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Abstract. We show how to triangulate a polygon without using any obtuse triangles. 

Such triangulations can be used to discretize partial differential equations in a way 

that guarantees that the resulting matrix is Stieltjes, a desirable property both for 

computation and for theoretical analysis. 

A simple divide-and-conquer approach would fail because adjacent subproblems 

cannot be solved independently, but this can be overcome by careful subdivision. 

Overlay a square grid on the polygon, preferably with the polygon vertices at grid 

points. Choose boundary cells so they can be triangulated without propagating 

irregular points to adjacent cells. The remaining interior is rectangular and easily 

triangulated. Small angles can also be avoided in these constructions. 

I. Introduction 

Can a polygon be tr iangulated without using any obtuse angles? This problem 

has been known for some time and solved manual ly  in particular cases. For  

example, in an early paper  [12] on discretizations of  partial differential equations 

MacNeal  says in an aside, 

The network should be planar  and none  o f  the interior angles of  the triangles 

should  be obtuse. It may  be necessary to insert a few addit ional points in 

order  to fulfill the last condition.  

A literature search (by looking for the keyword " t r iangulat ion"  in on-line indices) 

and asking experts did not uncover  any algorithms guaranteed to produce a 

* Present address: Stanford University, ERL, Stanford CA 94305, USA. 



148 B.S. Baker, E. Grosse, and C. S. Rafferty 

nonobtuse triangulation. Indeed, doubt was expressed as to whether such triangu- 

lations were even possible in general. 

It turns out that elementary constructions suff~ce. Exactly how complicated 

the algorithm is depends on how many extra conditions are imposed dealing 

with small angles and interfaces, but no tools beyond high school geometry and 

trigonometry are needed. 

To see why this problem is interesting, imagine solving a partial differential 

equation, say Au =f ,  on a domain P. The finite element method chooses some 

approximating space A and finds the function u ~ A such that for all vE A, 

Se vAu  = Sevf.  This leads to a matrix [~p V~biV(b~],,j involving basis elements ~b ~ a .  

Frequently A is composed of  piecewise linear functions on a triangulation of P, 

with one degree of freedom at each triangle vertex. It is known [17, p. 78] that 

if there are no obtuse angles in the triangulation then for i # j  these integrals are 

negative and consequently the matrix is Stieltjes. Recall that a Stieltjes matrix is 

a symmetric positive definite matrix whose off-diagonal entries are all nonpositive. 

This property is important in the analysis of  iterative methods for solving the 

linear system; for example,  it implies that block Gauss-Seidel  has better 

asymptotic rate of  convergence than point Gauss-Seidel.  

Discretizations such as the "box method"  [ 18, p. 19] particularly benefit from 

nonobtuse triangulations. Consider Fig. 1.1, taken from [4]. The integrals men- 

tioned above are replaced by quadrature rules in the following way. Form 

perpendicular bisectors to the triangle sides, drawn as dashed lines in the figure. 

Integrate Au over the dashed box and use the divergence theorem to express as 

an equivalent line integral, along the boundary,  o f  the normal derivative of  u. 

For each segment of the boundary,  the normal derivative is estimated by a centered 

difference of function values at the two triangle vertices defining the bisector 

segment. It is desirable that bisectors corresponding to two sides of a triangle 

meet with that triangle; this will occur if and only if the triangle is not obtuse. 

Other schemes [13] have been devised that allow obtuse angles, but it is not clear 

whether they are as accurate. 

The only algorithm for nonobtuse triangulation we are aware of  is Bank's 

T R I G E N  [3]. This routine uses heuristics with a single sweep across the polygon, 

starting with an initial distribution of points along the boundary. It is effective 

Fig, I.I. A box formed by perpendicular bisectors. 
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in practice but does sometimes fail. In such cases one starts again with a different 

initial distribution or corrects the triangulation manually. 

Another feature of T R I G E N  is that it tries to avoid small angles. It used to 

be thought that this was necessary for convergence of the finite element method, 

but [1] showed that it suffices to avoid large angles. Nevertheless, small angles 

may lead to ill-conditioned matrices [6], so it is best to avoid them. 

If  vertices are allowed on the sides of triangles, as in Fig. 2.1 below, then the 

existence of an acute triangulation is obvious and, moreover, a nearly equilateral 

triangulation is possible [8]. Unfortunately, continuity of linear elements is lost. 

Alternatively, if all the vertices of the triangles are preassigned, as in scattered 

data interpolation, then triangulation algorithms are available [5], [7], [9], [ 11], 

[16]. Several of  these algorithms compute the Voronoi tessellation, which parti- 

tions the plane into polygonal regions by labeling an arbitrary point in the plane 

according to the closest vertex. Connecting vertices in adjacent regions gives the 

Delaunay triangulation. Actually the +'no obtuse angles" is only a sufficient 

condition for the matrix to be Stieltjes. The necessary condition is that when two 

triangles adjoin in a side, the two angles opposite the side sum to at most 180°; 

the Delaunay triangulation achieves this weaker condition. But such compensa- 

tion does not protect the integrals ~ vf  when f is nonlinear [10]. So we still seek 

a nonobtuse triangulation. 

In this paper  we give two solutions of  increasing complexity. The first assumes 

that the vertices of  P lie on a square grid. The second removes this hypothesis 

and, moreover,  avoids any angles smaller than 13 ° . Some details of  the proof of  

the second method are omitted; see [2] (available from the authors). 

2. The Problem 

Given a simple polygon P with vertices {v~, v2 , . . ,  v,,}, add points {v,+~, . . . ,  /"m} 
inside P or on its boundary and connect the points with straight line segments 

to triangulate P. No resulting triangle should contain an obtuse angle. By a 

triangulation we mean a set of  triangular regions such that the union is P; any 

two distinct triangles intersect along one full side, in a single point, or not at all; 

and the set of  vertices of  all the triangles is exactly {vi}~ . . . . .  Figure 2.1 shows 

two triangulations that are illegal because of a point on a side and an obtuse 

angle, respectively, and Fig. 2.2 illustrates a legal triangulation. 

Fig. 2.1. Illegal triangulations. 
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Fig. 2.2. A legal triangulation of a quadrilateral. 

3. Solution 1 

A natural approach is to partition the polygon. The trick is to divide in such a 

way that each subproblem can be solved independently and to prove for each 

subproblem that all cases have been considered. 

Lemmu 1. I f  the vertices of  the polygon lie on a square grid and i f  none of  the 

interior angles of  the polygon are acute, then a nonobtuse triangulation exists. 

Proof. Refine the grid until the cell diagonals are smaller than the minimum 

distance between nonintersecting boundary segments. Introduce points vi at the 

grid intersection points in the interior of  P and everywhere that a grid line 

intersects the boundary of  P. Each square cell in the interior of P is triangulated 

by adding a diagonal, leaving only cells intersecting the boundary to be dealt 

with. We will introduce some further points inside such cells and on the boundary 

of P, but not on the sides of  the cells. Thus each cell is independently triangulated 

without propagating points from one cell to a neighbor. 

If more than one boundary segment passes through a cell, the segments must 

be adjacent in order not to violate the refinement criterion. But they cannot have 

an acute interior angle. Therefore, they have an acute exterior angle, and the 

regions of P bounded by these segments and the cell boundaries are disjoint. 

The triangulation strategy below can be applied independently to the two regions, 

each of which has only one boundary segment within the cell. We may assume 

without loss of generality that the upper right corner of the cell lies inside P and 

the sides of  the cell have length 1. The boundary of P will be indicated by a 

solid line and the cell by dashed lines. 

Figure 3.1 illustrates two easy cases when the boundary hits the top and right 

or bottom sides. The bottom angle is acute because its vertex lies outside a 

semicircle drawn on the opposite side of  the triangle. 

When the left and bottom sides are hit, split the analysis into subcases based 

on the location of the point q determined by vertical and horizontal lines extending 
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from intersections o f  the boundary  and the cell sides. Without  loss o f  generality, 

we may assume that q lies on or below the diagonal  f rom the upper  right corner 

to the lower left corner  o f  the cell (see Fig. 3.2). Draw a semicircle based on the 

right side of  the cell and another  diagonal to form three regions a, b, and c in 

which q can tie. 

In Subcase (a) we have x<-y and hence a<-fl. So y = 9 0 ° + ~ - f l - < 9 0  °. To 

show 6 -< 90 °, note that a semicircle based on the opposite side has radius at most  

x/5/4 and center at most  ~ away from the right side o f  the cell. In Subcase (b), 

y > 90 °. In t roduce  a point  in the interior o f  the cell at the intersection o f  lines 

drawn to form five right triangles. 6 < 90 ° because y < ½. Similarly, in Subcase 

(c), the two nonright  triangles are acute (Fig. 3.3). [ ]  

Theorem 1. I f  the vertices of  the polygon lie on a square grid, then there exists a 

nonobtuse triangulation. 

Proof For each vertex v~ with an acute interior angle, cut off a corner by adding 

new vertices vl and v',' so that the triangle {v~, vl, v'~'} being removed is acute and 

I I 
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Fig. 3.3. 
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Subcases (b) and (c). 
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Fig. 3A. Approximating an isosceles triangle on grid points. 

does not contain any other vertices and so that the newly generated interior 

angles are obtuse. The only question is how to pick vl and vi'. I f  they did not 

need to be on grid points, we could pick two points that form an isosceles triangle 

with vi. We could thus cut off an acute triangle and leave obtuse interior angles, 

and by making the triangle small enough we could also guarantee that it does 

not contain other vertices. To obtain v'i and v'[ on grid points, we will approximate 

this soluion as follows. By hypothesis, the grid is fine enough so that there are 

grid points on the line between vi and each adjacent vertex such that the triangle 

formed by v~ and these two grid points does not include any other vertices. I f  

this triangle is satisfactory, let v~ and v7 be its two new vertices. Otherwise, let 

v~ be the new vertex that is closer to v, (see Fig. 3.4). The angle at vl within the 

current triangle must be obtuse, or the triangle would be satisfactory. Let x be 

the point on the other side that is the same distance from v~ as vl. For some e, 

picking any point within e of  x and within the current triangle will give a new 

acute triangle that does not contain any other vertices. Refining the grid sufficiently 

guarantees that a grid point will lie within this interval. Letting it be v',' gives a 

satisfactory triangle with vertices that are grid points. 

Apply the lemma above to the new polygon, which does not have acute interior 

angles. This may introduce points on the artificial boundary segment. Figure 3.4 

shows how to introduce orthogonal lines emanating from such points that partition 

the removed triangle into right triangles and rectangles, which of course can also 

be divided into right triangles. [] 

The references to a "sufficiently fine grid" might suggest that many triangles 

are produced. But it is possible to refine the grid locally, as in Fig. 2.2. One way 

to do this is to use quadtrees [14], [15]. 

4. Solution 2 

As mentioned earlier, it is desirable to avoid small angles. We have devised an 

algorithm that guarantees that no angle in the triangulation is less than tan-~(~) 

18 ° or the minimum interior angle in the boundary, whichever is smaller. 
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Moreover, if all interior angles of  the polygon are at least 54 ° , then independent 

triangulations of  abutting polygons are consistent, that is the same vertices will 

be created on the interface boundary segments. However, that solution still 

requires that the polygon vertices lie on a square grid. 

So we move on to a more elaborate analysis which frees the vertices to lie in 

arbitrary position. Define a line to be nearly horizontal if its slope is at least -1  

and at most 1, and nearly vertical otherwise. A vertical grid line is nearly 

perpendicular to a nearly horizontal line; a horizontal grid line is nearly perpen- 

dicular to a nearly vertical line. Define a triangulation of a polygon to be good 

if it uses no obtuse angles and no angles less than tan-~(-~) or the smallest angle 

in the polygon, whichever is smaller. A good triangulation well-triangulates the 

region. 

Let R be a simple polygon. The triangulation strategy will be to well-triangulate 

in the vicinity of  each vertex of R, and then to well-triangulate the remaining 

region R'. Figure 4.1 shows how R might be divided into regions around each 

vertex and R'. In triangulating the region around a vertex, points are introduced 

on the common boundary with R'. No new points can be added on these common 

boundaries while triangulating R'. (Points added on a common boundary would 

invalidate the triangulation already done in the adjoining region around the 

vertex.) The key to the proof  is to restrict the edges occurring in the boundaries 

of  the regions around the vertices so that the remaining region is easily well- 

triangulated. 

Lemma 4.1. Let R' be a simple polygon overlaid with a unit grid. Suppose each 

edge of R' is of one of the following forms: 

(1) cell diagonal, 

(2) cell side, 

(3) gridline segment forming the sides of two adjacent cells. 

Then R' can be well-triangulated without adding any extra points on its boundary. 

A A . . . . . . .  A / 

Fig. 4.1. Vertex cells. 
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Fig. 4.2. A neighbor gridpoint. 

Proof. Add a vertex at every interior gridpoint. Add edges on cell sides to 

connect previously unconnected vertices one unit apart. Add edges on cell 

diagonals where possible to do so without crossing or lying on top of another 

cell diagonal. Add a diagonal to each rectangle still lacking a diagonal. The proof  

that this procedure well-triangulates R'  is by showing that every original edge 

borders a good triangle and every new edge borders a good triangle on each 

side. [] 

I f  e is a side of  R, and g is a gridline nearly perpendicular to R, intersecting 

e at A, there is a unique gridpoint on g whose distance from A is at least one 

and less than two and which lies on the interior side of  e. This gridpoint is called 

the neighbor gridpoint of A. It is also called a neighbor gridpoint of  e. Figure 4.2 

illustrates a point on a side of  R and its neighbor gridpoint. 

Let et be a side of  R, and let A be an intersection point of  e~ with a nearly 

perpendicular  gridline. Let e2 be an adjacent side of  R, and let B be an intersection 

point of  e2 with a nearly perpendicular gridline. A sequence of  edges from A to 

B is a satisfactory path from A to B if it lies in the interior of  R (except for A 

and B), the edges are pairwise nonintersecting (except for the point between two 

successive edges), and each edge is of one of the following forms: 

(1) a cell side or diagonal, 

(2) a gridline segment forming the sides of  two adjacent cells, 

(3) AG, where G is a neighbor gridpoint of  A, or BG, where G is a neighbor 

gridpoint of  B. 

Satisfactory paths are illustrated in Fig. 4.1. The region bounded by the path, el, 

and e2 has a satisfactory boundary. An edge is satisfactory if it is of  a form 

satisfying one of  (1)-(3). 

Lemma 4.2. Let R be a simple polygon overlaid with a unit grid, such that no 

vertex of  R lies within four units of  a nonadjacent edge. For each edge e = ( A, B ), 

let eA and eB be points lying on gridlines nearly perpendicular to e, with eA closer 

than eB to A. Designate each gridpoint lying less than one unit from e along a nearly 

perpendicular gridline between those of  A and B as a forbidden point. For each 

vertex V with incident edges e and f, let Pv be a satisfactory path from ev to fv ,  and 

let Rv be the region bounded by Pv, ev, and e t. I f  these paths are pairwise 

nonintersecting and no path touches a forbidden point, then the region 

R - U R v  
V 

can be well-triangulated, with no new vertices introduced on any path Pv. 
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Fig. 4.3. Quadrilaterals along a nearly horizontal edge. 

Proof. For each edge e = (A, B), introduce a vertex on each nearly perpen- 

dicular gridline lying between eA and eB. On each such gridline, also add a 

vertex at its neighbor gridpoint of  e, unless that gridpoint is occupied by some 

path Pv. 

Wherever two successive gridlines have vertices at neighbor points of  e, connect 

them with an edge. This forms quadrilaterals with two parallel edges (see Fig. 

4.3(a) and (b)). The side connecting the two gridpoints is either a horizontal or 

vertical edge of length one, or a cell diagonal. In either case, a diagonal of  the 

quadrilateral well-triangulates it as desired. Since none of the satisfactory paths 

occupy either neighbor point or any forbidden points, and no vertex not adjacent 

to e lies within four units of  e, the new edges do not conflict with any previous 

edges. 

Now, suppose a neighbor gridpoint of  e is occupied by a satisfactory path. If  

it does not lie on an edge of length 2 nearly parallel to e, it can form part of  a 

quadrilateral formed as above with an adjacent neighbor gridpoint of  e. If  it lies 

in an edge e' of  length 2 nearly parallel to e, then e' can I,~rm part of a 

well-triangulated quadrilateral as shown in Fig. 4.3(c) or (d), accordiag to whether 

both endpoints of  e' are neighbor gridpoints of  e. Again, the new edges cannot 

conflict with any previous edges. 

After triangulating along each original edge of R as above, the region remaining 

to be triangulated can be well-triangulated by Lemma 4.1. [] 

Thus, we need only show that we can triangulate around each vertex of R so 

as to satisfy Lemma 4.2. By making the grid sufficiently fine, we will ensure that 

no two satisfactory paths intersect. 

Vertices of  R need not be on grid points. For each vertex A, define the grid 

cell containing A to be any grid cell for which A is in the interior or on the 
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Fig. 4.4. Octams. 

b o u n d a r y .  N u m b e r  the  oc tants  at each vertex counterc lockwise  as shown in Fig. 

4.4. Similar ly ,  number  the quadran t s  counterc lockwise .  

The  next  two l emmas  will be helpful  in t r iangula t ing  a r o u n d  each  vertex so 

as to ob ta in  a sa t i s fac tory  pa th  a long  the bounda ry .  

Lemma 4.3 Let e be an edge of  R that is at an angle of  p to the vertical, p < 45 °, 

as shown in Fig. 4 .5(a ) - (c ) ,  with the interior of  R to the left o f  e. Let A be at the 

intersection o f  a horizontal gridline with e. Let G be the gridpoint that lies at least 

2 and less than 3 units to the left o f  A. Then one of  the regions shown in Fig. 4.5 

can be well-triangulated as shown, depending on the value o f  Ax - Gx - 2 tan p. The 

boundary from G to B is satisfactory for each region. 

Proof. Let d = A x - G x - 2 t a n p .  The bounds  on p imply  d e [ 0 , 3 ) .  

i ...... ~. . . . . .  T ....... T : Z ,  

i ..... 174 

! ! t / D I  
i [ e ' ' 
...... L....e_g ...... L ...... J 

(a) 

." . . . . . . . .  T . . . . . . . .  Y . . . . . . .  Y . . . . . . . .  . "  . . . . . . . .  

i i ' i : ; 

: , ; - -  , 

L._..~_...i..k....g..~:L....i 
I | $ I 

....... t ....... i i i i i i ~ 
• . . . . ~ . . . . . ' -  Z - . . . .  ' ~  . . . . . .  A . . . . . . . .  l 
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. . . .  

i ' 
, i 
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1 1 1 ' . . . . . .  ~ . _ . . / g . . . . . . ]  

( c )  

Fig. 4.5. Lemma 4.3. 
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If d e [1, 2), then triangulate as shown in Fig. 4.5(a). Since Bx = G~ + d , /_AGB 

is nonobtuse; since G, . -  By = 2, /_AGB->45 °. Angle GAB = ~ r / 2 - p  is between 

45 ° and 90 °. /_GBA is non-obtuse because I GAI is less than twice the height of 

the triangle, and at least tan-l(½) because dropping a perpendicular from B to 

GA gives at least one subangle with a tangent of at least ½. 

If d c [0, 1), then triangulate as shown in Fig. 4.5(b). Let 0 be the angle of 

GB with the vertical. Since d < 1, 0 -< tan-l(½). Since/_LBK <- 45 ° and 0 -< tan-l(½), 

Z.GBL>_45°-tan--t(~)> 18 °. Since / G L B =  135°- /_KLB and K L B ~  

[45 °, tan-t  (2)] , /_GLB c [45 °, 90°]. 

Finally, suppose d ~ [ 2 , 3 ) .  Then p<tan-l(½).  Let d ' = d - t a n p .  Then d 'E 

[1.5, 3). If d ' e  [1.5, 2), triangulate as shown in Fig. 4.5(c), without the vertex L 

and the edge ML. If d ' ~ [2 ,3 ) ,  include L and the edge ML. The edge M K  is 

drawn perpendicular to AB. Since p <tan-l(½), I AK 1<-43. Also, I MK I >- 1 

because d -> 2. Therefore , /_MAK >- tan ~(1/43). /_GAM is between Z_AMK and 

45 ° . Z . K B M = p + 9 0 ° - / _ M B J .  If d '~[1 .5 ,2) ,  / _MBJe[45  °, tan-~(2)], and 

Z_KBM~[tan-t(½),72°]. If d '~ [2 ,3 ) ,  then p<-tan t(~) and /_MBJ~ 

[tan-l(½), 45°], implying t h a t / K B M  c [45 °, 82°]. [] 

Lemma 4.4. Let e be an edge of  R that is at an angle of  p to the vertical, p <-45 °, 

as shown in Fig. 4.6(a), with the interior of  R to the right of  e. Let A be at the 

intersection of  a horizontal gridline with e. Let G be a gridpoint that lies at least 2 

and less than 4 units to the right o f  A. Then a quadrilateral A G H J  (as shown in 

Fig. 4.6(a)) can be triangulated, where G H  has length either 2 or 4, with vertices 

added on G H  and HJ to make these sides satisfactory. 

Proof. Let xt = I A G  l, and let x2 = x~ + 2 tan p. Then x2 e [2, 6). 

If x2 e [2, 4), then triangulate as in Fig. 4.6(b), where K is the neighbor vertex 

of  J. Consequently, [KHI is either 1 or 2. 

- X 

(a) (b) 

[__a. i i a  a. a : I /  X ! ! /  I 

K:-F-!X1--zr-1 
- I I I x 7. i l l  ,-'vlN, l 1 

(d) 

Fig. 4.6• Lemma 4.4, 
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If  x~ ~ [2, 3) and x2 e [4, 5), or if x~ E [3, 4) and x2 e [5, 6), triangulate as in Fig. 

4.6(c), where K is the neighbor vertex of J, KM is perpendicular to A J, and 

t LHI =2. Consequently, I KLI is either 1 or 2. The relative sizes of xt and x2 
>J.  imply tan p -  2. Obviously, A L G H  is good. The relative sizes of the height and 

bases of  triangles AKL and AGL force those triangles to be good./__MJK = 90 ° -  p. 

Since IJKI-> 1 and/_MJK>-45 °, IMKI >-- 1/4~. Note that the length of  AK is at 

most v/-5. Since I MK l -  > 1/v~ and IAK I<-x/5,/__MAK-> tan-~(1/x/i-6) > tan-~(-~). 

Also, /_MAK ~ p <- 45 °. 

The only remaining case is when x~ ~ [3, 4) and x2 c [4, 5). Triangulate as in 

Fig. 4.6(d), where l KNI c [2, 3) and region KNMJ is to be filled in according to 

Fig. 4.6(b) or (c). [] 

Lemma 4.5. Let A be the vertex of an acute angle of R. Then there is a region 

around A that can be well-triangulated with a satisfactory path along its boundary. 

Proof Let a be the angle at A. We may assume that one edge L~ at A lies in 

octant 6. The clockwise edge L2 lies in one of octants 5-8. Let p, 0-< p <-45 °, be 

the angle of  L~ with the vertical. 

Case 1. Suppose L2 is in octant 5. Let tr, 0 <- trY45 °, be the angle of  L2 with the 

horizontal. For any positive constant c, there is a neighbor gridpoint G of L2 

that also lies to the left of  L~ by a horizontal distance in the range [c, c + 1 + tan  p). 

Form a parallelogram P by lines parallel to L~ at horizontal distances of  c and 

c+  1 + tan  p from LI and by lines parallel to L2 at vertical distances of 1 and 2 

from L2, as shown in Fig. 4.7(a). Then y ~ - U x  >-1 and a vertical gridline lies 

between V and U or passes through Q. Since length 1 or this gridline lies in P, 

there is a gridpoint inside P or on its right or upper boundary. 

There are two subcases according to the values of p and tr. First, suppose 

p-< tan-l(])  and tr_< tan-~(~). We begin by showing the existence of  a gridpoint 

H that is a neighbor gridpoint of both L~ and L2. Let G be the neighbor gridpoint 

of  L2 found by the above argument with c = 1, so that G lies to the left of  L~ by 

a distance in [1, 2+ tan  p). If  the latter distance is less than 2, we are done. 

Otherwise, move right one unit to a gridpoint G~. G~ lies to the left of L~ by a 

distance in [1, l + t a n  p) and below L2 by a distance in [ l + t a n  or, 2+ tan  or). If 

the latter distance is less than 2, we are done. Otherwise, move up one unit to a 

gridpoint G2. G2 lies below L~ by a distance in [1, l + t a n  tr) and to the left of 

L2 by a distance in [1 + tan  p, 1 +2  tan p). 

Triangulate as shown in Fig. 4.7(b). Note that Z.AQR = 90°+ p - / _ R Q H  and 

/_RQH ~ [tan-~(½), tan-~(2)]. So AQR and similarly ARQ are good. 

Now, suppose p > tan-~(~). From the earlier argument with c = 2, there is a 

neighbor gridpoint H of  L2 that lies to the left of L~ by a distance in [2, 3 + tan p). 

Triangulate as shown in Fig. 4.7(c), where R and Q lie on the gridlines through 

H, QS is vertical, and ST is perpendicular to L~. 

Unfortunately, H is not the neighbor vertex of Q. Therefore, RHQ is not a 

satisfactory path. If  f HQt ~ [2, 3), apply Lemma 4.3. Otherwise, form a quadri- 

lateral below HQ by going down 2 from H and then right to L~; triangulate by 
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(a) 
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. . . . . . . . .  z . . . . . . . .  z . . . .  X "  

L.i /-/: 

L 

(b) 

Fig. 4.7. 

: : A ~  

(c) 

Lemma 4.5, Case 1. 

a diagonal. The lower boundary of the quadrilateral has length in [3 - 2 tan p, 3 - 

tan p). If this length is in [1, 2), we are done. Otherwise, we apply Lemma 4.3 

below HQ. 

Case 2. Suppose L2 is in octant 6 and L2 is clockwise from L~. Find the top 

horizontal gridline with exactly four gridpoints between or on L~ and L2. Let M 

and R be its intersection points with L2 and L1, respectively, as shown in Fig. 

4.8. Place a vertex P at the neighbor point of M. Then I PRI~ [2, 3). Extend a 

perpendicular from P, intersecting L2 at U. Apply Lemma 4.3 below PR to obtain 

a satisfactory boundary. If /_AUR and /_ARU are nonobtuse, we are done. 

Otherwise, draw a perpendicular as shown in Fig. 4.8. 

Case 3. Suppose L2 is in octant 7. Let tr, 0 -  < tr_< 45 °, be the angle of L2 with the 

vertical. Find the highest horizontal gridline such that either four or five points 

lie between or on L~ and L2. Let U and V be where the gridline one unit higher 

intersects L~ and L2, respectively, as shown in Fig. 4.9. [UV[ < 4. The slopes of 

L~ and L2 guarantee that I UV] >- 1. 
We claim there is a point C on UV such that C lies above PQ, [UCI <-2, 

[cvl-<2, and [UCI~[[ uvI/3,2l uvI/3]. If the halfway point between U and 

V lies above PQ, take C to be this halfway point. Otherwise, suppose without 

loss of  generality that the halfway point lies too far to the right to be above PQ. 
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A 

T #, 
L . L . . . . L  . . . . . . . .  '- . . . . . . . .  .,. . . . . . . . . . . . . . . . . . .  

Fig. 4.8. Lemma 4.5, Case 2. 

Take C to be the gridpoint  one unit above Q. Since I Q R [ ~  2, lEVI- 2 as well. 

Also, [ U C [ < [  UV[/2-< 2. Let x~ = t MPI and x2 = [QR [. Note that I P Q I =  1, or 

the halfway point  between U and V would  have been above PQ. Since x~-> 1, 

tan p -< 1, and x2-< 2, we have 

t u c  I - l U V  1/3 = (x, + 1 - tan p) - (x~ + x~ + 1 - tan p - tan o ' ) /3  >- 0. 

Triangulate the region MRVCU as shown in Fig. 4.9. To triangulate above 

UCV, let t = tan o, + tan/9 and z = I UVI. Let HJ be a horizontal  line connect ing 

L~ and L2 at height y above UV, where (a) if t -> 1, then y = z/3, and (b) if t < 1, 

then y = z / ( 2 +  t). Triangulate as shown in Fig. 4.9. 

Case 4. Suppose L2 is in octant  8. Let cr be the angle o f  L2 with the horizontal ,  

0---or_< 45 °. We consider  two subcases, according  to whether  p-< tan-t(2).  

First, suppose  p-<- tan-~(2). We begin by showing the existence o f  a neighbor  

gridpoint  Y o f  L2 whose horizontal  distance to L~ is in the range [2, 4) (see Fig. 

4.10). There is a vertical gridline g that lies at least 2 units and less than 3 units 

................... T ............. 'Ai  .......... 

i i s 

: . . . . . . .  

"e "Q 
Fig. 4.9. Triangulation for Lemma 4.5, Case 3. 
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Fig. 4.10. 

[ - " - T , ' I - " T  . . . . . . . .  1 "  . . . . . .  1 

. i - 4  ' t 
. . . . . .  i 

i 

.'.'[_i ...... i ....... ± ....... i 
Triangulation for Lemma 4.5, Case 4, when P -~ tan-~(~) • 

to the right of  A. Since ~ - -  45 °, L2 drops less than 3 units before intersecting g. 

Let G be the neighbor point of  the intersection of  g with L2. Then Ay - Gy < 5. 

The horizontal distance from G to Ll is in the range [2, 5). I f  this distance is 

less than 4, we are done, with Y = G. Otherwise, let G~ be the gridpoint one unit 

to the left of  G. The horizontal distance from Gt to L1 is in [3, 4). The veritcal 

distance to L2 is in the range [1, 3). I f  this distance is less than 2, we are done, 

with Y = G~. Otherwise, let Y be one unit above G~. The vertical distance from 

Y to L2 is now in [1,2). The horizontal distance from Y to L~ is in [13/5,4),  

and we are done. 

Let U be the point of  L2 above Y, and Z the point on Lt to the left of Y. 

Triangulate as shown in Fig. 4.10. Finally, to obtain a satisfactory boundary, 

trianguate below Z Y  as in Lemma 4.4. 

Now, suppose/9 > tan-l(2). Consider the points at which two successive vertical 

gridlines intersect L2, and the horizontal lines through these intersection points 

from L2 to Lt,  as shown in Fig. 4.11 (a). The difference in length of the horizontal 

lines is at most 2 since or,/9 -< 45 °. Hence, there exists a vertical gridline for which 

the horizontal segment WU has a length in the range [1, 3), as shown in Fig. 

4.11(b). Define x~= I WUI. Let Y be the gridpoint below U by a distance in 

[1.5,2.5). Let Z be on Lt to the left of  Y, and let x2=l YzI Since ~ < t a n p - <  1, 

x2~[1.6, 5.5). I f  Y is the neighbor point of  U, UY is a satisfactory boundary 

edge. Otherwise, triangulate to the right of  UY as in Lemma 4.3 (rotated). Next, 

i i 

i . < 1  

(a) 

i ........ i ....... 

(b) 

(c) (d) 

Fig. 4.11 Triangulation for Lemma 4.5, Case 4, when p > tan-~(~). 
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we show how to t r iangulate  the quadri lateral  WUYZ,  and how to obtain a 

sat isfactory bounda ry  be low WUYZ.  

I f  x2e [1.6, 3), t r iangulate  by drawing WY. I f  x2 e [1.6, 2), then Z Y  gives a 

good  interface. I f  x2 e [2, 3), t r iangulate below Z Y  by L e m m a  4.4. I f  x2 e [3, 5.5), 

let X be the gr idpoint  that  lies [xiJ to the left o f  Y; t r iangulate as shown in Fig. 

4.11(b). To  see tha t /_  W X U  is at least tan-l(~) ,  draw a perpendicu la r  f rom X to 

WU. Either  one segment  o f  WU is at least 0.625 and  one  subangle  is at least 

tan-~(~), or  bo th  segments  are at least 0.375 and  both  subangles  are at least 

t an- ' (0 .375 /2 .5 )  > 0.5 tan-'(¼). A similar a rgument  appl ies  t o / Z W X .  

From above,  1 <- I Z X  I < Y + 1 --- 3.5. I f  [ Z X  [ < 2, then Z X  is a sat isfactory 

bounda ry  edge. Otherwise,  L e m m a  4.4 is appl ied  below Z X  to obtain a sat isfactory 

boundary .  []  

With rotat ions and  reflections the fol lowing three l emmas  can be combined  

to t r iangulate  near  any  obtuse  or  reflex angle. Choose  a local origin so that  A is 

in the cell with lower  left corner  at (0, 0). 

Lemma4.6. Let U=(2 , -1 ) ,  V=(3, -1) ,  W=(3,1), X=(3,2)  and Y=(2,2) 
as in Fig. 4.12. Then the triangulation shown of region A U V W X Y  is good. 

Proof. Straightforward.  

Lemma 4.7. Let BAC be an obtuse angle such that AB  is in the second octant 

at A. 

(a) Suppose the edge A C  is in the seventh octant at A. Let E be the point of  

intersection of  A B  and the line y = 2 ,  F be the point of  intersection of  A C  

and y = - 1 ,  U = (5, - 1 ) ,  and V= (5, 2). Then the region A F U V E  can be 

well-triangulated, with new points introduced as necessary to make the 

boundary EVUF satisfactory (Fig. 4.13). 

(b) Suppose the edge A C  is in the eighth octant at A. Let W be the point of  

intersection of  AB  and the line y = 3, and let F be the point o f  intersection 

of  A C  and the line x = 7, and let W = (7, 3). Then the region A F W E  can 

be well-triangulated, with new points introduced as necessary to make the 

boundary F W E  satisfactory (Fig. 4.14). 

i ........ w 

1 ........ l ._2 'k. . . . . . l 'x . . . . l  

i ........ i ........ 

Fig. 4.12. Triangulation for Lemma 4.6. 
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E Y 

: . . . . . .  - - - , . ¢  ¢ ~ V - ( 5 , 2 )  

, . . . . . .  / ~  .. . .  . ~ .  . . . . .  ~ .  . . . . . . .  . [ /  . . . .  ] 

. . . . .  ' . . . . . . . .  * . . . . . . . .  

F G 

(a) Sub reg ions  

E Y E Y 

- . . . . . . . . . . . . . . .  ; . . . . . . . .  ~, . . . . . . . .  | 

(b) E~.<-I (c) l < E ~ - < 2  

Fig. 4.13. Case (a) of  Lemma 4.7. 

E Y 
[ ........ T ........ T"  

(d)  2<E,~<-3 

Proof. Most angles can be shown to be between tan-I(~) and 90 ° by either the 

semicircle principle, inspection based on given constraints of position and slopes, 

or the inequality tan(a~ + a2)-> tan(at)+ tan(c~2), usually applied by dropping a 

perpendicular from a point to the opposite side of the triangle. The triangulations 

are suggested by the Figs. 4.15-4.17. [] 

The division of Lemma 4.7 into Cases (a) and (b) is induced by the satisfactory 

path requirement of an edge nearly perpendicular to AC. 

EA 
F - " T - r i  j ~ 
' ' 1 '  tz ' ' i - . . . . ~  ! , . .  . . . .  ~ ....... ~ ....... 

I V i i . I  / r  i 
L . . . . .  , t  . . . . . .  ~ . . . . . .  ' ~ . . . . , 1 , A - . . 2 g  . . . . . . .  ~ . . . .  

! " ~ ' k 1 " -  i I i 

[ . . . . . . . . . . . . . . . . . .  i . . . .  

. . . .  . . . . . . . . . . .  

i i i i i ~ , &  i 
. . . . .  4 ....... ~ - - - - + . - - ~ - ÷ - ~ , ~  .... 

i i i ! ! ! "~, 

L .. . . . .  • ........ ! ........ L . . . . . .  [ . . . . . .  L .... . . .  L . . ~  

W-(7 ,3 )  

Fig. 4.14. Lemma 4.7, Case (b), when the slope of AF is less than or equal to -½. 
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M N L 

(a) M x - < l  

Fig. 4.15. 

M N L 

(b)  1 < M , , < - 2  

J 

M L 

i[ ...... ........ ~ T  ........ T" J 

........ i 

(c) 2 < M,~ -< 3 

Triangulations for AHJLM of Fig. 4.14. 

J 

! 
! 

. . . . . . . . .  -t* . . . . . . . .  .t- . . . . . . . .  4 

i 

K - ( 5 , 1 )  

T 

J 

, . , 
........ 4- ........ ,*- ........ 't 

i i 

K - ( 5 , 1 )  

T 

• 5 > - G :  ->0 .5_>G,  _>0 

0 > - I, -> - 1  - 1  > Iy-> - 2  

H ............... J - ( 4 , 1 )  H " ........ t ...... 

: : [  

i ................. 1 
i 

i ' 

J-(4,1) 

Q - ( 4 ,  [GyJ +1)  

P 

I 

0> Gy-> Hy-2 0> G, -> H,,-2 

IQI I -<2 I Q I I > 2  

Fig. 4.16. Further divisions of Fig. 4.14. 

E_ D - - ' "  ' ~ "  

ol i . . . . . . . . . .  t - " t - " ' ~ t r ~ r ' " t  i ........ f ........ t ....... 

.......... ÷ ........ ~ ........ ÷ ........ .; ........ 

,4 i i i 
~ " t "  t I 

E _ D w--(7,3)_ 
f . . . . . . . .  ~ "f. "" i + ~ t • i " i ~ : 

t ....... ~ ........ *, ........ ~, ....... 

i ............... ~ ........ ~ ........ ~ ........ 

  -Tizll ..... 

i ........ ~ - ~  . . . . . .  I 

(a)  (b)  

Lemma 4.7, Case (b), when the slope of  AC is greater than  _t.  Fig. 4.17. 
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S - ( 2 , 2 )  V-(5,2)  

/ 
. lq( 

tJ[--(;,--I) 

C 
(a) 

Fig. 4.18. 

S - ( 2 , 2 )  

/ 
R-(6,2) 

(b) 

Triangulatable regions for Lemma 4.8, 

Lemma 

Ca) 

(b) 

4.8. Let S = (2, 2) and let A C  be in the seventh or eighth octant of  A. 

Suppose A C  is in the seventh octant o f  A, as shown in Fig. 4.18(a). Let F 

be the point o f  intersection of  A C  and the line y = - 1 ,  U =  (5 , -1) ,  and 

V = (5, 2). Then A F U V S  can be well-triangulated, with new points to make 

sides FU, UV, and VS satisfactory, and with no points introduced on AS. 

Suppose A C  is in the eighth octant of  A, as shown in Fig. 4.18(b). Let 

R = (6, 2), and let Q be the point o f  intersection of  A C  and x = 6. Then 

A Q R S  can be well-triangulated, with new points introduced to make sides 

QR and RS satisfactory, and with no points introduced on AS. 

Proof. (a) A C  in the seventh octant, i.e., nearly vertical with negative slope. In 

this case, apply the same triangulation as in Case (a) of Lemma 4.7, i.e. with 

E = S = (2, 2) in Fig. 4.13(a). Thus, Fig. 4.13(c) is applied for the region A O Y E  

of Fig. 4.13(a). This method well-triangulates the region even if the slope of A S  

is nearly horizontal, instead of nearly vertical as specified in Lemma 4.7. 

(b) A C  in the eighth octant, i.e., nearly horizontal with negative slope. First, 

suppose S A F  is obtuse. Then A S  must lie in the second octant at A, but the 

position of S forces the slope of A S  to be at most 2. Hence, the slope of A C  is 

at most -½. We can apply the triangulation method used in Case (b) of Lemma 

4.7 when the slope of A C  is at most -½ (ignoring the rectangle M L V W E  of Fig. 

4.14 since it lies outside the desired region for Lemma 4.8). 

Now, suppose S A F  is acute. The region to be triangulated is shown in Fig. 

4.18(b). Draw a vertical line downward from S, intersecting A C  at P. If I sPI >- 2, 
apply Lemma 4.4 (rotated) to triangulate next to SP. Now, either all of S P R W  

is well-triangulated, or all but the rightmost 2 or 4 units is well-triangulated. In 

the latter case, make RQ satisfactory and triangulate the remaining region by 

Lemma 4.2. [] 

Lemma 4.9. Let A be the vertex o f  an obtuse or reflex angle o f  R. Then there is 

a region around A that can be well-triangulated with a satisfactory path along its 

boundary. 

Proof. Without toss of generality we may assume AB lies in the first quadrant 

of A and bounds the interior of P from above. We consider cases according to 

the quadrant of AC, as in Fig. 4.19. 
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B 

4(, 

\ 
C 

(a) (b) 

(c) (d) 

Fig. 4.19. Cases for triangulating at A. 

(a) Apply Lemma 4.7, either directly or reflected. 

(b) Apply Lemma 4.8 to CAG, and a reflection of Lemma 4.8 to BAG. Note 

that the two regions obtained do not overlap except along the boundary 

edge AG, and no points are added on AG by Lemma 4.8 or its reflection. 

(c) Apply Lemma 4.8 to angles BAG and CAH and Lemma 4.6 to HAG. 

(d) Apply Lemma 4.8 to angles BAG and CAI, and Lemma 4.6 to HAG and 

HAI. 

When the above triangulations are applied at the vertices of P, the remaining 

region satisfies conditions (1)-(3) as desired. [] 

Combining Lemmas 4.2, 4.5, and 4.8, we obtain the main result. 

Theorem 4.10. Any polygon can be triangulated using no obtuse angles and no 

angles smaller than tan-l(1) or the minimum angle of the polygon, whichever is 

smaller. 

5. Concluding Remarks 

Our algorithms demonstrate that a polygon can be triangulated without obtuse 

angles. But the topic is by no means exhausted, because there are many combina- 

tions of side conditions that could be imposed resulting in simpler (or more 

complicated) algorithms. For example, Lynn Wilson has devised a much simpler 

scheme that suffices for certain interface problems [19]. A hexagonal grid might 

be investigated. It would be interesting to see if the independent cell triangulations 

given here can be used to repair locally obtuse triangulations given by other 

algorithms. 
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Fig. 5.1. Two sides of a crack are independent. 

We defined our problem in terms of a simple polygon. In fact, it is sufficient 

to assume that P is the closure of a bounded planar open set whose boundary 

is composed of  finitely many straight line segments. We consider a "crack" to 

be made up of. two line segments and allow different points on the two segments. 

In effect, we perturb the problem to open the crack into an infinitesimally narrow 

wedge (Fig. 5.1). 

Let n be the number of  cells along the boundary. (Recall that the grid spacing 

depends on the polygon vertex angles and the separation of nonadjacent polygon 

edges.) Each cell is partitioned into a bounded number of  triangles. With coarse 

grading of  the interior as indicated in Fig. 2.2, there will be O(n log n) triangles 

inside; otherwise there would be O(n2). But in either case the pattern is so regular 

that little processing is needed for the interior. Thus the number of triangles and 

the runtime of the algorithm is for practical purposes linear in the gridsize neeeded 

to resolve the polygon. At least this many triangles would ordinarily be desired 

in the finite element method to provide an adequate approximating space. 
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