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ABSTRACT

We develop an interpretation of nonnegative matrix fac-
torization (NMF) methods based on Euclidean distance,
Kullback-Leibler and Itakura-Saito divergences in a proba-
bilistic framework. We describe how these factorizations are
implicit in a well-defined statistical model of superimposed
components, either Gaussian or Poisson distributed, and are
equivalent to maximum likelihood estimation of either mean,
variance or intensity parameters. By treating the components
as hidden-variables, NMF algorithms can be derived in a typ-
ical data augmentation setting. This setting can in partic-
ular accommodate regularization constraints on the matrix
factors through Bayesian priors. We describe multiplicative,
Expectation-Maximization, Markov chain Monte Carlo and
Variational Bayes algorithms for the NMF problem. This pa-
per describes in a unified framework both new and known
algorithms and aims at providing statistical insights to NMF.

1. INTRODUCTION

Given a data matrix V of dimensions F×N with nonnega-
tive entries, NMF is the problem of finding a factorization

V ≈WH = V̂ (1)

where W and H are nonnegative matrices of dimensions F×
K and K ×N, respectively. K is usually chosen such that
F K+K N << F N, hence V̂ becomes a low-rank matrix with
reduced number of parameters. In the following, the entries
of matrices V, W, H and V̂ are denoted v f n, w f k, hkn and
v̂ f n respectively. We use the colon notation “:” to denote
all column or row indices so that W = [w:,1, . . . ,w:,K ] and
H = [h>1,:, . . . ,h

>
K,:]
>.

NMF has been applied to diverse problems (such as pat-
tern recognition, clustering, mining, source separation, col-
laborative filtering) in many areas (such as bioinformatics,
audio and image processing, and finance). In the literature,
the factorization (1) is usually sought after through the mini-
mization problem

min
W,H≥0

D(V|WH) = D(V|V̂) def=
F

∑
f =1

N

∑
n=1

d(v f n|v̂ f n) (2)

where d(x|y) is a scalar cost function. Popular choices are
the squared Euclidean distance, the (generalized) Kullback-
Leibler (KL) divergence, also referred to as I-divergence and

the Itakura-Saito (IS) divergence defined as

dEUC(x|y) =
1
2
(x− y)2 (3)

dKL(x|y) = x log
x
y
− x+ y (4)

dIS(x|y) =
x
y
− log

x
y
−1 (5)

All cost functions are positive and have a single minimum 0
when x = y.

The interpretation of NMF as a low rank matrix approxi-
mation in the sense of minimizing a given distance metric d
may be sufficient for the derivation of useful signal decom-
position algorithms. Certainly, many alternative divergence
criteria could also be contemplated [4, 3, 12]. However, for
many applications it is not clear which distance metric to
take or what the dimension of the latent matrices W and H
should be. Such model selection questions are inherently re-
lated to the underlying statistical properties of V and can be
approached in a principled manner via a Bayesian treatment.

We recast NMF with the popular Euclidean, KL and IS
costs from a statistical perspective. We show in Section 2
how these factorizations are underlain by a well-defined sta-
tistical model of superimposed components, either Gaussian
or Poisson distributed, and are equivalent to maximum like-
lihood estimation of either mean, variance or intensity pa-
rameters. By treating the components as hidden-variable we
derive NMF algorithms in Section 3, based on Expectation-
Maximization (EM), Markov chain Monte Carlo (MCMC)
and Variational Bayes (VB). We also review standard mul-
tiplicative algorithms and elaborate on the connections be-
tween cost functions (3), (4), (5) and Bregman and β diver-
gences [3, 4]. Finally, we discuss in Section 4 the potentials
of such probabilistic interpretations of NMF. Parts of the sta-
tistical analysis and some of the algorithms presented here
have already been published in the literature (see subsequent
references); this paper aims at describing these related works
in a unified statistical setting.

2. STATISTICAL MODELS

2.1 Observation models

The choice of a certain cost function d(.|.) to measure the fit
between v f n and v̂ f n implies certain statistical assumptions
about how v f n is generated from v̂ f n. It was already pointed
in various papers, e.g, [5, 2] that Euclidean, KL and IS NMF



underlie the following generative models :

v f n ∼N (v f n; v̂ f n,σ
2) EUC-NMF (6)

v f n ∼P(v f n; v̂ f n) KL-NMF (7)
v f n ∼ G (v f n;a,a/v̂ f n) IS-NMF (8)

where N , P , G refer to the Gaussian, Poisson and Gamma
distribution, respectively, defined in the Appendix and where
v̂ f n obeys the parametrization v̂ f n = ∑k w f khkn. The likeli-
hood of the parameters W and H under the latter models
can be mapped to the corresponding cost function (2), so
that NMF is actually equivalent to maximum likelihood
estimation. In other words, EUC-NMF underlies an additive
Gaussian noise, KL-NMF underlies a Poisson noise and
IS-NMF underlies a multiplicative Gamma noise.

As matter of fact, all three cost functions belong to the
family of regular Bregman divergences, which are in one to
one correspondence to families of regular exponential dis-
tributions [1]. For scalars, a Bregman divergence is defined
with respect to a (differentiable) convex function φ as follows
(see, e.g, [1, 12])

dφ (x|y) = φ(x)− (φ(y)+φ
′(y)(x− y)).

We have the following correspondences dEUC(x|y)↔ φ(y) =
y2/2, dKL(x|y) ↔ φ(y) = y logy − y, dIS(x|y) ↔ φ(y) =
− logy. NMF with Bregman divergences has been studied
in [4] where various multiplicative algorithms are described.

2.2 Composite models
An interesting property of the Gaussian and Poisson distribu-
tions is that they are closed under summation; when x = ∑k ck
and ck are Poisson (or Gaussian), x is Poisson (or Gaus-
sian). Conversely, any x can be decomposed as ∑k ck with-
out changing the underlying model. In the sequel, we will
elaborate on these specific models by further pointing and
exploiting their composite structure. We here introduce the
following generative model

x f n = ∑
k

ck, f n (9)

ck, f n ∼ p(ck, f n|θk) (10)

where θk = {w:,k,hk,:}. The next paragraphs describe how
Euclidean, KL and IS NMF are equivalent to ML estimation
of θ = {θ1, . . . ,θK} in specific cases of the latter model, with
either v f n = x f n or v f n = |x f n|2. We note Ck and X the F×N
matrices with entries {ck, f n} f n and {x f n} f n, respectively. In
the sequel we will refer to Ck as component.

NMF with the Euclidean distance (EUC-NMF)
The corresponding generative model is

ck, f n ∼ N (ck, f n;w f khkn,
σ2

K
) (11)

It is easily shown that

− log p(X|W,H,σ2)=
1

σ2 DEUC(X|WH)+
NF
2

log(2πσ
2)

Hence, ML estimation of W and H is equivalent to NMF
of V = X into WH where the Euclidean distance is used.

There is however an interpretability ambiguity with the gen-
erative model defined by Eqs. (9), (10), (11) as it may pro-
duce negative data. As such, even though the resulting opti-
mization problem is in the end the same provided that avail-
able data X is nonnegative, there is a semantic difference
between the two points of view given by EUC-NMF and ML
estimation in the Gaussian composite generative model. A
more suitable approach, would be to assume the components
to be generated from a truncated normal distribution, but this
would break the formal correspondence between the two ap-
proaches due to the necessary re-normalization of the com-
ponent distributions.

NMF with the generalized KL divergence (KL-NMF)
Assume the following generative model

ck, f n ∼ P(ck, f n;w f khkn) (12)

It is easily shown that

− log p(X|W,H) c= DKL(X|WH)

where c= denotes equality up to a constant. Hence, ML es-
timation of W and H is equivalent to NMF of V = X into
WH where the KL divergence is used. The data X produced
by the generative model defined by Eqs. (9), (10), (12) is non-
negative, but there is still an interpretability ambiguity with
real-valued data, as the Poisson process produces integers.

NMF with the IS divergence (IS-NMF)
Assume the following generative model

ck, f n ∼ Nc(ck, f n;0,w f khkn)

The data X generated from this model is complex (but we
could also assume a real Gaussian pdf instead of complex).
It is easily shown that [5]

− log p(X|W,H) c= DIS(|X|.2|WH),

where |X|.2 is the matrix with entries |x f n|2. Hence, ML esti-
mation of W and H is equivalent to NMF of V = |X|.2 into
WH where the IS divergence is used. This also corresponds
to a = 1, i.e, exponential multiplicative noise in Eq. (8).

3. ALGORITHMS

3.1 Multiplicative algorithms
The multiplicative gradient descent approach taken in [8, 3]
is akin to updating each parameter by multiplying its value
at previous iteration by the ratio of the negative and posi-
tive parts of the derivative of the criterion w.r.t this param-
eter, namely θ ← θ .[∇ f (θ)]−/[∇ f (θ)]+, where ∇ f (θ) =
[∇ f (θ)]+− [∇ f (θ)]− and the summands are both nonnega-
tive. This ensures nonnegativity of the parameter updates,
provided initialization with a nonnegative value. A fixed
point θ ? of the algorithm implies either ∇ f (θ ?) = 0 or
θ ? = 0. This leads to the following updates,

H ← H.
WT ((WH).[β−2].X)

WT (WH).[β−1] (13)

W ← W.
((WH).[β−2].X)HT

(WH).[β−1] HT
(14)



where β = 2 corresponds to EUC-NMF, β = 1 to KL-NMF
and β = 0 to IS-NMF, and ‘.’ and ‘./.’ denote entrywise op-
erations. Other values of β correspond to performing NMF
with the β -divergence dβ (x|y) [3, 5], which is actually the
Bregman divergence corresponding to φ(y) = 1

β (β−1)yβ , for
β /∈ {0,1}, and which takes the KL and IS cost as limiting
cases when β goes to 1 and 0, respectively.

Lee & Seung [8] showed that criterion (2) is nonincreas-
ing under the latter updates for β = 2 (Euclidean distance)
and β = 1 (KL divergence) and the proof was extended by
Kompass [6] for values 1≤ β ≤ 2, i.e, where dβ (x|y) is con-
vex w.r.t y. Solving for the more simple problem v:,n≈Wh:,n
with W fixed, the proof is simply based on the construction
of the functional

G(h:,n, h̃:,n)=∑
f k

λk f n d(v f n|
w f khkn

λk f n
) with λk f n =

w f kh̃kn

[Wh̃] f n

which is easily shown to be a suitable auxiliary function for
C(h) = D(v|Wh) (i.e, G(h,h) =C(h) and G(h, h̃)≥C(h)) by
convexity of d(x|y) and using Jensen’s inequality. A similar
auxiliary function can be built to solve for vT

f ,:≈HT wT
f ,: with

H fixed.
However, the criterion was observed by many authors [4,

3, 5] to be still nonincreasing under updates (13) and (14)
for values of β out of the (1,2) interval (and in particular
for β = 0 corresponding to IS divergence), but no proof is
available.

Though popularized by Lee & Seung for NMF within
the machine learning community in the last decade, the mul-
tiplicative updates for each factor in Euclidean and KL NMF
corresponds to well-known algorithms for image restoration
in the inverse problem community, see [7] and references
therein.

3.2 EM algorithms
In Section 2 we have shown how EUC, KL and IS-NMF un-
derlie statistical composite models. The components act as
latent variables and may be used as complete data in the EM
algorithm. In this setting the following functional has to be
maximized iteratively

Q(θ |θ ′) def= −
∫
C

log p(C|θ) p(C|X,θ ′)dC.

where θ = {W,H} and C is the tensor with slices Ck and
elements ck, f n. The convergence of this algorithm to a sta-
tionary point is granted. Using conditional independence

p(C|θ) = ∏
k

p(Ck|θ k)

the EM functional can be written

Q(θ |θ ′) = ∑
k

Qk(θ k|θ ′),

Qk(θ k|θ ′)
def= −

∫
Ck

log p(Ck|θ k) p(Ck|X,θ ′)dCk. (15)

Under suitable i.i.d assumptions the functional is further re-
duced to

Qk(θ k|θ ′)=−∑
f n

∫
ck, f n

log p(ck, f n|θ k) p(ck, f n|x f n,θ
′)d ck, f n.

(16)

We now explicit the EM algorithm in the specific cases
of Euclidean, KL and IS NMF. Note that in the follow-
ing we are not able to minimize Qk(w:,k, hk,:|θ ′) jointly in
w:,k and hk,:, but only to perform coordinate descent, i.e,
produce w(i+1)

:,k and h(i+1)
k,: such that Qk(w

(i+1)
:,k ,h(i+1)

k,: |θ
(i)) ≥

Qk(w
(i)
:,k ,h

(i+1)
k,: |θ

(i))≥ Qk(w
(i)
:,k ,h

(i)
k,:|θ

(i)), which leads strictly
speaking to a (converging) generalized EM (GEM) algorithm
instead of pure EM. In the following, the apostrophe ′ will re-
fer to parameter values as of previous iteration (i).

3.2.1 EUC-NMF

− log p(ck, f n|θ k)
c=

1
2σ2 (ck, f n−w f khkn)2

p(ck, f n|x f n,θ) = N (ck, f n|µ post
k, f n ,λ post

k, f n )

with

µ
post
k, f n = w f khkn +

1
K

(x f n− x̂ f n), λ
post
k, f n =

K−1
K2 σ

2 (17)

where here x̂ f n = v̂ f n = ∑k w f khkn. Hence, the minimization
of functional (16) subject to nonnegative constraints leads to

hkn =

∑ f w f k

(
1
K (x f n− x̂′f n)+w′f kh′kn

)
∑ f w2

f k


+

(18)

w f k =

∑n hkn

(
1
K (x f n− x̂′f n)+w′f kh′kn

)
∑n h2

kn


+

(19)

where bxc+ = max{x,0}. These update equations differ from
the usual multiplicative updates given from Eq. (13) and (14).

3.2.2 KL-NMF

− log p(ck, f n|θ k)
c= −w f khkn + ck, f n log(w f khkn)

p(ck, f n|x f n,θ) = B
(
ck, f n|v f n,πk, f n

)
where πk, f n = w f khkn/x̂ f n and here x̂ f n = v̂ f n = ∑k w f khkn.
This leads to

hkn = h′kn

∑ f w′f k

(
x f n
x̂′f n

)
∑k w f k

, w f k = w′f k

∑n h′kn

(
x f n
x̂′f n

)
∑n hkn

(20)

which coincides with the usual multiplicative updates given
by Eq. (13) and (14).

3.2.3 IS-NMF

− log p(ck, f n|θ k)
c= log(w f khkn)+

|ck, f n|2

w f khkn

p(ck, f n|x f n,θ) = N (ck, f n|µ post
k, f n ,λ post

k, f n )

with

µ
post
k, f n =

w f k hkn

∑l w f l hln
x f n, λ

post
k, f n =

w f k hkn

∑l w f l hln
∑
l 6=k

w f l hln. (21)



Leading to

hkn =
1
F ∑

f

v′k, f n

w f k
, w f k =

1
N ∑

n

v′k, f n

hkn
, (22)

with v′k, f n = |µ post
k, f n
′|2 +λ

post
k, f n

′
. These update equations differ

from the multiplicative updates given from Eq. (13) and (14),
and are equivalent to the SAGE algorithm described in [5].

3.2.4 Bayesian maximum a posteriori

It is interesting to note that the EM framework readily ac-
commodates Bayesian approaches for which prior informa-
tion about the parameters W and H is available in the form
of prior distributions p(H) and p(W). The complete data
likelihood term − log p(Ck|θ k) needs only be changed by
− log p(θ k|Ck) in Eq. (15), leading to the following func-
tional to be maximized

QMAP
k (θ k|θ ′) = Qk(θ k|θ ′)− log p(w:,k)− log p(hk,:)

so that only the M-step is changed.

3.3 MCMC algorithms
Monte Carlo methods [9] are powerful computational tech-
niques to estimate expectations of form

E = 〈ψ(θ)〉p(θ) ≈
1
L

L

∑
i=1

ψ(θ (i)) = ẼL

where θ
(i) are samples drawn from p(θ). Under mild condi-

tions on the test function ψ , the estimate ẼL converges to the
true expectation for L→ ∞. The difficulty here is obtaining
independent samples {θ (i)}i=1...L from complicated distribu-
tions. MCMC techniques generate subsequent samples from
a Markov chain. One particularly convenient and simple pro-
cedure is the Gibbs sampler where one samples each block of
variables from full conditional distributions. In the Bayesian
setting for the NMF model, a possible Gibbs sampler is

C(i) ∼ p(C|W(i−1),H(i−1),X)
for k = 1 : K do

h(i)
k,: ∼ p(hk,:|C

(i)
k ,w(i−1)

:,k )

w(i)
:,k ∼ p(w:,k|C

(i)
k ,h(i)

k,:)
end for

Denoting c f n = [c1, f n, . . . ,cK, f n]T , the posterior of the hidden
components writes

p(C|W,H,X) = ∏
f n

p(c f n|w f ,:,h:,n,x f n)

Next, we derive the full conditionals for the three considered
models.

3.3.1 EUC-NMF

The posterior of c f n is given by

p(c f n|w f ,:,h:,n,x f n) = N (c f n|µ post
f n ,Σpost

f n )

with µ
post
f n = [µ post

1, f n . . .µ
post
K, f n]

T , where µ
post
k, f n is defined in

Eq. (17), and Σ
post
f n = σ2

K (IK − 1
K eKeT

K). The diagonal

terms correspond to the posterior variance in Eq. (17). In
the unconstrained case conjugate priors for h:,n and w f ,:
would be Gaussian. However, more sophisticated sampling
schemes are required to enforce nonnegativity, typically by
using Gamma priors, see, e.g, [10, 11].

3.3.2 KL-NMF

The full conditional of c f n is given by

p(c f n|w f ,:,h:,n,x f n) = M (c f n|x f n,π f n)

where M refers to the multinomial distribution defined
in Appendix and π f n = [π1, f n, . . . ,πK, f n], with πk, f n =
w f khkn/x f n, as defined in Section 3.2.2. Using conjugate pri-
ors

p(w f k) = G (w f k|αw,βw),
p(hkn) = G (hkn|αh,βh),

the full conditionals can be derived as [2]

p(w f k|Ck,hk,:) = G (w f k|αw +∑
n

ck, f n,αwβw +∑
n

hkn)

p(hkn|Ck,w:,k) = G (hkn|αh +∑
f

ck, f n,αhβh +∑
f

w f k)

3.3.3 IS-NMF

Denoting λ f n = [w f 1h1n . . .w f KhKn]T , the posterior of c f n is
given by

p(c f n|w f ,:,h:,n,x f n) = N (c f n|µ post
f n ,Σpost

f n )

with µ
post
f n = [µ post

1, f n . . .µ
post
K, f n]

T , where µ
post
k, f n is defined in

Eq. (21), and Σ
post
f n = diag

(
λ f n
)
− 1

v̂ f n
λ f nλ

T
f n. The diago-

nal terms correspond to the posterior variance in Eq. (21).
Using conjugate inverse-Gamma priors

p(hkn) = I G (hkn|αh,βh),
p(w f k) = I G (w f k|αw,βw),

the full conditionals of hk,: and w:,k write

p(w f k|Ck,hk,:) = I G (w f k|αw +N,βw +∑
n
|ck, f n|2/hkn)

p(hkn|Ck,w:,k) = I G (hkn|αh +F,βh +∑
f
|ck, f n|2/w f k)

3.4 Variational Bayes
We finally describe how the composite structure of Eu-
clidean, KL and IS NMF can be exploited to derive a vari-
ational Bayes algorithm [13]. The idea is to bound the
marginal likelihood from below

LX(ϑ) ≡ log p(X|ϑ)≥BV B[q]

≡
∫

q log
p(X,C,W,H|ϑ)

q
d(C,W,H)

= 〈log p(X,C,H,W|ϑ)〉q +H[q]

where ϑ denotes the hyperparameters and q is defined as

q =

(
∏
f n

q(c f n)

)(
∏
f k

q(w f k)

)(
∏
kn

q(hkn)

)
≡ ∏

α∈C
qα



The integral over C will be a summation when C are discrete
(i.e, Poisson component in the KL case). Here, α ∈ C =
{C,W,H} denotes the set of disjoint clusters of variables.
A local optimum can be attained by the following fixed point
iteration:

q(i+1)
α ∝ exp

(
〈log p(X,C,W,H|ϑ)〉

q(i)
¬α

)
where q¬α = q/qα . The expectations of
〈log p(X,C,W,H|ϑ)〉 are functions of the sufficient
statistics of q. It turns out that the variational update
equations have very similar forms to the full conditionals
derived for the Gibbs sampler. Here, due to lack of space we
only give the equations for the KL case:

q(c f n) = M (c f n|x f n,π f n)

where π f n = [π1, f n, . . . , . . .πK, f n] and
〈
ck, f n

〉
= x f nπk, f n with

πk, f n ≡
exp(

〈
logw f k

〉
+ 〈loghkn〉)

∑k exp(
〈
logw f k

〉
+ 〈loghkn〉)

The full conditionals can be derived as [2]

q(w f k) = G (w f k|αw +∑
n

〈
ck, f n

〉
,αwβw +∑

n
〈hkn〉)

q(hkn) = G (hkn|αh +∑
f

〈
ck, f n

〉
,αhβh +∑

f

〈
w f k
〉
)

One attractive feature of VB is that the hyperparameters can
be optimized by maximizing the variational bound BV B[q].
While this does not guarantee to increase the true marginal
likelihood, it leads in this application to algorithms that en-
ables one to do full Bayesian model selection a lot more
faster than MCMC based sampling approaches where cal-
culation of the marginal likelihood is trickier. For a detailed
discussion see [2].

4. DISCUSSION

In this overview paper, we have discussed the probabilistic
interpretation of various NMF models in maximum likeli-
hood, MAP and full Bayesian setting. In all the algorithms
we discuss, we are exploiting the closure under summation
property of the observation model and the closed form avail-
ability of all the full conditionals. It should be noted that this
is not the case for all divergence measures. In other cases
other optimization techniques need to be employed.

Prior structures are needed to control the decompositions
for exploratory data analysis or various problems in signal
processing. There is an emphasis on optimization strategies
for maximum likelihood or MAP estimation in NMF models
but less research on efficient Bayesian integration methods
(with a few exceptions such as [14, 2, 11]). Moreover, as
the number of alternatives for data modelling increases (for
example consider the number of factorization options with
increasing data dimension in tensor factorization) there is a
need to do model order selection and model averaging in a
principled manner for which ML approaches are known to
be inappropriate. Due to lack of space, we are not giving in
this paper simulation results with the developed algorithms
but refer the reader to other work, such as [2, 5]. A detailed
and exhaustive comparison of the algorithms in terms of ef-
fectiveness for various signal decomposition is a natural next
step and is currently under progress.

A. STANDARD DISTRIBUTIONS

Multivariate Gaussian, with c = 1/2 or 1 (real/complex case)
N (x|µ,Σ) = |π Σ/c|−c exp−c(x−µ)T Σ

−1 (x−µ)
Poisson P(x|λ ) = exp(−λ ) λ x

x!
Binomial B(x|n, p) =

(n
x

)
px(1− p)n−x

Multinomial
M (c|n,p) =

( n
c1 c2 ... cK

)
pc1

1 pc2
2 · · · p

cK
K δ (n−∑k ck)

Gamma G (u|α,β ) = β α

Γ(α) uα−1 exp(−β u), u≥ 0

inv.-Gamma I G (u|α,β ) = β α

Γ(α) u−(α+1) exp(−β

u ), u≥ 0
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