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Nonorthogonal generalized Wannier function pseudopotential plane-wave method
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We present a reformulation of the plane-wave pseudopotential method for insulators. This new approach
allows us to perform density-functional calculations by solving directly for ‘‘nonorthogonal generalized Wan-
nier functions’’ rather than extended Bloch states. We outline the theory on which our method is based and
present test calculations on a variety of systems. Comparison of our results with a standard plane-wave code
shows that they are equivalent. Apart from the usual advantages of the plane-wave approach such as the
applicability to any lattice symmetry and the high accuracy, our method also benefits from the localization
properties of our functions in real space. The localization of all our functions greatly facilitates the future
extension of our method to linear-scaling schemes or calculations of the electric polarization of crystalline
insulators.

DOI: 10.1103/PhysRevB.66.035119 PACS number~s!: 71.15.Ap, 31.15.Ew
ity
nd
in
s

on

rix
le

i

e
e
th

o
re
he
ic

si
in

ri
l-

e
a

’’

nds
g
di-

och
rom
is

ons

ost

rge
el

al-
a

ith
be
a-

dic,

are
tary
I. INTRODUCTION

The pseudopotential plane-wave method for dens
functional theory~DFT! calculations has been developed a
perfected over many years into a reliable tool for predict
static and dynamic properties of molecules and solid1

Kohn–Sham DFT maps the interacting system of electr
to a fictitious system of noninteracting particles,2 which can
be fully described by the single-particle density mat
r(r ,r 8), expressed as a sum of contributions from sing
particle Bloch statescnk(r ),

r~r ,r 8!5(
n

f n

V

~2p!3E1BZ
cnk~r !cnk* ~r 8!dk. ~1!

We have assumed that we are dealing with an insulator w
completely filled~occupation numberf n51) or empty (f n
50) states andV is the volume of the simulation cell. Th
k-point integration is carried out in the first Brillouin zon
~1BZ!. The single-particle states are the eigenfunctions of
Kohn–Sham Hamiltonian at eachk-point. They are required
to be orthonormal and, in general, extend over the wh
simulation cell. The consequence of this orthogonality
quirement is that the cost of a DFT calculation involving t
$cnk% grows cubically with the system-size. The electron
charge density is equal to the diagonal part of the den
matrix multipied by a factor of 2 to take into account the sp
degeneracy and is commonly abbreviated asn(r )52r(r ,r ).

The most general representation of the density mat
equivalent to~1!, and first applied to linear-scaling DFT ca
culations by Herna´ndez and Gillan,3 is in terms of a set of
localized nonorthogonal functions$faR%,

r~r ,r 8!5(
ab

(
R

faR~r !KabfbR* ~r 8!, ~2!

where the sum overR runs over the lattice vectors of th
crystal and the matrixKab is called the density kernel,
generalization of the occupation numbers$ f n%. We will call
the $faR% ‘‘nonorthogonal generalized Wannier functions
~NGWFs! as they can be derived from a subspace rotationM
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between a set of Bloch orbitals at eachk-point and a unitary
transformation of the results ink-space~Wannier transforma-
tion!,

faR~r !5
V

~2p!3E1BZ
e2 ik•RF(

n
cnk~r !MnaGdk, ~3!

where the number of NGWFs at each lattice cellR can be
greater than or equal to the number of occupied Bloch ba
at eachk-point. The density kernel is the result of applyin
the inverse of these transformations on each side on the
agonal occupation number matrix diag($ f n%),

Kab5(
n

Nn
a f n~N†!n

b , ~4!

whereN5M21.
In our presentation so far, we have considered the Bl

states as the natural representation and starting point f
which to construct the charge density and NGWFs. This
also the usual order which has been followed in discussi
and derivations of Wannier functions4 in the literature. Gen-
eralized Wannier functions, orthonormal or not, are m
commonly constructed in a postprocessing fashion5–8 after
the end of a plane-wave band structure calculation.

Since the energy is variational with respect to the cha
density, directly varying the NGWFs and the density kern
of Eq. ~2! is equivalent to varying the Bloch states of Eq.~1!.
The localization properties of the NGWFs are seta priori,
i.e., each NGWF is nonzero only within a predefined loc
ization region. As a result, the computational cost of
density-functional calculation scales only quadratically w
system-size rather than cubically. Furthermore, it can
made to scale linearly with one extra variational approxim
tion: the truncation of the density kernel in Eq.~2! when the
centers of the functionsfaR(r ) andfbR(r ) lie beyond some
cutoff distance.32,33

The NGWFs are expanded in terms of a basis of perio
bandwidth limited delta functions~Appendix A!. These are
centered on the points of a regular real-space grid and
related to an equivalent plane-wave basis through a uni
©2002 The American Physical Society19-1
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transformation~the Fourier transform!. Hence, the method
we present is directly equivalent to the Bloch state pseu
potential plane-wave density-functional approach. The d
function basis allows us to restrict our NGWF expansions
contain only the delta functions that are included in so
spherical localization region. This should be an accurate
sumption for insulators in which the NGWFs dec
exponentially.9 Our approach is closely related to that of He
nándezet al.10 who developed a method to do calculatio
by optimizing both the density kernel and the functio
$faR%, which they call ‘‘support functions.’’

Real-space methods, as an alternative to pure recipro
space plane-wave methods, have been used by many
authors for DFT calculations11–18 in the past in order to take
advantage of the benefits of localization in real-space.
particular, approaches have been developed that use f
tions strictly localized in spherical regions on real-spa
grids.19,20These functions play the same role as the NGW
we present here. A different approach is taken by theSIESTA

program,21–23 which uses a basis set of numerical atom
orbitals. These are generated as described by Arta
et al.24,25 and are not optimized during the calculations.

Even though these real-space methods have led to s
important methodological developments, it would be ve
desirable if they could be directly comparable with plan
wave pseudopotential DFT. In other words, we wish to ha
a method that rigorously adheres to a basis set we can
prove systematically, such as the plane-wave basis wher
convergence towards completeness is controlled by the
netic energy cutoff parameter. Our method achieves this
working both in real- and reciprocal-space. We demonst
that our approach can actually be viewed as an alterna
way of performing plane-wave DFT calculations which
easy to turn into a linear-scaling method in the future w
only trivial modifications. It is thus also directly applicab
to any Bravais lattice symmetry, in contrast to common fin
difference methods that are usually restricted to orthorho
bic lattices.

We should note at this point that there exist oth
basis sets, apart from plane-waves, that can be improved
tematically: the B-splines of Herna´ndez et al.,26 and the
polynomial basis in the finite-element approach of Pasket
al.,27,28 who have done some pioneering work using a te
nique for solving differential equations common in engine
ing applications and adapting it for electronic structure c
culations.

In what follows, we begin by describing the calculation
the total energy in our scheme, directly with NGWFs, in S
II. In Sec. III we describe our strategy for total energy op
mization, i.e., minimization of the energy with respect
both the density kernel and the NGWFs. In Sec. IV
present the FFT box technique, an essential ingredient
lowering the cost of the calculations and for eventua
achieving linear-scaling behavior. In Sec. V we present te
on a variety of systems showing the accuracy and efficie
of this method and finally we conclude and mention what
see as future developments.
03511
o-
ta
o
e
s-

al-
her

n
nc-
e
s

ho

me
y
-
e

-
its
i-
y

te
ve

e
-

r
ys-

-
-
l-

.

or

ts
y

e

II. CHARGE DENSITY AND TOTAL ELECTRONIC
ENERGY WITH NONORTHOGONAL GENERALIZED

WANNIER FUNCTIONS

Linear-scaling DFT calculations are aimed at large s
tems, and in particular, large unit cells. Thus in this work w
will be concerned with calculations only at theG-point, i.e.,
k50. This means that the Bloch bands and therefore
NGWFs can be chosen to be real. We can also drop
dependence of the NGWFs onR, so thatfaR(r )5fa(r ).

Our basis set is the set of periodic bandwidth limited de
functions that are centered on the pointsrKLM of a regular
real-space grid,

DKLM~r !5
1

N1N2N3

3 (
P52J1

J1

(
Q52J2

J2

(
R52J3

J3

ei (PB11QB21RB3)•(r2rKLM),

~5!

whereB1 is one of the reciprocal lattice vectors of the sim
lation cell.N1 is the number of grid points in the direction o
direct lattice vectorA1, andN152J111. The delta function
basis is equivalent to the plane-waves that can be represe
by the real-space grid since it is related to them via a unit
transformation. An important property of the basis set is t
the projection of a functionf (r ) on DKLM(r ) is

E
V
DKLM~r ! f ~r !dr5W fD~rKLM !, ~6!

whereW is the volume per grid point andf D(r ) is the result
of bandwidth limiting the functionf (r ) to the same plane
wave components as in~5!.

We represent the NGWFs in the delta function basis b

fa~r !5 (
K50

N121

(
L50

N221

(
M50

N321

CKLM ,aDKLM~r !, ~7!

and in the plane-wave basis by

fa~r !5
1

V (
P52J1

J1

(
Q52J2

J2

(
R52J3

J3

3f̃a~PB11QB21RB3!ei (PB11QB21RB3)•r.

~8!

where it is straightforward to show that the amplitud
f̃a(PB11QB21RB3) are the result of a discrete Fourie
transform on the delta function expansion coefficie
CKLM ,a .

In ~7! the sum over theK, L andM indices formally goes
over the grid points of a regular grid that extends over
wholesimulation cell. From now on however, we will restric
all NGWFs to have contributionsonly from delta functions
centered inside a predefined spherical region. This sphe
region is in general different for each NGWF. Thus we im
pose on~7! the condition
9-2
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CKLM ,a50 if rKLM does not belong to the sphere offa .
~9!

This of course does not affect the form or the applicability
Eq. ~8!.

The charge density of Eq.~2! with our NGWFs becomes
~from now on we will use the summation convention f
repeated Greek indices!

n~r !52r~r ,r !52fa~r !Kabfb~r !52Kabrab~r !

52 (
X50

(2N121)

(
Y50

(2N221)

(
Z50

(2N321)

Kab

3rab~rXYZ!BXYZ~r !, ~10!

which involves the fine grid delta functionsBXYZ(r ) that are
defined in a similar way to theDKLM(r ) of Eq. ~5! but in-
clude up to twice the maximum wave vector ofDKLM(r ) in
every reciprocal lattice vector direction~see also Appendix
A!. This is necessary because a product of twoDKLM(r )
delta functions is a linear combination of fine grid delta fun
tions BXYZ(r ), a result reminiscent of the Gaussian functi
product rule.29

The expressions for the various contributions to the to
electronic energy with the NGWFs are simple to derive fro
~10!. The total energy is the sum of the kinetic energyEK ,
the Hartree energyEH , the local pseudopotential energ
Eloc , the nonlocal pseudopotential energyEnl , and the ex-
change and correlation energyExc ,

E@n#5EK@n#1EH@n#1Eloc@n#1Enl@n#1Exc@n#.
~11!

The kinetic energy is written as a trace of the product of
density kernel and of the matrix elements of the kinetic
ergy operatorT̂52(1/2)¹2,

EK@n#52Kab^fbuT̂ufa&. ~12!

To compute these matrix elements we can applyT̂ to the
plane-wave representation~8! of fa(r ) and then evaluate th
integral in real-space where it is equal to a discrete sum o
grid points whereT̂fa(r ) obviously plays the role off D(r )
of Eq. ~6!.

Calculation of the Hartree energy requires first the Hart
potential. From Eq.~10! we see that the charge density is
fine grid delta function expansion, thus the same should
true for the Hartree potential, which is a convolution of t
charge density with the Coulomb potential. Therefore,VH(r )
can be written as a linear combination of fine grid delta fu
tions and extends over the whole simulation cell,

VH~r !5 (
X50

(2N121)

(
Y50

(2N221)

(
Z50

(2N321)

VH~rXYZ!BXYZ~r !.

~13!

The Hartree energy is

EH@n#5
1

2E VH~r !n~r !dr5Kab^fbuVHufa&. ~14!
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This quantity can be calculated as a discrete summation
the fine grid of the product ofVH(r ) with n(r ) or equiva-
lently as a trace of the product of the density kernel and
potential matrix elements. The local potential matrix e
ments are integrals that are identically equal to discrete s
on the regular grid provided of course that (VHfa)D(r ) is
first put on the regular grid.

The local pseudopotential energy is calculated in an
tirely analogous manner to the Hartree energy and can
represented by Eq.~14! if we put Vloc in place ofVH and
multiply it by a factor of 2 to take into account the lack o
self-interaction in this case.

The nonlocal pseudopotential energyEnl@n# is the expec-
tation value of the nonlocal potential operatorV̂nl in the
Kleinman–Bylander form,30

V̂nl5(
A

(
lm(A)

udV̂l
(A)C lm

(A)&^C lm
(A)dV̂l

(A)u

^C lm
(A)udV̂l

(A)uC lm
(A)&

, ~15!

where theA-summation runs over the atoms in the syste
and thelm-summation runs over the pseudo-atomic orbit
of a particular atom. ThedV̂l

(A) is an angular momentum
dependent component of the nonlocal potential of a pseu
Hamiltonian for a particular atom and theC lm

(A) are the
atomic pseudo-orbitals associated with it. In the NGWF re
resentation the nonlocal potential energy is again expres
as a matrix trace,

Enl@n#52Kab^fbuV̂nlufa&. ~16!

The ^fbuV̂nlufa& matrix elements require the calculation
overlap integralŝ faudV̂l

(A)C lm
(A)& between the NGWFs and

the nonlocal projectorsudV̂l
(A)C lm

(A)&. These are simple to
compute as discrete summations on the regular grid, star
from the plane-wave representation of the nonlocal proj
tors which is analogous to the plane-wave representatio
the NGWFs in Eq.~8!. These integrals need only be calc
lated when the sphere of functionfa(r ) overlaps the core of
atomA.

The exchange-correlation energy is obtained by appro
mating the exchange-correlation functional expression a
direct summation on the fine grid, which first involves th
evaluation of a functionF(n(r )) whose particular form de-
pends on our choice of exchange-correlation functional,2

Exc@n#5E
V
F~n~r !!dr.

V

8N1N2N3
(
XYZ

F~n~rXYZ!!.

~17!

This is the only approximation in integral evaluation in o
method as all direct summations described up to now w
exactly equal to the analytic integrals. However, in the c
of the exchange-correlation energy, the exchange-correla
functionals usually contain highly nonlinear expressions t
can not be represented without any aliasing even when
use the delta functions of the fine grid. The resulting err
however will be of the same nature as in conventional pla
wave codes and therefore negligible.1
9-3
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III. TOTAL ENERGY OPTIMIZATION

The total energy is a functional of the charge dens
E@n#. From Eq.~10! we see that the charge density is e
panded in fine grid delta functions whereKabrba(rXYZ) are
the expansion coefficients. Therefore the energy will hav
variational dependence on these coefficients provided
form an N-representable charge density. Consequently,
energy should also have a variational dependence on the
sity kernel Kab and the NGWF expansion coefficien
CKLM ,a since theKabrba(rXYZ) are constructed from them

E@n#5E~$Kab%,$CKLM ,a%!. ~18!

It is thus sufficient to minimize the energy with respect
$Kab% and $CKLM ,a%. We must however do this under tw
constraints. The first is that the number of electrons co
sponding to the charge density

Ne5E
V
n~r !dr52KabSba ~19!

should remain constant. The second is that the ground s
density matrix should be idempotent, or in other words
eigenfunctions of the Kohn–Sham Hamiltonian have to
orthonormal,

r~r ,r 8!5E
V
r~r ,r 9!r~r 9,r 8!dr 9

or

Kab5KagSgdKdb. ~20!

We choose to carry out the total energy minimization in t
nested loops, in a fashion similar to the ensemble D
method of Marzariet al.31 The density kernel will play the
role of the generalized occupation numbers and the NWG
will play the role of the orbitals. So we can reach the mi
mum energy in two constrained-search stages,

Emin 5 min
$CKLM ,a%

L~$CKLM ,a%!, ~21!

with

L~$CKLM ,a%!5 min
$Kab%

E~$Kab%,$CKLM ,a%!, ~22!

where the minimization with respect to the density kerne
Eq. ~22! ensures thatL of Eq. ~21! is a function of the
NGWF coefficients only. In practice in Eq.~22! we do not
just minimize the energy with respect toKab but we also
impose the electron number and idempotency constra
~19! and ~20!. There are a variety of efficient methods f
achieving this available in the literature, derived from t
need to perform linear-scaling calculations with a localiz
basis.32–36Any of these methods would ensure that the d
sity kernel in ~22! adapts to the current NGWFs so that
minimizes the energy within the imposed constraints.

In the present work we have used the variant of the
Nunes, and Vanderbilt~LNV ! ~Ref. 32! method that was de
veloped by Millam and Scuseria37 in calculations with
03511
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Gaussian basis sets. We emphasize again, though, that a
the other available methods could have been used as w
For simplicity of presentation, our analysis from now on w
assume that the energy of Eq.~22! is minimized without any
constraints. In order to take into account the constraints,
formulas we derive will have to be modified according to t
density kernel minimization method one chooses to use. T
is a straightforward but tedious exercise.38

The minimization of Eq.~22! can be performed iteratively
with the conjugate gradients method.39 As in the simpler
steepest descents method, the essential ingredient is the
dient. It is easy to show40 that this quantity is equal to twice
the matrix elements of the Kohn–Sham Hamiltonian,

]E

]Kab
52^fbuĤufa&. ~23!

The nonorthogonality of our NGWFs has to be taken in
account when computing search directions with the ab
gradient by transforming it to a contravariant second or
tensor.41,42

The minimization stage of Eq.~21! is also performed it-
eratively with the conjugate gradients method. In this ca
one can show by using the properties of the delta funct
basis set that the gradient is

]L

]CKLM ,a
54WKab~Ĥfb!D~rKLM !, ~24!

whereW is the weight associated with each grid point. He
a contravariant-to-covariant tensor correction is needed w
this gradient is used to calculate the search direction durin
conjugate gradient step.43 The (H# fb)D(r ) functions in gen-
eral contain contributions from all delta functions of th
simulation cell but we wish to keepfa(r ) restricted to its
spherical region. For this reason in every minimization s
of ~21! we zero all the components of~24! that correspond to
delta functions outside the sphere offa(r ).

When the minimization with respect to the density kern
of Eq. ~22! is carried out under the electron number a
idempotency constaints, Eq.~24! contains extra terms as
result of the constraints imposed in~22!. These terms ensur
that the electron number and idempotency constraints
automatically obeyed in~21! and as a result, the optimizatio
with respect to the support functions can be carried out in
unconstrained fashion.

IV. THE FFT BOX TECHNIQUE

Our discussion so far has demonstrated how to loca
the NGWFs in real-space in a manner that ensures that
are composed by a number of delta functions that is cons
with system-size. On the other hand, each delta functio
expanded in the plane-waves that can be supported by
regular grid of the simulation cell. The number of the
plane-waves is proportional to the size of the system. A
result, the cost of a calculation still scales cubically w
system-size as in the traditional plane-wave case.

In order to reduce the computational cost we must rest
9-4
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the number of plane-waves that contribute to each delta fu
tion so that it is independent of system-size. This is not s
a straightforward matter as the restriction of the NGWFs
real-space. Several factors have to be taken into accoun
most important of which is the Hermiticity of operators
integrals between NGWFs and also a representation of
erators that is consistent when they are acting on diffe
NGWFs. We have investigated these matters in detail in
context of the evaluation of kinetic energy integrals w
NGWFs in a previous paper,44 where we have proposed th
‘‘FFT box’’ technique as an accurate and efficient solution
is shown there that all the imposed conditions are satisfie
the plane-waves that are used to expand the delta func
are restricted to belong to a miniature simulation cell wh
we call the ‘‘FFT box.’’ The FFT box must be large enoug
to contain any possible orientation of overlapping NGWF
and must be a parallelepiped with a shape commensu
with the simulation cell. It should contain a regular gr
which is a subset of the simulation cell grid and thus
origin of the grid of the FFT box should coincide with
particular grid point of the simulation cell. FFT techniqu
using smaller boxes have been used in the past to take
vantage of localized functions: Pasquarelloet al.45,46 use
them to efficiently deal with the augmentation charges t
arise when using ultrasoft pseudopotentials; Hutteret al.47

use them to FFT localized Gaussian orbitals. However, to
best of our knowledge, this is the first time that a small F
box has been used to define a systematic basis set fo
entire total energy calculation.

Figure 1 demonstrates in two dimensions the F
box inside the simulation cell as defined for two overlapp
NGWFs fa and fb . In the same figure the regular grid
also visible and we can observe that a portion of it is
cluded in the FFT box. For the subset of grid points ins
the FFT box we can define delta functions as we did for
simulation cell. We represent these FFT box delta functi
by dklm(r ) and in general we follow the convention of usin
lowercase letters to denote quantities associated with
FFT boxanduppercase letters for quantities associated w
the simulation cell.

Based on the knowledge gained through the use of
FFT box to compute kinetic energy integrals,44 we extend

FIG. 1. The FFT box as defined for the pair of functionsfa and
fb .
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here its use to the calculation of all the terms that constit
the total energy~Sec. II! and all the terms needed for it
subsequent optimization with respect to the density ker
and NGWF coefficients~Sec. III!. For this purpose we nee
to be able to express or ‘‘project’’ a function from the sim
lation cell to the FFT box and back. Assuming the function
expressed entirely by delta functionsDKLM(r ) on grid points
common to the simulation cell and the FFT box, this task
straighforward and all we have to do is to rewrite the fun
tion as a linear combination of the FFT box delta functio
that lie on the same centers as the simulation cell delta fu
tions. This task is expressed formally by theP̂(ab) projec-
tion operator. When this operator acts on a function in
simulation cell, it maps it onto a function in the FFT bo
This is demonstrated for the function of Eq.~7! by the fol-
lowing expression which can also be considered as a de
tion of P̂(ab) @a more explicit expression forP̂(ab) is
given in Appendix B#:

P̂~ab!fa~r !

5 (
k50

n121

(
l 50

n221

(
m50

n321

cklm,adklm~r !

5 (
k50

n121

(
l 50

n221

(
m50

n321

C(k1Kab)( l 1Lab)(m1Mab)dklm~r !

~25!

while the adjoint operatorP̂†(ab) can act on a function in
the FFT box and turn it into a function in the simulation ce
in an analogous way.

With this compact notation it is relatively straightforwar
to devise a way of calculating the total energy by using o
the delta functions~and hence the plane-waves! periodic in
the FFT box as the basis set for each NWGF. It is a
equally straightforward to write formulas that represent t
process in a concise way.

We start with the charge density of Eq.~2!, which should
of course extend over the whole simulation cell, however
contributionsrab(r ) from pairs of NGWFs need not, and d
not, when they are calculated with the FFT box techniq
Therefore the charge density is calculated by replacing th
pair contributions in~10! by the following expression:

rab
box~r !5Q̂†~ab!$@ P̂~ab!fa~r !#@ P̂~ab!fb~r !#%,

~26!

which involves multiplyingfa(r ) with fb(r ) after they
have been transferred into the FFT box and as a consequ
their product is limited to extend only over the volume of t
FFT box. Here we have made use of the fine grid delta fu
tion projection operatorQ̂(ab) which defines a mapping
between fine grid delta functionsBXYZ(r ) of the simulation
cell and the fine grid delta functionsbxyz(r ) of the FFT box.
It is defined in an analogous manner toP̂(ab) of Eq. ~25!.

The matrix elements of one-electron operators, such
the kinetic energy and nonlocal potential can be easily c
culated in the FFT box rather than in the simulation cell
9-5
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simply transferring the NGWFs in the FFT box before eva
ating the integrals. The notation for this set of operatio
simply involves ‘‘sandwiching’’ the one-electon operator b
tween the standard grid projector operator and its adjo
The kinetic energy expression of Eq.~12! becomes

EK@n#52Kab^fbuP̂†~ab!T̂P̂~ab!ufb& ~27!

and a similar expression can be written for the nonlocal
tential energy.

The matrix elements of the Hartree and local potent
can be calculated with the same ease provided howeve
have a way to transfer these potentials to the FFT box. T
is indeed possible as these local potentials are express
terms of the fine grid delta functions and therefore we c
transfer them if we use the fine grid delta function projec
Q̂(ab). Therefore the Hartree energy of Eq.~14! becomes

EH@n#5Kab^fbuP̂†~ab!@~Q̂~ab!VH!~r !# P̂~ab!ufa&.
~28!

Nothing changes in the evaluation of the exchan
correlation energy which is simply an integral over the fi
grid of the whole simulation cell except of course for the fa
that the charge density is now calculated by summingrab

box(r )
terms in Eq.~10! in place of therab(r ).

As far as the optimization of the energy with respect
the density kernel is concerned, the results of Sec. III are
valid provided the Hamiltonian matrix elements that cons
tute the density kernel gradient~23! are calculated with the
FFT box method as we have described above.

In the same way, the total energy gradient with respec
the NGWF expansion coefficients of Eq.~24! can be calcu-
lated in the FFT box provided we use only the part of t
Kohn-Sham Hamiltonian that exists in the FFT box. The
fore all we have to do is to substituteĤ of Eq. ~24! by

Ĥ~ab!5 P̂†~ab!@ T̂1V̂nl1~Q̂~ab!VHlxc!~r !# P̂~ab!,
~29!

where VHlxc(r ) is the sum of the Hartree potential, loc
pseudopotential and exchange-correlation potential and
course now this Kohn–Sham operator is in general differ
for each pair of functions since it contains only the parts
the local potentials that fall inside the FFT box and theref
changes with the location of the FFT box relative to t
simulation cell.

As far as implementation is concerned, there are m
more issues and algorithmic details about the use of the
box that are beyond the scope of this paper. We desc
these in another paper.48

V. THE NGWF PSEUDOPOTENTIAL PLANE-WAVE
METHOD IN PRACTICE

We have implemented our method in a new code and
have performed extensive tests on a variety of systems.
have also performed comparisons with CASTEP,1 an estab-
lished pseudopotential plane-wave code that we use as
point of reference. We expect our approach to have e
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ciency comparable to the traditional cubic-scaling plan
wave pseudopotential method and thus it would be poss
to use it in its place for systems with a band gap. In that ca
a calculation with our method would afford a set of optim
localized functions which could be used directly in applic
tions such as the calculation of polarization changes in c
talline solids.49,50 However, the most important applicatio
that we envisage is the extension of the present formalism
linear-scaling calculations on very large systems. Such
extension requires the truncation of the density kernel,
issue which has been already investigated in detail.34,36,51

The resulting linear-scaling method would be directly co
parable to and have the same advantages as the plane-
approach.

Since we optimize the NGWFs iteratively, some initi
guesses are required for them. In this work we use pseu
atomic orbitals ~PAOs! that vanish outside a spherica
region.52 These orbitals are generated for the isolated ato
with the same radii, norm-conserving pseudopotentials
kinetic energy cutoff as in our calculations. Even thou
these NGWF guesses are optimal for the isolated atoms,
undergo large changes during our calculations so tha
practice any guess that resembles an atomic orbital coul
used, such as Slater or Gaussian functions.

We first demonstrate the accuracy of the FFT box te
nique as compared to using the entire simulation cell as
FFT grid. We define the quantity

DE[Ebox@n#2E@n#, ~30!

whereEbox is the total energy per atom calculated using t
FFT box technique andE is that calculated using the entir
simulation cell. Figure 2 showsDE for the butane molecule
(C4H10) for different FFT box sizes. For this test we used
cubic simulation cell of side length 50a0 and grid spacing
0.5a0. The PAOs on all the atoms were confined with
spherical regions of radius 6.0a0. The carbon atoms had on
2s and three 2p orbitals and the hydrogen atoms had a sin
1s orbital. In this case the PAOs were not optimized duri

FIG. 2. DE plotted for a butane molecule as a function of FF
box size. All PAOs were confined to atom centered localizat
regions of radius 6.0a0, and the grid spacing was 0.5a0.
9-6
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the calculation. It is seen that the error associated with us
the FFT box rather than the entire simulation cell is only
the order of 1027 Eh per atom, which is insignificant in the
context of DFT calculations. We also note that the conv
gence of the total energy with FFT box size is not stric
variational, as is expected; as the FFT box size is increa
it is true that the basis set expands, but the smaller bas
not necessarily a subset of the larger one. For a given
box size, however, the kinetic energy cutoff of our ba
functions~and hence the grid-spacing! is a variational param-
eter, just as in traditional plane-wave DFT. Further tests
discussion of the FFT box technique are publish
elsewhere.48

Our next example involves the potential energy curve
the LiH molecule inside a large cubic simulation cell of si
length 40a0. In Fig. 3 the potential energy curve is shown
calculated by CASTEP and by our method with the sa
kinetic energy cutoff of 538 eV. As we have used nor
conserving Troullier–Martins53 pseudopotentials, this is
two electron system which we describe by one NGWF
each atom. It can be seen that when we use NGWFs
radii of 8.0a0, we have mEh agreement in total energies wit
the CASTEP results. Furthermore, the equilibrium bo
length and vibrational frequency for this case differ from t
CASTEP results by only20.19% and 0.74%, respectivel
For the smaller radius of 6.0a0 the curve diverges from the
CASTEP curve at large bond lengths. This is because
NGWF sphere overlap, and therefore the number of d
functions between the atoms, decreases more rapidly fo
small radii as the atoms are pulled apart. Also shown in
same figure is a curve that has been generated with
method but without optimization of the NGWFs, which we
kept constant and equal to the initial PAO guesses. Thi
equivalent to a tight-binding calculation with a minimal PA
basis. As can be seen, the total energies deviate significa
from the CASTEP result, as one would expect. The equi
rium bond length for this case differs by 3.34% fro
CASTEP, as compared to21.24% for the 6.0a0 NGWF cal-

FIG. 3. Potential energy curves for LiH generated with t
CASTEP plane-wave pseudopotential code and with our method
NGWF radii of 6.0a0 and 8.0a0 and fors-type PAOs with a radius
of 6.0a0.
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culation. Thus, optimizing the NGWFs improves the es
mate of the bond length. The vibrational frequency obtain
from the PAO case, however, differs by 3.51% fro
CASTEP, as compared to 5.33% for the 6.0a0 NGWF calcu-
lation. This, we believe, is an artifact of the localization co
straint imposed on the NGWFs and suggests that in fact
calization radii greater than 6.0a0 should be used in practice

We now show convergence of the total energy w
NGWF radius. For our tests we have used a silane (Si4)
molecule with the same simulation cell and grid spacing
described above. A local Troullier–Martins53 norm-
conserving pseudopotential was used on the hydrogen a
and a nonlocal one on the silicon atom. The number
NGWFs on each atom was as many as in the valence s
of the isolated atoms, i.e., one on hydrogen and four
silicon. Figure 4 shows total energy results calculated for t
system as a function of NGWF sphere radii. Convergenc
uniform and to mEh accuracy by the time we get to a radiu
of 7.0a0. Such a NGWF radius should be adequate for pr
tical calculations.

Here we also show that large qualitative changes occu
the shapes of the NGWFs during optimization. In Fig. 5
show plots of isosurfaces of the NGWFs for an ethene m
ecule in a large simulation cell, before and after optimiz
tion. The NGWF radius was 8.0a0 for all atoms. In particu-
lar, the carbon 2px orbital, which is collinear with the C–C
s bond, focuses more around this bond and gains two m
lobes and nodes at the positions of the hydrogen atoms
thest from its carbon center. The hydrogen functions, star
from 1s, obtain after optimization a complicated shape th
extends over the whole molecule and has nodal surfaces
twen the carbons and the rest of the hydrogens. The d
qualitative changes to the shapes of the NGWFs that oc
during their optimization with our method are obviously ne
essary for obtaining a plane-wave equivalent result. Our
timized NGWFs in general look nothing like the atomic o
bitals they started from and are adjusted to their particu
molecular environment. We therefore conclude that using
delta function basis set and performing all operations con
tently with the plane-wave formalism is important for obtai
ing the systematic convergence that plane-waves have.

or

FIG. 4. Total energy of a silane molecule calculated with o
method for various NGWF radii (r c).
9-7
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SKYLARIS, MOSTOFI, HAYNES, DIÉGUEZ, AND PAYNE PHYSICAL REVIEW B66, 035119 ~2002!
Our final example demonstrates the direct applicability
our method to any lattice symmetry without any modific
tion. This is a consequence of being consistent through
with the plane-wave formalism. As we have shown for t
calculation of the kinetic energy in this way,44 we also
achieve better accuracy at no additional cost compared
a finite difference approach. In Fig. 6 we show a porti
(Si8H16) of an infinite linear silane chain inside a hexagon
simulation cell on which we have performed a total ene
calculation at a kinetic energy cutoff of 183 eV. The radii
the NGWFs were 6.0a0 on silicon and 5.0a0 on hydrogen. A
total energy of239.097 Eh was obtained when we opti
mized the density kernel only~with the NGWFs kept con-
stant and equal to PAOs!. When both the density kernel an
the NGWFs were optimized, the energy lowered
252.216 Eh , which is another manifestation of the fact th
both the density kernel and the NGWFs should be optimi
in calculations with our method.

FIG. 5. Isosurfaces of NGWFs for the ethene molecule, bef
and after optimization. The light gray surfaces are positive and
dark gray are negative. A drawing of the ethene molecule is su
imposed on each NGWF in order to show its location with resp
to the atoms.
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VI. CONCLUSIONS

We have developed a new formalism where we have
cast the plane-wave pseudopotential method in terms of n
orthogonal localized functions instead of Kohn–Sham ban
A key ingredient for computationally efficient calculation
with our approach is the restriction of the local functio
both in real and in reciprocal space. We have written a n
code to implement and test this approach. Even though
equivalent to plane-waves, our method performs calculati
directly with localized functions without ever resorting
Kohn–Sham states. As a consequence it could be more
able for application to fields such as the theory of elec
polarization of insulators. However we anticipate that t
main use of this approach will be in density-functional c
culations on insulators whose cost scales linearly with
size of the system. Its extension to linear-scaling calculati
requires the reduction of the elements of the density ke
by truncation. Our test calculations on a variety of syste
confirm that such a linear-scaling method should be dire
comparable to traditional plane-waves. Advantages of
approach include high accuracy, applicability to any latt
symmetry, and systematic basis set improvement contro
by the kinetic energy cutoff.
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APPENDIX A: DELTA FUNCTIONS

In this paper, whenever we refer to ‘‘delta functions’’ w
will assume a periodic and bandwidth limited version of t
Dirac delta functions. These delta functions are thr
dimensional versions of the ‘‘impulse functions’’ that a
common in signal processing applications of FFTs.54 In an
electronic structure, similar functions have been used
‘‘mesh delta functions’’ in the ‘‘exact finite difference
method’’ of Hoshiet al.55 and in recent studies of their pos
sible application when we consider the limit of an infini
simulation cell.56

In our derivations we will assume that we have a simu
tion cell of any symmetry, which in general is a parallele
ped defined by its primitive lattice vectorsA1 , A2, andA3.
In this simulation cell we define aregular grid with an odd
number of pointsN152J111, N252J211, andN352J3
11 in every direction~the adaptation of our results to th
case of even numbers of points is straightforward!. Therefore
point rKLM of this regular grid is defined as

rKLM5
K

N1
A11

L

N2
A21

M

N3
A3 ~A1!

with K50,1, . . . (N121), etc.
Bandwidth limited delta functions centered at points

the regular grid are defined as

DKLM~r !5D000~r2rKLM !

5
1

N1N2N3

3 (
P52J1

J1

(
Q52J2

J2

(
R52J3

J3

ei (PB11QB21RB3)•(r2rKLM),

~A2!

whereB1 , B2 andB3 are the primitive reciprocal lattice vec
tors of the simulation cell. Plane-waves whose wave vec
is a linear combination of these reciprocal lattice vect
have periodicity compatible with the simulation cell an
therefore so do our delta functions, or any other funct
expanded in terms of these plane-waves. Theseperiodic
bandwidth limiteddelta functions are our basis set. A plot
a two-dimensional version of one of these delta function
shown in Fig. 7. It is obvious from~A2! that the delta func-
tions are real-valued everywhere in space. They are not
malized to unity but they are normalized to the grid po
volume (V is the volume of the simulation cell!

W5
V

N1N2N3
. ~A3!

Their value at grid points is equal to one when the grid po
coincides with the center of the function and zero for
other grid points,
03511
-

s

-
-

f

r
s

n

is

r-
t

t
l

DKLM~rFGH!5dKFdLGdMH . ~A4!

The delta functions act as Dirac delta functions with t
added effect of filtering out any plane-wave components t
are not part of them. For example, iff (r ) is a function peri-
odic with the periodicity of the simulation cell but not ban
width limited, it can be expressed in terms of its discre
Fourier transform~plane-wave! expansion,

f ~r !5
1

V (
S52`

`

(
T52`

`

(
U52`

`

f̃ ~SB11TB21UB3!

3ei (SB11TB21UB3)•r, ~A5!

whereV is the volume of the simulation cell.
It is straightforward to show that the projection off (r )

onto DKLM(r ) is

E
V
DKLM~r ! f ~r !dr

5
1

N1N2N3
(

S52J1

J1

(
T52J2

J2

(
U52J3

J3

f̃ ~SB11TB21UB3!

3e2 i (SB11TB21UB3)•rKLM

5W fD~rKLM !.

We define heref D(r ) to be the bandwidth limited version o
the functionf (r ), limited to the same frequency componen
asDKLM(r ).

As the NGWFs are linear combinations of the delta fun
tions according to~7!, the result of Eq.~A6! is very impor-
tant since it leads to the following relation:

E
V
fa~r ! f ~r !dr5W (

K50

N121

(
L50

N221

(
M50

N321

CKLM ,a f D~rKLM !

~A6!

which means that the integral in the left-hand side of
above equation isexactly equalto a discrete summation o
values on the grid, provided we use the bandwidth limit
version of f (r ).

As a corollary we observe that the delta functions are
orthogonal set since

E
V
DFGH~r !DKLM~r !dr5WDFGH~rKLM !

5WdFKdGLdHM . ~A7!

We also need to define thefine grid delta functions
BXYZ(r ) ~here theXYZare just grid point indices for the fine
grid, they arenot related to any Cartesian coordinates!.
These functions are the analogs of the delta functions
have just described that would be obtained if we doubled
minimum and maximum values that their wave vectors c
take. Consequently, they have the same periodicity but t
correspond to a grid with twice the number of points in eve
direction, i.e., 2N1 , 2N2, and 2N3 points. They are defined
by
9-9
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FIG. 7. A two-dimensional version of one of the functions that constitute our basis set. Here functionD00(r ) is shown which is identically
equal to 1 at its center~point r00) and equal to zero at the centers~shown as black dots in the picture! of all other functions in the basis se
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BXYZ~r !5B000~r2rXYZ!

5
1

8N1N2N3
(

P5(2N111)

N1

(
Q5(2N211)

N2

(
R5(2N311)

N3

3ei (PB11QB21RB3)•(r2rXYZ). ~A8!

As expected, the fine grid delta functions also satisfy
equation similar to~A6!,

E
V
BXYZ~r ! f ~r !dr5

W

8
f B~rXYZ!, ~A9!

wheref B(r ) is again a bandwidth limited version off (r ) but
this time it is limited to contain any of the plane-waves th
constituteBXYZ(r ) rather thanDKLM(r ). It is easy to verify
that any function that can be written as a sum of products
pairs of delta functions can also be written as a fine grid d
function expansion. We define and use the fine grid d
functions because of this ‘‘product rule’’ property.
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APPENDIX B: FROM THE SIMULATION CELL
TO THE FFT BOX AND BACK

Even though the FFT box is universal in shape and s
for a given system, its position with respect to the grid
the simulation cell is determined by the pair of overlappi
NGWFs, sayfa(r ) and fb(r ), we are dealing with at any
given time. An operator therefore that would mapfa(r )
from one representation to another would depend also on
position offb(r ). We therefore define such an operator f
the pair of functionsfa(r ) andfb(r ) by

P̂~ab!5
1

W (
k50

(n121)

(
l 50

(n221)

(
m50

(n321)

udklm&

3^D (k1Kab)( l 1Lab)(m1Mab)u, ~B1!

where the numbersKab , Lab , and Mab denote the grid
point of the simulation cell on which the origin of the FF
box is located. Here lowercase letters are used to repre
quantities related to the FFT box, son1 , n2, andn3 are the
numbers of grid points in the FFT box in each lattice vec
direction. Because of the periodic boundary conditions
9-10
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should also be understood that if the indices of a delta fu
tion of the simulation cell exceed the grid point indices, th
this function coincides with its periodic image that fal
within the simulation cell. As an example, assumeN15N2
5N3520. Then,

D (5)(21)(23)~r !5D (5)(1)(3)~r !. ~B2!

We also need to define an operator that projects a func
from the portion of the fine grid associated with functio
R

d

a

lt

B
J

lli
Q

.

.

03511
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fa(r ) andfb(r ) to the FFT box. Such an operator is defin
in a similar fashion toP̂(ab) by

Q̂~ab!5
8

W (
x50

(2n121)

(
y50

(2n221)

(
z50

(2n321)

ubxyz&

3^B(x12Kab)(y12Lab)(z12Mab)u. ~B3!

OperatorsP̂†(ab) and Q̂†(ab) map a function from the
FFT box to the simulation cell in the standard and fine gri
respectively.
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