W ) = 2α
∑

l AilWlk =
2α(AW )ik. Hence the matrix S is actually a result of local

smooth filtering on each component respectively, with rows

of matrix ΓS = 2αA as the corresponding filter kernels.

In this way, the update rule of Equ. (20) makes W locally

smoothed. If the input signal is image, then each column

of W represents component image. As a result, not only

columns of W , but also rows of ΓS can be reshaped as 2-D

images. We denote the local valid part of the reshaped 2-D

filter kernel from rows of ΓS as KS
ω×ω

2, with filter size ω
indicating the affected local smoothing area. For example,

it can be of the form

KS
3×3 =

⎡
⎣

0 α 0
α 0 α
0 α 0

⎤
⎦ , KS

3×3 =

⎡
⎣

α α α
α 0 α
α α α

⎤
⎦ (25)

for 4-neighborhood system and 8-neighborhood system re-

spectively.

For computation of T (W ), we define two constant m ×
m matrices as

Cil = 1 − Bil, Dil = δil

∑

p

Aip. (26)

Then T (W ) can be reformulated as

Tik(W ) =
1

2
Sik(W ) +

∑

l

(αDil + βBil) Wlk

=
1

2
Sik(W ) − Rik(W ) + α(DW )ik + β

∑

l

Wlk,

(27)

where

R(W ) = βCW. (28)

Note that R(W ) is also a result of local smooth filtering on

components, with rows of matrix ΓR = βC as the corre-

sponding filter kernels. Therefore Equ. (27) shows that the

computation of T (W ) only involves two local smooth filter-

ing processing, with αDW be a diagonally rescaled version

of W , and
∑

l Wlk only needs to be computed once for each

column. When dealing with images, KR
τ×τ is defined as the

local valid part of the reshaped 2-D filter kernel from rows

of ΓS , with filter size τ indicating the affected local smooth-

ing area. It can be verify that KR
τ×τ is actually a constant

2Since the neighborhood system is homogeneous, Γ
S

= 2αA can be

determined by shifting KS
ω×ω

matrix with all elements to be β. It can also be inferred that

τ is related with the size of the object parts represented by

components.

Taking above computations, the GRF-NMF algorithm is

detailed as follows.

Algorithm: GRF-NMF

1. Input:

(a) Nonnegative data matrix X .

(b) The number of components r.

(c) Max iterations L.

(d) Constrain parameters α and β.

(e) Neighborhood kernel matrices A and B.

2. Initialize:

(1) Assign W to a random positive matrix.

(2) Set H = W ′X .

3. Iterate:

For t = 1 to L
(1) Compute f and g with Equ. (12)(13),

and assign F and G with Equ. (24).

(2) Compute S and R by filtering each component

of W with ΓS and ΓR respectively.

(3) Compute T with Equ. (27).

(4) Update H and W by Equ. (20)(21), and

normalize via Equ. (9) with Λkk = 1/
∑

i Wik.

End

4. Output: W , H .

3.3. Proofs of Convergence

Theorem 1 The object function of Equ. (18) is non-

increasing under the update rule of Equ. (21).

Theorem 2 The object function of Equ. (18) is non-

increasing under the update rule of Equ. (20).

The above two theorems ensure that the GRF-NMF al-

gorithm will converge after a certain number of alternating

update iterations. The proofs are similar with [5], making

use of auxiliary functions and a gradient decent scheme with

a multiplicative update style for preserving non-negativity.

The difference in this paper is that we are dealing with the

case of updating the whole matrix simultaneously. Here we

detail it with several following lemmas.

Before going on, we introduce the notation of equally

partitioned matrix used in this paper. A matrix P of size

mn × mn is called to be an equally partitioned matrix if it

has the form

P = [Pij ] =

⎡
⎢⎢⎣

P11 P12 · · · P1n

P21 P22 · · · P2n

· · · · · · · · · · · ·
Pn1 Pn2 · · · Pnn

⎤
⎥⎥⎦ ,

where all Pij are matrices of the same size m × m. And

we further use the notation of P kl
ij to index the row k and

column l element of Pij .



Lemma 1 The gradient of the object function of Equ.

(18) with respect to h = vec(H) is ∇hJ(W,H) =
vec(W ′WH − W ′X + F (W )H), and the corresponding

Hessian matrix is ∇2
h
J(W,H) = In ⊗ (W ′W + F (W )),

where ⊗ denotes the Kronecker product operator.

Proof: It is easy to verify that

∂J(W,H)

∂Hkj

= (W ′WH)kj − (W ′X)kj + fkHkj , (29)

∂2J(W,H)

∂Hkj∂Hµν

= δjν(W ′W )kµ + δkµδjνfk. � (30)

Lemma 2 If Q(Ht) is a diagonal equally partitioned ma-

trix of the form

Qkµ
jν (Ht) = δkµδjν(W ′WHt + F (W )Ht)kj/Ht

kj , (31)

then

Φ(H,Ht) = J(W,Ht) + (h − ht)′∇hJ(W,Ht)

+
1

2
(h − ht)′Q(Ht)(h − ht)

(32)

is an auxiliary function for J(W,H).
Proof: The proof is similar with that of [5], except that

we prove the case of updating the whole matrix H in a while

with Jacobi style. Here we only show one critical step that

the matrix

Mkj
µν(Ht) = Ht

kj

[
Q(Ht) −∇2

hJ(W,Ht)
]kj

µν
Ht

µν (33)

is positive semidefinite. In fact, according to Lemma 1 and

Equ. (31)(33), we have

z′M(Ht)z =
∑

kj,µν

zkjM
kj
µν(Ht)zµν

=
∑

kj,µν

zkjδjν

[
δkµ(W ′WHt)kµ − Ht

kj(W
′W )kµ

]
Ht

µνzµν

=
∑

kjµ

[
z2
kj(W

′W )kµHt
µjH

t
kj − zkjH

t
kj(W

′W )kµHt
µjzµj

]

=
∑

kjµ

Ht
kj(W

′W )kµHt
µj(

1

2
z2
kj +

1

2
z2
µj − zkjzµj)

=
1

2

∑

kjµ

Ht
kj(W

′W )kµHt
µj(zkj − zµj)

2 ≥ 0. �

Proof of Theorem 1 Minimizing Φ(H,Ht) in Equ. (32)

gives the update rule of

ht+1 = ht − Q(Ht)−1∇hJ(W,Ht). (34)

According to Lemma 2, J(W,H) is nonincreasing under

this update rule, since Φ(H,Ht) is an auxiliary function.

Note that H = unvec(h), thus Equ. (34) is equivalent to

the matrix update rule of Equ. (21). �

Theorem 2 can be proved in the same way, with some

more details. We omit it here.

(a) Swimmer data set (b) Robot data set

Figure 1. Examples of disturbed images.

4. Experiments

To evaluate the performance of NMF related algorithms,

we run experiments on several data sets containing noisy

images, trying to recover the underlying local object parts.

Several variants of NMF algorithms are compared, includ-

ing LNMF [6], NMFsc [3], and CSMFnc [10]. In the ex-

periments all NMF related algorithms are initialized with

the same value whenever possible. To apply GRF-NMF al-

gorithm with images, we use two 2-D smooth filters KS

and KR to form the neighborhood system by shifting. For

filter KS we use an 8-neighborhood setting in the form of

Equ. (25), and filter KR is set to be a flat matrix of size

τ × τ with all elements to be β.

4.1. Swimmer data set

The Swimmer data set contains 256 images of size

32 × 32 [1]. Each image is composed of five parts: an in-

variant part called “torso” in the middle and 4 “limbs” in 4

positions, each of which has 4 changing directions. There-

fore all images can be generated additively by 17 distinct

components. For each image, we add a Gaussian noise of

zero mean and 0.2 standard variance. Fig. 1(a) shows some

examples of the noisy images. The number of components

to learn is set to be r = 17, and the maximum iterations for

learning is set to be 300.

Fig. 2 demonstrates the learned components of all com-

pared algorithms, and Fig. 3 displays the corresponding re-

constructed images. From Fig. 2 we can see that only GRF-

NMF algorithm correctly learns all 17 components from

noisy data. It is the best representation for sparse, local,

and smooth object parts. Meanwhile, Fig. 3(f) shows that

most images are perfectly reconstructed by GRF-NMF. It is

known that the classic NMF solution often contains ghost

parts, as shown in Fig. 2(b). The LNMF algorithm im-

proves NMF aiming to find local representation, but it is not

successful here for factorizing noisy images (c.f . Fig. 2(c)),

and the reconstruction is poor (c.f . Fig. 3(c)). Components

learned by NMFsc is indeed sparse, but they have dupli-

cated torso, and not all of the 17 components are separated

alone. In literature only the CSMFnc [10] algorithm has

successfully found all individual components in the Swim-

mer data. However, we find that CSMFnc is sensitive to ini-

tial values, and noises. As shown in Fig. 2(e), the CSMFnc

solution contains ghost parts and duplicate components.



(a) PCA (b) NMF

(c) LNMF (d) NMFsc

(e) CSMFnc (f) GRF-NMF

Figure 2. Learned components on Swimmer data set. Param-

eters for NMFsc are Sw = 0.8 and Sh = 0.5. Parameters

for CSMFnc are set to be α = 0.01, β = 0.01, λ = 0.01,

Nw
0,1 = 600, Nw

0,2 = 200, Nh
0,1 = 150 and Nh

0,2 = 50, as

recommenced in [10]. Parameters for GRF-NMF are set to be

α = 0.001, β = 0.01, τ = 5.

(a) PCA (b) NMF

(c) LNMF (d) NMFsc

(e) CSMFnc (f) GRF-NMF

Figure 3. Some reconstructed images of Swimmer data using com-

ponents of Fig. 2.

4.2. Robot Data Set

We also construct another synthesized data named

“Robot” to evaluate the ability of NMF related algorithms

for finding underling object parts, as shown in Fig. 1(b).

The size of the Robot images is 35 × 35. Each image con-

(a) PCA (b) NMF

(c) LNMF (d) NMFsc

(e) CSMFnc (f) GRF-NMF

Figure 4. Learned components on Robot data set. Parameters for

NMFsc and CSMFnc are the same as in Fig. 2. Parameters for

GRF-NMF are set to be α = 0.001, β = 0.001, and τ = 25.

tains a common big body of size 15 × 15 in the center, and

also a head of size 5× 5. The arms and legs are 10 pixels in

length and 3 pixels in width, with each leg has 3 directions

to vary and each arm 5. Consequently there are total 225 im-

ages containing 17 different components, in which the body

and the head part are counted as one invariant component.

All images are generated by these components additively,

and further disturbed with a Gaussian noise of zero mean

and 0.3 standard variance. The number of components to

learn is set to be r = 17, and the maximum iterations for

learning is set to be 500.

The results are demonstrated in Fig. 4 and Fig. 5, show-

ing all learned components and the corresponding recon-

structed images respectively. Again, the proposed GRF-

NMF algorithm outperforms all other compared algorithms

in component discovery and object reconstruction. As

shown in Fig. 4, only GRF-NMF algorithm correctly finds

out all 17 components from noisy images, though not pre-

cise enough. Besides, all components learned by GRF-

NMF are smooth, sparse, and localized. Also notice from

Fig. 4 that all NMF, LNMF, and NMFsc components con-

tain heavy ghost effects. And the reconstruction of LNMF

is dissatisfactory (c.f . Fig. 5(c)). The solution of CSMFnc

algorithm (c.f . Fig. 4(e)) contains a full body-head part, but

arms and legs are disorganized.

4.3. Face Images

Finally we use the FERET database [8] to evaluate the

performance of NMF algorithms on real images. We select

a subset of the FERET database that contains 540 face im-



(a) PCA (b) NMF

(c) LNMF (d) NMFsc

(e) CSMFnc (f) GRF-NMF

Figure 5. Some reconstructed images of Robot data using compo-

nents of Fig. 4.

Figure 6. Examples of cropped faces (left) and their corresponding

corrupted images (right) from FERET database.

ages from 270 subjects. Face images are cropped into 75

pixels high and 65 pixels wide, according to their eye co-

ordinates. No preprocessing is used but a Gaussian noise

of zero mean and 0.3 standard variance is added on each

cropped image. Some examples of the cropped face images

and their corresponding disturbed images are illustrated in

Fig. 6. In the experiment, the number of components to

learn is set to be 100. GRF-NMF is updated by only 500

iterations, while the maximum iterations of other NMF re-

lated algorithms are set to be 2000 for sufficient learning.

Fig. 7 and Fig. 8 demonstrate the learned components

and their corresponding reconstructed images. It can be

seen that GRF-NMF learns the best solution for representa-

tion of sparse, localized, and smoothed components. It finds

meaningful face parts such as nose, mouth, eyes, eyebrows,

and cheeks. All other results are noisy. The result of NMFsc

contains nonsense sparse representation. The CSMFnc so-

lution is over constrained. Result of LNMF is sparse, but the

reconstruction is not so well. And LNMF takes long time to

converge to meaningful result (more than 1000 iterations in

our experiment).

(a) PCA (b) NMF

(c) LNMF (d) NMFsc

(e) CSMFnc (f) GRF-NMF

Figure 7. Learned components on FERET database. Parameters

for NMFsc are Sw = 0.8 and Sh = 0.5. Parameters for CSMFnc

are set to be α = 0.1, β = 1, λ = 0.2, Nw
0,1 = 3000, Nw

0,2 =

1000, Nh
0,1 = 300 and Nh

0,2 = 100. Parameters for GRF-NMF

are set to be α = 0.01, β = 0.001, and τ = 11.

(a) PCA (b) NMF

(c) LNMF (d) NMFsc

(e) CSMFnc (f) GRF-NMF

Figure 8. Some reconstructed images of FERET database using

components of Fig. 7.

4.4. Parameter Selection

The success of GRF-NMF does not depend on some

carefully selected parameters. In fact, a range of parameter

values can yield satisfactory results. In order to understand

how parameters (i.e., α, β, and τ ) of GRF-NMF affect the

factorization results, we give some additional experimen-

tal results with some other parameters for comparison. The

results are illustrated in Fig. 9 and Fig. 10 for learned com-

ponents and reconstructed images respectively.

First, from Fig. 9(a) (τ = 21) and Fig. 9(b) (τ = 41)



(a) (b)

(c) (d)

Figure 9. Learned components on FERET database by GRF-NMF

with various parameters. (a) α = 0.01, β = 0.001, τ = 21; (b)

α = 0.01, β = 0.001, τ = 41; (c) α = 0.1, β = 0.001, τ = 41;

(d) α = 0.01, β = 0.01, τ = 41.

(a) (b)

(c) (d)

Figure 10. Some reconstructed images of FERET database using

components of Fig. 9, with corresponding original images shown

in Fig. 6.

we can see that τ affects the component size. That is, when

τ is larger, the learned components are tend to be bigger in

size. Second, Compare Fig. 9(c) (α = 0.1) with Fig. 9(b)

(α = 0.01), it can be seen that α influences the smooth-

ness of the learned components. The learned components

are tend to be more smoothed when α is larger. Finally,

compared to Fig. 9(b) (β = 0.001), Fig. 9(d) (β = 0.01)

shows that β has an impact on the locality of the learned

components, since larger β makes the learned components

more localized. Besides, Fig. 10 demonstrates that the re-

construction is comparatively better with smaller values of

α and β.

5. Summary

We have presented a GRF modeling based NMF algo-

rithm for learning object parts. The formulation is based

on an energy function with the prior knowledge of smooth-

ness and locality. Using this technique of directly modeling

on the structure of components, the GRF-NMF algorithm

is able to learn sparse, smooth, and localized object parts.

We have demonstrated that the GRF-NMF algorithm is easy

to implement and fast to compute, because it is based on

matrix-wise update and local filtering. We have also writ-

ten a convergence proof for the derived algorithm. Experi-

mental results on both synthesized and real image databases

have shown that the proposed GRF-NMF algorithm signif-

icantly outperforms other NMF related algorithms in spar-

sity, smoothness, and locality of the learned components.

Future works would be to apply the derived GRF-NMF al-

gorithm for more complicated computer vision problems.

Acknowledgements.

This work was supported by the following funding

resources: National Hi-Tech (863) Program Projects

#2008AA01Z124, and AuthenMetric R&D Funds.

References

[1] D. Donoho and V. Stodden. “When does non-negative ma-

trix factorization give a correct decomposition into parts”. In

Proceedings of Neural Information Processing Systems. MIT

Press, 2003.

[2] P. O. Hoyer. “Non-negative sparse coding”. In Proceedings

of IEEE Workshop on Neural Networks for Signal Process-

ing, pages 557–565, 2002.

[3] P. O. Hoyer and P. Dayan. “Non-negative matrix factoriza-

tion with sparseness constraints”. Journal of Machine Learn-

ing Research, 5:1457–1469, 2004.

[4] D. D. Lee and H. S. Seung. “Learning the parts of objects

by non-negative matrix factorization”. Nature, 401:788–791,

1999.

[5] D. D. Lee and H. S. Seung. “Algorithms for non-negative

matrix factorization”. In Proceedings of Neural Information

Processing Systems, volume 13, pages 556–562, 2001.

[6] S. Z. Li, X. W. Hou, and H. J. Zhang. “Learning spatially lo-

calized, parts-based representation”. In Proceedings of IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition, Hawaii, December 11-13 2001.

[7] W. Liu, N. Zheng, and X. Lu. “Non-negative matrix factor-

ization for visual coding”. In IEEE International Conference

on Acoustics, Speech, and Signal Processing, April 2003.

[8] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. “The

FERET evaluation methodology for face-recognition algo-

rithms”. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 22(10):1090–1104, 2000.

[9] M. N. Schmidt and H. Laurberg. “Nonnegative matrix factor-

ization with gaussian process priors”. Intell. Neuroscience,

8(1):1–10, 2008.

[10] W. Zheng, S. Z. Li, J. Lai, and S. Liao. “On constrained

sparse matrix factorization”. In Proceedings of IEEE Inter-

national Conference on Computer Vision, Oct. 2007.


