Claremont Colleges Scholarship @ Claremont

All HMC Faculty Publications and Research

HMC Faculty Scholarship

1-1-1989

Nonnegative Solutions to a Semilinear Dirichlet Problem in a Ball Are Positive and Radially Symmetric

Alfonso Castro Harvey Mudd College

Ratnasingham Shivaji Mississippi State University

Recommended Citation

Castro, Alfonso and R. Shivaji. "Non-negative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric," Comm. in Partial Differential Equations, Vol. 14, No. 8-9, (1989), pp. 1091-1100.

This Article - postprint is brought to you for free and open access by the HMC Faculty Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

NONNEGATIVE SOLUTIONS .TO A SEMILINEAR DIRICHLET PROBLEM IN A BALL ARE POSITIVE AND RADIALLY SYMMETRIC*

Alfonso Castro
Department of Mathematics
University of North Texas
Denton, TX 76203

R. Shivaji Department of Mathematics Mississippi State University Mississippi State, MS 39762

Abstract

We prove that nonnegative solutions to a semilinear Dirichlet problem in a ball are positive, and hence radially symmetric. In particular this answers a question in [3] where positive solutions were proven to be radially symmetric. In section 4 we provide a sufficient condition on the geometry of the domain which ensures that nonnegative solutions are positive in the interior.

1. INTRODUCTION

Let f:R+R be a smooth function, Ω a smooth bounded region in R^n , and $u:\Omega+R$ a classical solution to

1091

Copyright © 1989 by Marcel Dekker, Inc.

^{*}Partially supported by Texas Advanced Research Program Grant No. 3396.

$$-\Delta u = f(u) \text{ in } \Omega$$

$$u = 0 \text{ on } \partial \Omega.$$
(1.1)
(1.2)

In Theorem 1 of [G-N-N] it was proven that if Ω is a ball and u>0 in Ω then u is radially symmetric. Moreover (see [3], pp. 220), it was observed that if $f(0) \ge 0$ and $u \ge 0$, $u \ne 0$ in Ω then u>0 in Ω , and hence radially symmetric. Further also in [3] an example of a linear problem where f(0) < 0, and a nonnegative solution u with interior zeros is given. In this example n=1. Also see [1] for examples of nonlinear problems with f(0) < 0 and nonnegative solutions with interior zeros. Here we prove that these phenomena happen only in dimension n=1. Indeed, here we prove:

Theorem A: If Ω is a ball in \mathbb{R}^n with n > 1, u is a nonnegative solution of (1.1) and $u \neq 0$ in Ω then u > 0 in Ω and hence radially symmetric.

Our motivation for this study was the observation in [2] that when f(0) < 0, if u^- is radially symmetric, nonnegative, and n > 1, then u > 0 in Ω . Our proofs are based on the maximum principle, and reflexion arguments introduced in [3]. Finally, since Theorem A was established for the case $f(0) \ge 0$ in [3], here we assume throughout that

f(0) < 0. (1.3)

2. PRELIMINARY LEMMAS AND THEIR PROOFS

First we recall some notations following [3]. Let

 $T_t := \{x \in R^n ; x.e = t\},$ $\Sigma_t := \{x \in \Omega ; x.e > t\}$ where e = (1,0,...,0), and . denotes the usual inner product in \mathbb{R}^n and let Σ_t' be the reflexion of Σ_t across T_t . For $x \in \mathbb{R}^n$ we will denote by x^t the reflexion of x across T_t . Also u_i will denote the partial derivative of u with respect to x_i , similarly u_{ij} . Further for $x \in \Im \Omega$ we will denote by $v(x) = \left(v_1(x), \ldots, v_n(x)\right)$ the outward unit normal and by the ε -neighbourhood theorem there exists $\gamma > 0$ such that for every $0 < \varepsilon < \gamma$, we can define (see [4])

$$D_{\varepsilon} = \{x \in \Omega ; dist.(x,\partial\Omega) < \varepsilon\}$$
$$= \{x + tv(x) ; x \in \partial\Omega \text{ and } t \in (-\varepsilon,0)\}.$$

We now state:

Lemma P: Let $u: \overline{\Omega} \to R$ be a nonnegative solution to (1.1)=(1.3). If for some $t \in (0,1)$ we have

for some	t ∈ (0,1)	we have		
		$u_1(x) \leq 0$	$\forall x \in \Sigma_t$,	(2.1)
		$u(x) \le u(x^{t})$) $\forall x \in \Sigma_t$,	(2.2)
and		ū(α) < u(α ^t), for some $\alpha \in \Sigma_t$,	(2.3)
then		u(x) < u(x ^t	.) Ψx ∈ Σ _t .	(2.4)
and		u ₁ (x) < 0	ix ∈T _t ∩Ω.	(2.5)

Proof: see proof of Lemma 2.2 in [G-N-N] and observe that one requires that only $u \ge 0$.

Next we state and prove:

Lemma Q: Let $u:\overline{\Omega} \to R$ be a solution to (1.1)-(1.3) and $z \in \partial \Omega$. If $v_1(z) > 0$ and there exists $\varepsilon > 0$ such that $u(x) \ge 0$ for $x \in \overline{\Omega}$ with

 $\|x-z\| < \varepsilon$, then there exists $\varepsilon_1 \in (0,\varepsilon)$ such that $u_1(x) < 0 \ \forall x \in \Omega$ with $\|x-z\| < \varepsilon_1$.

Proof: Since $v_1(z)>0$, without loss of generality we can assume that $v_1(x)>0$ $\forall \ x\in \Im \Omega$ with $\|x-z\|<\varepsilon$. This and the assumption that $u\geq 0$ on $\|x-z\|<\varepsilon$ imply that

$$u_1(x) \le 0 \quad \forall x \in \partial \Omega \quad \text{with } ||x - z|| < \epsilon.$$
 (2.6)

If $u_1(z)<0$ then the existence of ϵ_1 follows from the continuity of u_1 . On the other hand if $u_1(z)=0$, then $\nabla u(z)=0$. Now for $k\in\{2,\ldots,n\}$ we let $y=(-\nu_k(z),0,\ldots,0,\nu_1(z),0,\ldots,0)$. Since y is tangent to $\partial\Omega$ at z we can find $\phi:(-1,1)\to\partial\Omega$ such that $\phi(0)=z$ and $\phi'(0)=y$. Since now $\nabla u(z)=0$ we see that $u_1(\phi(t))$ has a local maximum at t=0. In particular,

$$0 = \frac{d}{dt} \left(u_1(\phi(t)) \right|_{t=0} = \nabla u_1(z).y$$

$$= u_{11}(z)(-\nu_k(z)) + u_{1k}(z)\nu_1(z).$$
(2.7)

On the other hand, because $u(\phi(t)) \equiv 0$, computing the second derivative of u with respect to t at t=0, we have

$$0 = \sum_{i,j,=1}^{n} u_{ij}(z) \phi_{i}(0) \phi_{j}(0) + \nabla u(z) \cdot \phi''(0)$$

$$= u_{11}(z) (v_{k}(z))^{2} - 2u_{1k}v_{1}(z)v_{k}(z) + u_{kk}(z)(v_{1}(z))^{2},$$
(2.8)

where the ϕ_k 's are the components of ϕ . Now from (2.7) and (2.8) we have for $k=2,\ldots,n$

$$u_{kk}(z)(v_1(z))^2 = u_{11}(z)(v_k(z))^2,$$
 (2.9)

and since $v_1(z) > 0$ we obtain,

$$-f(0) = \Delta u(z)$$

$$= u_{11}(z)\{1 + \sum_{k=2}^{n} (v_k(z)/v_1(z))^2\}.$$
(2.10)

But f(0) < 0. Thus by (2.10) and the continuity of u_{11} we see that there exists $\varepsilon_1 \in (0,\varepsilon)$ such that $u_{11}(x) > 0$ for $\|x-z\| < -\varepsilon_1$ with $x \in \overline{\Omega}$. Now since $v_1(x) > 0$ $\forall x \in \partial \Omega$ with $\|x-z\| < \varepsilon_1$, we can further assume that if $\|x-z\| < \varepsilon_1$ with $x \in \Omega$, then there exists $b(x) \in \partial \Omega$ of the form $b(x) = x + \delta e$ ($\delta > 0$) with $x + s \in \Omega$ $\forall s \in (0,\delta)$. Hence

$$0 > u_1(b(x)) - \int_0^\delta u_{11}(x + se)ds = u_1(x), \qquad (2.11)$$

and Lemma Q is proven.

Remark: Lemma Q extends Lemma 2.1 of [3] in that we do not assume u > 0 in Ω .

Corollary R: If u is a solution to (1.1)-(1.3) and $u \ge 0$ on a neighbourhood of $\Im \Omega$, then there exists $\mu > 0$ such that u > 0 on D_{μ} .

Proof: Let $Z \in \partial \Omega$. Since Δ is invariant under rotations and translations, without loss of generality, we can assume that $Z = \nu(Z) = e$. By Lemma Q there exists $\varepsilon_1 > 0$ such that u(x) > 0 if $x \in \Omega$ and $\|x-Z\| < \varepsilon_1(Z)$. Since $\partial \Omega$ is compact we can find x_1, x_2, \ldots, x_m such that $x_i \in \partial \Omega$ and such that

$$W = B\big(x_1, \varepsilon(x_1)\big) \cup B\big(x_2, \varepsilon(x_2)\big) \cup \cdots \cup B\big(x_m, \varepsilon(x_m)\big) \supset \partial \Omega.$$

Since W is open in \mathbb{R}^n and $\partial\Omega$ is closed, there exists $\mu>0$ such that $\{x\in\mathbb{R}^n;\ d(x,\partial\Omega)<\mu\}\subset\mathbb{W}$. In particular, if $x\in\Omega$ and $d(x,\partial\Omega)<\mu$ we have u(x)>0.

3. PROOF OF THEOREM A

Suppose now there exists $y \in B$ such that u(y) = 0. By Corollary R we have $\|y\| \le 1 - \mu$. Without loss of generality, we can assume y to have maximal norm. Further, because Δ is invariant under rotations, we can assume that

$$y = (\delta, 0, ..., 0)$$
 with $\delta \in [0, 1-\mu]$. (3.1)

Now since u(y) = 0, by Corollary R there exists $t^* \in [(1/2), 1)$ for which (2.4) does not hold. Let ζ be defined by

$$\zeta = \inf\{s \in [0,1); (2.1)-(2.3) \text{ hold on } \Sigma_t \ \forall t \in (s,1].$$
 (3.2)

By Lemma Q there exists k ≥ 2 such that

$$\zeta \le 1 - (\varepsilon_1/k). \tag{3.3}$$

Also since $\delta \ge 0$ we see that (using Corollary R)

$$\zeta \ge 1/2. \tag{3.4}$$

By the continuity of u and u_1 we see that (2.1) and (2.2) hold on Σ_{ζ} . If (2,3) does not hold on Σ_{ζ} , then by Lemma P we have $u(x) = u(x^{\zeta})$ $\forall x \in \Sigma_{\zeta}$. In particular, by the continuity of u we have

$$u(x^{\zeta}) = 0 \text{ if } ||x|| = 1$$
 (3.5)

Thus, setting $\sigma=\mu/m$ where μ is as in Corollary R and $m>2\zeta$ is large enough so that $\zeta+\sigma<1$, we obtain,

$$-0 = u(\zeta + \sigma, \sqrt{1 - (\zeta + \sigma)^2}, 0, ..., 0)$$

$$= u(\zeta - \sigma, \sqrt{1 - (\zeta + \sigma)^2}, 0, ..., 0).$$
(3.6)

But

$$\|(\zeta - \sigma, \sqrt{1 - (\zeta + \sigma)^2}, 0, \dots, 0)\|^2 = (\zeta - \sigma)^2 + 1 - (\zeta + \sigma)^2$$

$$= 1 - 2\zeta\sigma$$

$$> 1 - m\sigma$$

$$= 1 - \mu,$$

hence (3.6) contradicts Corollary R. Thus (2.3) hold on Γ_{ζ} . Now we claim that:

there exists $\eta>0$ such that if $\|x\|<1$ and x.e > $\zeta-\eta$ then $u_1(x)<0.$

If not there exists a sequence $\{x_n\}$ with $\|x_n\| < 1$, $\{x_n,e\}$ converging

to ζ , and $u_1(x_n) \ge 0$. Thus, without loss of generality, we can assume that $\{x_n\}$ converges to $z \in T_\zeta \cap \overline{B}$. If $z \in T_\zeta \cap B$ then by (2.5) we have $0 > u_1(z) = \lim u_1(x_n) \ge 0, \tag{3.8}$

which is a contradiction. On the other hand if $z \in T_{\zeta} \cap \partial B$, by Lemma Q for n large $u_1(x_n) < 0$ which contradicts the definition of $\{x_n\}$, and (3.7) is proven.

Next we show that:

there exists $\gamma \in (0,\eta)$ such that if $t \in (\zeta-\gamma,\zeta)$, $x \in \Sigma_t$ then $u(x^t) \ge u(x)$.

In fact, if not there exists a sequence (t_n,x_n) with $t_n \to \zeta$, $x_n \in \Sigma_{t_n}$ such that $u(x_n^{t_n}) < u(x_n)$. Without loss of generality we can assume that $\{x_n\}$ converges to z. Since $t_n \to \zeta$ we see that $z \in \overline{\Sigma}_{\zeta}$. If $z \in \Sigma_{\zeta}$ we have

$$u(z^{\zeta}) = \lim_{n \to \infty} u(x_n^{\xi}) \le \lim_{n \to \infty} u(x_n) = u(z)$$
 (3.10)

contradicting that (2.4) holds on Σ_{ζ} . Thus either $\|z\|=1$ or $z\in T_{\zeta}\cap B$. If $z\in T_{\zeta}\cap B$ then $x_n^{\ t_n}\to z$. By the mean value theorem there exists a sequence $\{y_n\}$ with y_n in the segment joining $x_n^{\ t_n}$ with x_n such that $u_1(y_n)\geq 0$. Since for n large $y_n\cdot e>\zeta^{-n}$, by (3.7) we have a contradiction. Thus $\|z\|=1$ and $z\cdot e>\zeta$. Now for $x\in \overline{\Sigma}_{\zeta}$ we define $w(x)=u(x^{\zeta})-u(x)$. Since (2.4) hold on Σ_{ζ} we have y>0 on Σ_{ζ} . Since, also by the continuity of y we have

$$u(z^{t}) = \lim_{n \to \infty} u(x_{n}^{t}) \le \lim_{n \to \infty} u(x_{n}) = u(z) = 0,$$
 (3.11)

and hence w(z)=0. Thus by Hopf's maximum principle (see Lemma H in [G-N-N]) we have $0>w_1(z)$. Since $u\geq 0$, by (3.11) we have $u_1(z^\zeta)=0$. Further since $u\geq 0$, $u_1(z)\leq 0$. Hence

$$0 > w_1(z) = -u_1(z^{\zeta}) - u_1(z) \ge 0. \tag{3.12}$$

This contradiction proves (3.9), and we have shown that for some $\theta < \zeta$, (2.2) holds for all $t \in [\theta, \zeta)$. By taking $\theta \in (\zeta - \eta, \zeta)$, from (3.7) we see that if $t \in [\theta, \zeta)$ then (2.1) as well as (2.3) hold. Hence this contradicts the definition of ζ . Thus there does not exist $y \in B$ such that u(y) = 0. That is, every nonnegative solution to (1.1)-(1.3) is positive in B, and by Theorem 1 of [3] it is also radially symmetric, which proves Theorem A.

4. EXTENSIONS

Doublechecking the proof of Theroem A it is readily seen that nonnegative solutions to (1.1)-(1.2) are actually positive in the interior if Ω satisfies the following geometrical condition.

For each $y \in \Omega$ there exists $x \in \partial \Omega$ such that (4.1)

- (a) $\{z; (z-x) \cdot v(x) > 0\} \cap \Omega = \phi$,
- (b) For some t < 0, $y \in \Sigma_{t,x} \bigcup \Sigma_{t,x}'$, where $\Sigma_{t,x}$ is the connected component of $\{z \in \Omega; (z-x) \cdot \nu(x) > t\}$ containing x in its closure and $\Sigma_{t,x}'$ the reflexion of $\Sigma_{t,x}$ across the plane $\{z; (z-x) \cdot \nu(x) = t\}$,
- (c) for all $z \in \partial \Omega \cap \partial \Sigma_{t,x} \ \nu(z) \cdot \nu(x) > 0$, and $\Sigma_{t,x} \bigcup \Sigma_{t,x} \subset \Omega$.

Examples of regions satisfying (4.1) include balls, the region between two balls, and the union of two balls. The condition that Ω be bounded is necessary. Indeed, if $\Omega = \{(x,y); 0 < x < 1, y \in \mathbb{R}\}$, v is a nonnegative solution to -v'' = f(v), v(0) = v(1) = 0 with zeroes in

(0,1) (see [1], [2], [3]) then defining u(x,y) = v(x) we have a solution to (1.1)-(1.2) with interior zeroes.

Finally, as noted in the introduction, examples of non-negative solutions in bounded regions with interior zeroes can be found in [1] and [3].

REFERENCES

- Castro, A., and Shivaji, R., Nonnegative solutions for a class of nonpositone problems, Proc. Royal Soc. of Edinburgh, 108 A, 291-302 (1988).
- Castro, A., and Shivaji, R., Nonnegative solutions for a class of radially symmetric nonpositone problems, Proc. Amer. Math. Soc. (to appear).
- Gidas, B., Wei-Ming Ni, and Nirenberg, L., Symmetry and Related Properties via the Maximum Principle, Commun. Math. Phys. 68, 209-243 (1979).
- Guillemin, V., and Pollack, A., Differential Topology, Prentice Hal 1974.

Received November 1988