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COMMUN. ‘IN PARTIAL DIFFERENTIAL EQUATIONS, 14(8&9), 1091-1100 (1989)

NONNECATIVE SOLUTIONS.TO A SEMILINEAR DIRICHLET

PROBLEM IN A BALL ARE POSITIVE AND RADIALLY SYMMETRIC*

Alfonso Castro R. Shivajil

Department of Mathematics Department of Mathematics
University of North Texas Mississippi State University
Denton, TX ~ 76203 Mississippi State, MS 39762
Abstract

We prove that nonnegative.solutions to a semilinear Dirichlet problem
in a2 ball are positive, and hence radially symmetric. In particular
this answers a question in [3] where positive solutions were proven
to be radially symmetric. In section 4 we provide a sufficient
condition on the geometry of the domain which ensures that

nounegative solutions are positive in the interior.

1. INTRODUCTION

Let f:R+R be a smooth function, R a smooth bounded region in R?, and

u:0+R a c¢lassical solution to
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-pu = f{u) in @ (1.11

u =20 on af. (1.2)

In Theorem 1 of [G-N-N] it was proven that if 0 i3 a ball and u > 0 in &
then u ‘is radially symmetric. Moreover (see {31, pp. 220), 1t was
observed that if-‘ £(0) 20and u20, uZ0 Iin Q then u >0 in 9,
and hence radially symmetric. Further also in [3] an exzmple of a linear
problem where r£(0) < 0, znd a nonnegative solution u with interior
zeros is given. In this example n = 1. Also see [1] for examples of
nonlinear problems with f{0) < 0 and nonnegative solutions with
interior zeros. Here we prove that these phenomena happen only in

dimension n = 1. Indeed, here wWe prove:

Theorem A: If 2 is a ball in R0 with 0> 1, u is a nonnegative solution

of (1.1) and u £ 0 in @ then u > 0" in @ 2nd hence radially symmetric.

-

Qur motivation for this study was the observation in [2] that when
£{0) < 0, if u~—is radially symmetric, nonnegative, and n > 1, then
u>0 in Q. Our proofs are based on the maximum principle, and
reflexion arguments introduced in (3]. Finally, since Theorem A was
established for the case f(0) 2 0 in [3], here we assume throughout

that

£(0) < 0. (1.3)

2. PRELIMINARY LEMMAS AND THEIR PROQFS

Flrst we recall some notations following [31. Let

Ty := {x €R® ; x.e = t],

I, := {x€a ; x.e >t}
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where e = (1,0,..‘.,0), znd . denotes the usuzl inner product in R and
let 'E; be the reflexion of I, across T.. For x €% we will

denote by ¥ the reflexion of x zcross Tt‘ Also uj will denote the
partizl derivative of 1 with respect to X, similarly Ugse Further
for % €30 we will denote by w(x) = (vl(x),...,un(x)] the outwerd unit
normzl and by the e-neighbourhocod theorem theme exists Y > 0 such that

for every 0 ¢ e < Y, we czn define (sae [u1)

=)
I

{x€a ; dist.{(x,80) < e}

{(x + tu(x) : x€3q end t €(-€,0)}.

We now state:

Lemma P: Let wu:d + R be a nonnegative solution to (1-1)=(1.3). 1If

for some t €(0,1) wve have

u(x) =0 ¥x €L, (2.1)

ulx) £ ulx®) ¥x €L, (2.2)
and

a(a) < u(ab), for some a €I, (2.3)
then

ulx) < ulx®) ¥x € L, (2.4)
and

uy(x) <0 ¥x €T Na. (2.5)

Proof: see proof of Lemma 2.2 in {G-N-N] and observe that one requires
that only u 2 O.

Next we state and prove:

Lemma Q: Let u:ll » R be a solution to (1.1)-(1.3) and z€3g. If

v1(z) > 0 and there exists e >0 such that u(x) 2 0 for x€Q with
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[x - z|| < €. then there exists €€ (0,e) such that uy(x) <0 ¥en |

with |x -zl < eq-

Proof: Since u1{z} > 0, without loss- of generality we can assume that

vy(x) >0 ¥ x €3q with |x -z < . This and the zssumption that

uz0on ﬂx = z“ ¢ g imply that

0 ux€an with [x -z < e (2.6)

|51
—
s
et
EA

ir u1{z) ¢ 0 then the existence of g4 follows from the continuity of

u;. On the other hand if ui(z] - 0, then Vu(z) = 0. Now for

k€{2,....n} we let ¥y = (—vk(ﬁ),o,--.,0,u1(z),0,...,0). Since y is
tzngent te @@ =2t Z We can find @:(-1,1) * an  such that p(0) = 2
and ¢'(0) = y. Since now Julz) = 0 we see that ul[¢(t))- has a loczl

maximum at t = 0. In particular,

(uq (o)) - Tuy(z).y (2.7
£=0

= u11(z)[-vk{z)] + uqy (2)vq (2) .

On the other hand, because u[¢(t)] z 0, computing the second derivative

of u with respect to t at t =.0, we have

uy 4(2)64(0)45(0) + vu(z).$'"(0) (2.8)

=1

o
]
e t~13

1,

- a1 (2) (9 (D)2 = 2upyev (212D ug (2) (v (2)%,
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where the ¢, 's are the components of ¢. Now from (2.7) and (2.8) we have

for kK = 2,0

1 (2) (9 (2002 = w1 (22 (9 (D)7, (2.9)

zand since v1{z] > 0 we obtzin,

-£(0) = tulz) (2.10)

!

= u (201 + kgz[uk(z)/u1(z)}2}.

But ©(0) < 0. Thus by (2.10) and the continuity of u,y wWe see that
there exists &,€(0,e) such that uyq(x) >0 for -z <=e4 witn
x €3. Now since wvy(x) > 0 ¥x€29 with [jx-z[| < €;, we can further
assume that if [x-z]] < e; with x€Q, then there exists b(x) €30 of

the form blx) =x + &e (8 > 0) with x + se€&Q ¥s€(0,8). Hence
5
o> ul[b(x}] S L}uﬂ(x + ge)ds = u;{x), (211

and Lemma Q is proven.

Remark: Lemma Q extends Lemma 2.1 of [3] in that we do not assume

u>0 in 4.

na

Corollary R: If u is a solution to (1.1)-(1.3) and u 20

neighbourhood of 39, then there exists u > 0 such that u >0 on D,.
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Proof: Let Z€23R. Since 4 Iis {invariant under rotations and

translations, without loss of generality, we can assume tnat

7 = v(Z) = e. By Lemma Q there exists ey 2 0 sueh that u(x) > 0 ir

x€0 and. [x-Zl] < €4(Z). Since 32 is compact we can find

X{1Xs 02Xy such that xiﬁiaﬂ and such that
W= B[x1,5(x1)]UE(x2.a(x2)] [aes UB[xm,E(xm)}:)’an.

Since W 1s open in RY and 39 is closed, there exists u >0

suci

that {x€RP; d(x,32) < p}CW. In particular, if x€a and d(x,30) < u

we have u(x) > C.

3. PROQF OF THEOREM A

Suppose now there exists y€B such that uly) = 0. By Corollary R we

have fly]| 1 - u. Without loss of generality, we can assume

y to have

maximal norm. Further, because A 1is invariant under rotations, we caj

assume that

y = (§,0,...,0) with §€[0,1-p].

Now since u(y) = 0, by Corollary R there exists tY€0(1/2),1)

(2.4) does not hold. Let ¢ be defined by
£ = inf(s€00,1); (2.1)-(2.3) hold on I Vt€(s,1].
By Lemma Q there exists k2 2 such that

[ ST = (51/k).

(3.1)

for which

(3.2)

(3.3)
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Also since & 2 0 we see that (using Corollary R)
T Z 12 (3.4)

By the continuity of u and u; we see that (2.1) and (2.2) hold on Zc.

If (2,3) does not hold on L., then by Lemma P we have u(x) = u{x®)

C]

?X_GZC. .In particular, by the continuity of u we have
ulx®) =0 ir [x|| =1 (3:5)

Thus, setting ¢ = p/m where u 1s as in Corollary R and m> 2z is

large- enough so that 7 + ¢ < 1, we obtain,

~0 = ulg+a,/1-(5+0)2,0,...,0) (3.6)
= ulz=0;/1-(z+0)%,0,...,0).

But

H(c-a,fi—(c+a)2.0,...,0“2

(c-0)2 + 1 - (g+0)?

=1 - 2¢0
>1 - ma
=1 = u,

hence (3.6) contradicts Corollary R. Thus (2.3) hold on L.
Now we claim that:

there exists n > 0 such that if “x“ <1 and x.e > T-n

then u,(x) < 0. (3.7)

If not there exists a sequence {x;} with [x [l <1, {x;.e} converging
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to g, and ul(xn} > 0. Thus, without loss of generality, we can assum{
that {x,} converges ta = ETcrIE- Ir zG:Tcﬂ B then by (2.5) we have
0 > uy(z) = lim u-‘{xn) z 0, (3.8)

which is a contradiction. On the other hand if Z ET;llaB, by Lemma Q
for n largs uI(xn) ¢ 0 which contradicts the definition of {xn}, and
(3.7) is proven.
Next we show that:

there exists TYTE€(0,n) such that if t €(z-Y,z), x€Lg then

ulxt) 2 ulx), (3.9)
In fzet, if not there exists a seguence (tn.xn} with tp * %, xne_ztn

t
such that ulx, o) < u(xn). Without loss of generality we can assume

that {x,} convergss to z. Since t, + T Wwe see that inc. Ir

er

z QEC we have

ulzb) = 1idg u(xntn) £ lim u{xn) = ufz) (3.10)

contradicting that (2.4) holds on I . Thus either |lz]] =1 or

z ETC ne. If =z ETC“ B then xntn 5 z. By the mean value theorem
there exists a sequence {yn} with y, in the segment jolning xnt“
with x, such that u1(yn) > 0. Sinee for n large Y¥u-© > g-n, by
(3.7) we have a contradiction. Thus lz]| =1 and z.e >g. Now for
x€fc we define w(x) = ulx%®) - u(x). Since (2.4) hold on I, we have

w >0 on ZC' Since, also by the continuity of u we have

[
a(zb) = lim ulx, ®) $ lim u(xy) = u(z) = 0 (3.11)
and hence w(z).= 0. Thus by Hopf's maximum principle (see Lemma H in

[G-N-N]1) we have 0 > w(z). ' gince u 2 0, by (3.11) we have

u.l(zc) =« 0. Further since uz 0, u.‘(z)' £ 0. Hence
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0 > wylz) = -uy(z%) - u(z) 2 0. (3.12)

This contradiction proves (3.9), and we have shown that for some 8 < I,
(2.2) holds for all t€[e,z). By taking 8 € (z-n,g), from (3.7) we see
that 1f t€([e,r) then (2.1) as well as (2.3) hold. Hence this
contradicts the definition of ¢. Thus there does not exist y B such
that u(y) = 0. That is, every nonnegative solution to (1.1)-(1.3) is
positive in B, and by Theorem 1 of [3] it is also radially symmetric,

which proves Theorem A.

4. EXTENSIONS
Doublechecking the proof of Theroem A it is readily seen that nonnegative
solutions to (1.1)-(1.2) are actually positive in the interior if Q

satisfies the following geometrical condition.

For each Y& there exists X €3 such that (4.1)

(a) f{z; (z = x) « v(x) >0}Na=4¢,

(b) For some t <0, yEEt,xU Z;,x’ where Et,x is the
connected component of [z €Q; (z = x) * vi{x) > t}
containing x in its closure and Eé,x' the reflexion
of I, y across the plane {z; (z - x) = v(x) = t},

(e) for all z€3QN3Ty o v(z) « v(x) > 0, and zt,xUEt,xC Q.

Examples of regions satisfying (¥.1) include balls, the region between
two balls, and the union of two balls. The condition that € be bounded
is necessary. Indeed, if Q = {({x,y); 0 <x <1, yE€r}, v is a

nonnegative solution to -v" = £(v), v(0) = v(1) = 0 with zeroes in
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(0,1) (see [11, [2], [31) then defining u(x,y) = v(x) we have a {.

solution to (1.1)-(1.2) with interior zeroes.

Finally, as noted in the introduction, examples of non-negative

solutions in bounded regions with interior Zeroes can be found in [1]

and [3].
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